Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Series - Recent Advances in the Management of Secondary Hypertension

Recent advances in the management of pheochromocytoma and paraganglioma

Abstract

Pheochromocytomas and paragangliomas (PPGLs) are rare tumors that cause refractory hypertension and hypertensive crisis. Although metastatic disease accounts for 30% of PPGLs, the diagnosis of malignancy is difficult without the presence of metastatic lesions. Here, we review several advancements in the diagnosis and treatment of PPGL. A nationwide epidemiological survey in Japan revealed that the annual number of patients with PPGL was 3000, which was higher than that reported previously. While plasma and urine fractionated metanephrines are recommended for use in specific biochemical testing for diagnosis, creatinine-corrected fractionated metanephrines in spot urine samples that had been widely used in Japan as a convenient screening test were shown to be as useful as 24-h urine fractionated metanephrines. Regarding imaging studies, a more specific functional imaging for PPGLs, 68Ga DOTATATE, was newly developed. 68Ga DOTATATE provides a clear image with high sensitivity and specificity. Currently, PASS or GAPP histological scores and SDHB immunostaining are clinically used to attempt to discriminate benign from malignant tumors. However, since this distinguishing process remains difficult, all cases were classified as malignant with the possibility of metastasis in the WHO classification of endocrine tumors updated in 2017. Approximately 60% of PPGLs have germline mutations in PPGL-related genes. Currently, the genes are classified into two clusters based on their mechanism for the etiology of tumorigenesis. Based on the possible mechanisms of tumor development associated with gene mutations, several molecular target drugs are under evaluation to explore more promising treatments for malignant PPGL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–75.

    PubMed  Google Scholar 

  2. Scholten A, Cisco RM, Vriens MR, Cohen JK, Mitmaker EJ, Liu C, et al. Pheochromocytoma crisis is not a surgical emergency. J Clin Endocrinol Metab. 2013;98:581–91.

    CAS  PubMed  Google Scholar 

  3. Berends AMA, Buitenwerf E, de Krijger RR, Veeger NJGM, van der Horst-Schrivers ANA, Links TP, et al. Incidence of Pheochromocytoma and sympathetic paraganglioma in the Netherlands: a nationwide study and systematic review. Eur J Intern Med. 2018;51:68–73.

    PubMed  Google Scholar 

  4. Stenstrom G, Svardsudd K. Pheochromocytoma in Sweden 1958-1981. An analysis of the National Cancer Registry Data. Acta Med Scand. 1986;220:225–32.

    CAS  PubMed  Google Scholar 

  5. Naruse M, Tsuiki M, Nanba K, Nakao K, Tagami T, Tanabe A. [Etiology and clinical guidelines for the diagnosis and treatment of pheochromocytoma in Japan]. Nihon Geka Gakkai Zasshi. 2012;113:378–83.

    PubMed  Google Scholar 

  6. Naruse M, PHEO-J Study Group. 2011 Nationwide survey and PHEO network for the study of pheochromocytoma/paraganglioma in Japan (PHEO-J). Endocr Rev.2011; 32 Meeting Abstracts: P2–631 (abstract 102).

  7. Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, et al. Phaeochromocytoma Study Group in Japan. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2014;21:405–14.

    PubMed  Google Scholar 

  8. Ichijo T, Ueshiba H, Nawata H, Yanase T. A nationwide survey of adrenal incidentalomas in Japan: the first report of clinical and epidemiological features. Endocr J. 2020;67:141–52.

    PubMed  Google Scholar 

  9. Ohno Y, Sone M, Taura D, Yamasaki T, Kojima K, Honda-Kohmo K, et al. Evaluation of quantitative parameters for distinguishing pheochromocytoma from other adrenal tumors. Hypertens Res. 2018;41:165–75.

    CAS  PubMed  Google Scholar 

  10. Sutton MG, Sheps SG, Lie JT. Prevalence of clinically unsuspected pheochromocytoma. Review of a 50-year autopsy series. Mayo Clin Proc. 1981;56:354.

    CAS  PubMed  Google Scholar 

  11. Lenders JW, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287:1427–34.

    CAS  PubMed  Google Scholar 

  12. Eisenhofer G, Peitzsch M. Laboratory evaluation of pheochromocytoma and paraganglioma. Clin Chem. 2014;60:1486–99.

    CAS  PubMed  Google Scholar 

  13. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Endocrine Society. et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:1915–42.

    CAS  PubMed  Google Scholar 

  14. Takekoshi K, Satoh F, Tanabe A, Okamoto T, Ichihara A, Tsuiki M, et al. Correlation between urinary fractionated metanephrines in 24-hour and spot urine samples for evaluating the therapeutic effect of metyrosine: a subanalysis of a multicenter, open-label phase I/II study. Endocr J. 2019;66:1063–72.

    CAS  PubMed  Google Scholar 

  15. Naruse M, Satoh F, Tanabe A, Okamoto T, Ichihara A, Tsuiki M, et al. Efficacy and safety of metyrosine in pheochromocytoma/paraganglioma: a multi-center trial in Japan. Endocr J. 2018;65:359–71.

    CAS  PubMed  Google Scholar 

  16. Rufini V, Treglia G, Castaldi P, Perotti G, Giordano A. Comparison of metaiodobenzylguanidine scintigraphy with positron emission tomography in the diagnostic work-up of pheochromocytoma and paraganglioma: a systematic review. Q J Nucl Med Mol Imaging. 2013;57:122–33.

    CAS  PubMed  Google Scholar 

  17. Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46:2112–37.

    PubMed  PubMed Central  Google Scholar 

  18. Janssen I, Chen CC, Millo CM, Ling A, Taieb D, Lin FI, et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2016;43:1784–91.

    CAS  PubMed  Google Scholar 

  19. Sanli Y, Garg I, Kandathil A, Kendi T, Zanetti MJB, Kuyumcu S, et al. Neuroendocrine tumor diagnosis and management: 68Ga-DOTATATE PET/CT. Am J Roentgenol. 2018;211:267–77.

    Google Scholar 

  20. Parasiliti-Caprino M, Lucatello B, Lopez C, Burrello J, Maletta F, Mistrangelo M, et al. Predictors of recurrence of pheochromocytoma and paraganglioma: a multicenter study in Piedmont, Italy. Hypertens Res. 2020;43:500–10.

    CAS  PubMed  Google Scholar 

  21. Tischler AS, de Krijger RR, Gill AJ, Kawashima A, Kumura N, Komminoth P, et al. Phaechromocytoma. In: Loiyd R, Osamura R, Kloppel G, Juan R, editors. WHO classification of tumours of endocrine organs. 4th edn. Lyon: International Agency for Research on Cancer; 2017. p. 183–90.

  22. Thompson LD. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol. 2002;26:551–66.

    PubMed  Google Scholar 

  23. Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, et al. Phaeochromocytoma Study Group in Japan. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2014;21:405–14.

    PubMed  Google Scholar 

  24. Castelblanco E, Santacana M, Valls J, de Cubas A, Cascón A, Robledo M, et al. Usefulness of negative and weak-diffuse pattern of SDHB immunostaining in assessment of SDH mutations in paragangliomas and pheochromocytomas. Endocr Pathol. 2013;24:199–205.

    CAS  PubMed  Google Scholar 

  25. Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a multinational study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol. 2015;28:807–21.

    CAS  PubMed  Google Scholar 

  26. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11:101–11.

    CAS  PubMed  Google Scholar 

  27. Brito JP, Asi N, Bancos I, Gionfriddo MR, Zeballos-Palacios CL, Leppin AL, et al. Testing for germline mutations in sporadic pheochromocytoma/paraganglioma: a systematic review. Clin Endocrinol. 2015;82:338–45.

    CAS  Google Scholar 

  28. Pillai S, Gopalan V, Smith RA, Lam AK. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol. 2016;100:190–208.

    PubMed  Google Scholar 

  29. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1:72–80.

    CAS  PubMed  Google Scholar 

  30. Buffet A, Smati S, Mansuy L, Ménara M, Lebras M, Heymann MF, et al. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab. 2014;99:E369–73.

    CAS  PubMed  Google Scholar 

  31. Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018;55:384–94.

    CAS  PubMed  Google Scholar 

  32. Castro-Vega LJ, Letouzé E, Burnichon N, Buffet A, Disderot PH, Khalifa E, et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun. 2015;27:6044.

    Google Scholar 

  33. Maynard MA, Ohh M. The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci. 2007;64:2170–80.

    CAS  PubMed  Google Scholar 

  34. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eisenhofer G, Pacak K, Huynh TT, Qin N, Bratslavsky G, Linehan WM, et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr Relat Cancer. 2011;18:97–111.

    CAS  PubMed  Google Scholar 

  36. Santos P, Pimenta T, Taveira-Gomes A. Hereditary phaeochromocytoma. Int J Surg Pathol. 2014;22:393–400.

    PubMed  Google Scholar 

  37. Mannelli M, Canu L, Ercolino T, Rapizzi E, Martinelli S, Parenti G, et al. Diagnosis of endocrine disease: SDHx mutations: beyond pheochromocytomas and paragangliomas. Eur J Endocrinol. 2018;178:R11–17.

    CAS  PubMed  Google Scholar 

  38. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14:173–86.

    CAS  PubMed  Google Scholar 

  39. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86:5658–71.

    CAS  PubMed  Google Scholar 

  40. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA. 2005;102:8573–8.

    CAS  PubMed  Google Scholar 

  41. Képénékian L, Mognetti T, Lifante JC, Giraudet AL, Houzard C, Pinson S, et al. Interest of systematic screening of pheochromocytoma in patients with neurofibromatosis type 1. Eur J Endocrinol. 2016;175:335–44.

    PubMed  Google Scholar 

  42. Burnichon N, Cascón A, Schiavi F, Morales NP, Comino-Méndez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18:2828–37.

    CAS  PubMed  Google Scholar 

  43. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42:229–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Toledo SP, Lourenço DM Jr, Sekiya T, Lucon AM, Baena ME, Castro CC, et al. Penetrance and clinical features of pheochromocytoma in a six-generation family carrying a germline TMEM127 mutation. J Clin Endocrinol Metab. 2015;100:E308–18.

    CAS  PubMed  Google Scholar 

  45. Plouin PF, Amar L, Dekkers OM, Fassnacht M, Gimenez-Roqueplo AP, Lenders JW, Guideline Working Group, et al. European Society of Endocrinology Clinical Practice Guideline for long-term followup of patients operated on for a phaeochromocytoma or a paraganglioma. Eur J Endocrinol. 2016;174:G1–10.

    CAS  PubMed  Google Scholar 

  46. Buffet A, Ben Aim L, Leboulleux S, Drui D, Vezzosi D, Libé R, French Group of Endocrine Tumors (GTE) and COMETE Network, et al. Positive impact of genetic test on the management and outcome of patients with paraganglioma and/or pheochromocytoma. J Clin Endocrinol Metab. 2019;104:1109–18.

    PubMed  Google Scholar 

  47. Young WF Jr. Pheochromocytoma: 1926–1993. Trends Endocrinol Metab. 1993;4:122–7.

    PubMed  Google Scholar 

  48. Plouin PF, Duclos JM, Soppelsa F, Boublil G, Chatellier G. Factors associated with perioperative morbidity and mortality in patients with pheochromocytoma: analysis of 165 operations at a single center. J Clin Endocrinol Metab. 2001;86:1480–6.

    CAS  PubMed  Google Scholar 

  49. Strajina V, Dy BM, Farley DR, Richards ML, McKenzie TJ, Bible KC, et al. Surgical treatment of malignant pheochromocytoma and paraganglioma: retrospective case series. Ann Surg Oncol. 2017;24:1546–50.

    PubMed  Google Scholar 

  50. Kohlenberg J, Welch B, Hamidi O, Callstrom M, Morris J, Sprung J, et al. Efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma. Cancers (Basel). 2019;11:E195.

    Google Scholar 

  51. Averbuch SD, Steakley CS, Young RC, Gelmann EP, Goldstein DS, Stull R, et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann Intern Med. 1988;109:267–73.

    CAS  PubMed  Google Scholar 

  52. Niemeijer ND, Alblas G, van Hulsteijn LT, Dekkers OM, Corssmit EP. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;81:642–51.

    CAS  Google Scholar 

  53. Huang H, Abraham J, Hung E, Averbuch S, Merino M, Steinberg SM, et al. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine: recommendation from a 22-year follow-up of 18 patients. Cancer. 2008;113:2020–8.

    CAS  PubMed  Google Scholar 

  54. Tanabe A, Naruse M, Nomura K, Tsuiki M, Tsumagari A, Ichihara A. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine in patients with malignant pheochromocytoma and paraganglioma. Horm Cancer. 2013;4:103–10.

    CAS  PubMed  Google Scholar 

  55. Butz JJ, Weingarten TN, Cavalcante AN, Bancos I, Young WF Jr, McKenzie TJ, et al. Perioperative hemodynamics and outcomes of patients on metyrosine undergoing resection of pheochromocytoma or paraganglioma. Int J Surg. 2017;46:1–6.

    PubMed  Google Scholar 

  56. Wachtel H, Kennedy EH, Zaheer S, Bartlett EK, Fishbein L, Roses RE, et al. Preoperative metyrosine improves cardiovascular outcomes for patients undergoing surgery for pheochromocytoma and paraganglioma. Ann Surg Oncol. 2015;22(Suppl 3):S646–54.

    PubMed  Google Scholar 

  57. van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131) I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;80:487–501.

    Google Scholar 

  58. Wakabayashi H, Inaki A, Yoshimura K, Murayama T, Imai Y, Higuchi T, et al. A phase I clinical trial for [131I]meta-iodobenzylguanidine therapy in patients with refractory pheochromocytoma and paraganglioma. Sci Rep. 2019;9:7625.

    PubMed  PubMed Central  Google Scholar 

  59. Jimenez C, Erwin W, Chasen B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers (Basel). 2019;11:E1018.

    Google Scholar 

  60. Pryma DA, Chin BB, Noto RB, Dillon JS, Perkins S, Solnes L, et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med. 2019;60:623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, Kronauge JF, et al. Comparison of high-specific-activity ultratrace 123/131I MIBG and carrier-added 123/131I MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25:299–308.

    CAS  PubMed  Google Scholar 

  62. Jimenez C, Cabanillas ME, Santarpia L, Jonasch E, Kyle KL, Lano EA, et al. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. J Clin Endocrinol Metab. 2009;94:386–91.

    CAS  PubMed  Google Scholar 

  63. O’Kane GM, Ezzat S, Joshua AM, Bourdeau I, Leibowitz-Amit R, Olney HJ, et al. A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial. Br J Cancer. 2019;120:1113–9.

    PubMed  PubMed Central  Google Scholar 

  64. Gross DJ, Munter G, Bitan M, Siegal T, Gabizon A, Weitzen R, Israel Glivec in Solid Tumors Study Group, et al. The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer. 2006;13:535–40.

    CAS  PubMed  Google Scholar 

  65. Jasim S, Suman VJ, Jimenez C, Harris P, Sideras K, Burton JK, et al. Phase II trial of pazopanib in advanced/progressive malignant pheochromocytoma and paraganglioma. Endocrine. 2017;57:220–5.

    CAS  PubMed  Google Scholar 

  66. Giubellino A, Bullova P, Nölting S, Turkova H, Powers JF, Liu Q, et al. Combined inhibition of mTORC1 and mTORC2 signaling pathways is a promising therapeutic option in inhibiting pheochromocytoma tumor growth: in vitro and in vivo studies in female athymic nude mice. Endocrinology. 2013;154:646–55.

    PubMed  PubMed Central  Google Scholar 

  67. Oh DY, Kim TW, Park YS, Shin SJ, Shin SH, Song EK, et al. Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas. Cancer. 2012;118:6162–70.

    CAS  PubMed  Google Scholar 

  68. Naing A, Meric-Bernstam F, Stephen B, Karp DD, Hajjar J, Rodon AJ, et al. Phase 2 study of pembrolizumab in patients with advanced rare cancers. J Immunother Cancer. 2020;8:e000347.

    PubMed  PubMed Central  Google Scholar 

  69. Breen W, Bancos I, Young WF Jr, Bible KC, Laack NN, Foote RL, et al. External beam radiation therapy for advanced/unresectable malignant paraganglioma and pheochromocytoma. Adv Radiat Oncol. 2017;3:25–29.

    PubMed  PubMed Central  Google Scholar 

  70. Ayala-Ramirez M, Palmer JL, Hofmann MC, de la Cruz M, Moon BS, Waguespack SG, et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J Clin Endocrinol Metab. 2013;98:1492–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Teno S, Tanabe A, Nomura K, Demura H. Acutely exacerbated hypertension and increased inflammatory signs due to radiation treatment for metastatic pheochromocytoma. Endocr J. 1996;43:511–6.

    CAS  PubMed  Google Scholar 

  72. Ayala-Ramirez M, Chougnet CN, Habra MA, Palmer JL, Leboulleux S, Cabanillas ME, et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab. 2012;97:4040–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Toledo R, Jimenez C. Recent advances in the management of malignant pheochromocytoma and paraganglioma: focus on tyrosine kinase and hypoxia-inducible factor inhibitors. F1000Res. 2018;7:F1000.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the PHEO-J study members and ACPA-J study members for their collaboration. We also thank Keiko Umegaki for supporting our study as a member of the secretariat. This study was supported in part by grants-in-aid from the National Center for Global Health and Medicine, Japan (27-1402 and 30-1008); the Japan Rare Adrenal Diseases Study (JRAS) of the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development (AMED) (JP17ek0109122 and JP20ek0109352); and Pheochromocytoma (PHEO-J) of the Research on Measures for Intractable Diseases from the Ministry of Health, Labour and Welfare, Japan and Health and Labor Sciences Research Grants (H29-046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyo Tanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanabe, A., Naruse, M. Recent advances in the management of pheochromocytoma and paraganglioma. Hypertens Res 43, 1141–1151 (2020). https://doi.org/10.1038/s41440-020-0531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0531-0

Keywords

This article is cited by

Search

Quick links