Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Blood pressure management in an ecosystem context

Abstract

The Hippocratic text On Airs, Waters, Places advises physicians to attend to all aspects of the environment—the seasons, the wind direction, and the soil and water quality, i.e., the ecosystem—when addressing people’s health. Hippocrates emphasizes that the ecosystem influences health, disease, and therapeutic choices. Now is the time to consider how this medical wisdom can be integrated into healthcare systems and utilized for people’s health. This review discusses how the ecosystem can affect blood pressure (BP) in humans and provides a synthesis of the related resources available in the literature to inform the actions of healthcare providers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1

References

  1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317:165–82.

    PubMed  Google Scholar 

  2. World Health Organization. https://www.who.int/globalchange/ecosystems/en/. Accessed Dec 23 2019.

  3. Shahu A, Herrin J, Dhruva SS, Desai NR, Davis BR, Krumholz HM, et al. Disparities in socioeconomic context and association with blood pressure control and cardiovascular outcomes in ALLHAT. J Am Heart Assoc. 2019;8:e012277.

    PubMed  PubMed Central  Google Scholar 

  4. Lang T. Social and economic factors as obstacles to blood pressure control. Am J Hypertens. 1998;11:900–2.

    CAS  PubMed  Google Scholar 

  5. Yano Y, Hoshide S, Tamaki N, Inokuchi T, Nagata M, Yokota N, et al. Regional differences in hypertensive cardiovascular remodeling between fishing and farming communities in Japan. Am J Hypertens. 2011;24:437–43.

    CAS  PubMed  Google Scholar 

  6. Bravo MA, Batch BC, Miranda ML. Residential racial isolation and spatial patterning of hypertension in Durham, North Carolina. Prev Chronic Dis. 2019;16:E36.

    PubMed  PubMed Central  Google Scholar 

  7. Morenoff JD, House JS, Hansen BB, Williams DR, Kaplan GA, Hunte HE. Understanding social disparities in hypertension prevalence, awareness, treatment, and control: the role of neighborhood context. Soc Sci Med. 2007;65:1853–66.

    PubMed  PubMed Central  Google Scholar 

  8. Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Groen SE, Kadrmas HM, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mileski M, Kruse CS, Catalani J, Haderer T. Adopting telemedicine for the self-management of hypertension: systematic review. JMIR Med Inf. 2017;5:e41.

    Google Scholar 

  10. Mills KT, Obst KM, Shen W, Molina S, Zhang HJ, He H, et al. Comparative effectiveness of implementation strategies for blood pressure control in hypertensive patients: a systematic review and meta-analysis. Ann Intern Med. 2018;168:110–20.

    PubMed  Google Scholar 

  11. Hammond G, Joynt Maddox KE. A theoretical framework for clinical implementation of social determinants of health. JAMA Cardiol. 2019. https://doi.org/10.1001/jamacardio.2019.3805. No abstract available. PMID: 31596433.

  12. Bradley EH, Canavan M, Rogan E, Talbert-Slagle K, Ndumele C, Taylor L, et al. Variation In health outcomes: the role of spending on social services, public health, and health care, 2000–09. Health Aff. 2016;35:760–8.

    Google Scholar 

  13. Campbell F, Conti G, Heckman JJ, Moon SH, Pinto R, Pungello E, et al. Early childhood investments substantially boost adult health. Science. 2014;343:1478–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.

    PubMed  PubMed Central  Google Scholar 

  16. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr, et al. Gut microbiota composition and blood pressure. Hypertension. 2019;73:998–1006.

    CAS  PubMed  Google Scholar 

  17. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016;119:956–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu Y, Mao G, Wang J, Zhu L, Lv X, Tong Q, et al. Gut dysbiosis is associated with the reduced exercise capacity of elderly patients with hypertension. Hypertens Res. 2018;41:1036–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Blum WEH, Zechmeister-Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? Microorganisms. 2019;7:E287. https://doi.org/10.3390/microorganisms7090287.

    Article  PubMed  Google Scholar 

  21. Duffy JE, Godwin CM, Cardinale BJ. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature. 2017;549:261–4.

    CAS  PubMed  Google Scholar 

  22. Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature. 2016;536:456–9.

    CAS  PubMed  Google Scholar 

  23. Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging frontiers in microbiome engineering. Trends Immunol. 2019;40:952–73.

    CAS  PubMed  Google Scholar 

  24. Kaczmarek JL, Thompson SV, Holscher HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev. 2017;75:673–82.

    PubMed  PubMed Central  Google Scholar 

  25. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    CAS  PubMed  Google Scholar 

  26. Dill-McFarland KA, Tang ZZ, Kemis JH, Kerby RL, Chen G, Palloni A, et al. Close social relationships correlate with human gut microbiota composition. Sci Rep. 2019;9:703.

    PubMed  PubMed Central  Google Scholar 

  27. Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. https://doi.org/10.1126/science.aav0550.

  28. Rook GA. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology. 2009;126:3–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Wang S, Wang Z, Zhang Z, Qin H, Wei Z, et al. Soil microbiome mediated nutrients decline during forest degradation process. Soil Ecol Lett. 2019;1:59–71.

    Google Scholar 

  30. Ideno Y, Hayashi K, Abe Y, Ueda K, Iso H, Noda M, et al. Blood pressure-lowering effect of Shinrin-yoku (Forest bathing): a systematic review and meta-analysis. BMC Complement Alter Med. 2017;17:409.

    Google Scholar 

  31. Bowyer RCE, Jackson MA, Pallister T, Skinner J, Spector TD, Welch AA, et al. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome. 2018;6:77.

    PubMed  PubMed Central  Google Scholar 

  32. Partula V, Mondot S, Torres MJ, Kesse-Guyot E, Deschasaux M, Assmann K, et al. Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. Am J Clin Nutr. 2019;109:1472–83.

    PubMed  Google Scholar 

  33. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972.

    PubMed  PubMed Central  Google Scholar 

  34. Smith RP, Easson C, Lyle SM, Kapoor R, Donnelly CP, Davidson EJ, et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS One. 2019;14:e0222394.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF. Urban habitat restoration provides a human health benefit through microbiome rewilding: the microbiome rewilding hypothesis. Restor Ecol. 2017;25:866.

    Google Scholar 

  36. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    PubMed  PubMed Central  Google Scholar 

  37. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    PubMed  PubMed Central  Google Scholar 

  38. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.

    CAS  PubMed  Google Scholar 

  39. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312–23.

    CAS  PubMed  Google Scholar 

  40. Huart J, Leenders J, Taminiau B, Descy J, Saint-Remy A, Daube G, et al. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension. 2019;74:1005–13.

    CAS  PubMed  Google Scholar 

  41. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.

    PubMed  Google Scholar 

  42. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang T, Magee KL, Colon-Perez LM, Larkin R, Liao YS, Balazic E, et al. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol. 2019;226:e13256.

    Google Scholar 

  44. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;132:701–71.

    CAS  Google Scholar 

  45. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903.

    CAS  PubMed  Google Scholar 

  46. Van Staden Adu P, Heunis T, Smith C, Deane S, Dicks LM. Efficacy of lantibiotic treatment of staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob Agents Chemother. 2016;60:3948–55.

    PubMed  Google Scholar 

  47. Kingwell K. Bacteriophage therapies re-enter clinical trials. Nat Rev Drug Disco. 2015;14:515–6.

    CAS  Google Scholar 

  48. National Centers for Environmental Information. Global climate report. Washington, DC: National Centers for Environmental Information: 2018. https://www.ncdc.noaa.gov/sotc/global/201804.

  49. Ahima RS. Global warming threatens human thermoregulation and survival. J Clin Invest. 2020:135006. https://doi.org/10.1172/JCI135006.

  50. Haines A, Ebi K. The imperative for climate action to protect health. N Engl J Med. 2019;380:263–73.

    PubMed  Google Scholar 

  51. Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature. 2018;560:80–83.

    CAS  PubMed  Google Scholar 

  52. Dietz WH. Climate change and malnutrition: we need to act now. J Clin Invest. 2020:135004. https://doi.org/10.1172/JCI135004.

  53. Tsao TM, Tsai MJ, Hwang JS, Su TC. Health effects of seasonal variation in cardiovascular hemodynamics among workers in forest environments. Hypertens Res. 2019;42:223–32.

    CAS  PubMed  Google Scholar 

  54. Modesti PA, Rapi S, Rogolino A, Tosi B, Galanti G. Seasonal blood pressure variation: implications for cardiovascular risk stratification. Hypertens Res. 2018;41:475–82.

    PubMed  Google Scholar 

  55. Japan Times. https://www.japantimes.co.jp/news/2019/08/06/national/57-dead-18000-taken-hospitals-one-week-amid-japan-heat-wave/#.XjHmYHdFw2z (2019).

  56. Protsiv M, Ley C, Lankester J, Hastie T, Parsonnet J. Decreasing human body temperature in the United States since the industrial revolution. Elife. 2020;9:e49555. https://doi.org/10.7554/eLife.49555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hausfater P, Megarbane B, Dautheville S, Patzak A, Andronikof M, Santin A, et al. Prognostic factors in non-exertional heatstroke. Intensive Care Med. 2010;36:272–80.

    PubMed  Google Scholar 

  58. Sommet A, Durrieu G, Lapeyre-Mestre M, Montastruc JL. Association of French PharmacoVigilance Centres. A comparative study of adverse drug reactions during two heat waves that occurred in France in 2003 and 2006. Pharmacoepidemiol Drug Saf. 2012;21:285–8.

    PubMed  Google Scholar 

  59. Salas RN, Jha AK. Climate change threatens the achievement of effective universal healthcare. BMJ. 2019;366:l5302.

    PubMed  PubMed Central  Google Scholar 

  60. Mobula LM, Fisher ML, Lau N, Estelle A, Wood T, Plyler W. Prevalence of hypertension among patients attending mobile medical clinics in the Philippines after typhoon Haiyan. PLoS Curr. 2016;8:ecurrents.dis.5aaeb105e840c72370e8e688835882ce. https://doi.org/10.1371/currents.dis.5aaeb105e840c72370e8e688835882ce.

Download references

Acknowledgements

I gratefully acknowledge my great mentors in Japan and the US as well as the numerous study investigators, fellows, nurses, and research coordinators at each of the study sites. I also gratefully acknowledge my family and friends; their continued support is essential in my journey as a physician and researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Yano.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yano, Y. Blood pressure management in an ecosystem context. Hypertens Res 43, 989–994 (2020). https://doi.org/10.1038/s41440-020-0464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0464-7

Keywords

  • Blood pressure
  • Hypertension
  • Ecosystem

This article is cited by

Search

Quick links