Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline–alanine-rich kinase (SPAK), constituting the WNK–OSR1/SPAK–NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3–KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10:676–87. https://doi.org/10.2215/CJN.12391213.
Simon DB, Nelson-Williams C, Johnson Bia M, Ellison D, Karet FE, Morey Molina A, et al. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet. 1996;12:24–30. https://doi.org/10.1038/ng0196-24.
Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102. https://doi.org/10.1161/01.HYP.8.2.93.
Mayan H, Attar-Herzberg D, Shaharabany M, Holtzman EJ, Farfel Z. Increased urinary Na-Cl cotransporter protein in familial hyperkalaemia and hypertension. Nephrol Dial Transpl. 2007;23:492–6. https://doi.org/10.1093/ndt/gfm641.
Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12. https://doi.org/10.1126/science.1062844.
Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102. https://doi.org/10.1038/nature10814.
Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44:456–60. https://doi.org/10.1038/ng.2218.
Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000;275:16795–801. https://doi.org/10.1074/jbc.275.22.16795.
Veríssimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 2001;20:5562–9. https://doi.org/10.1038/sj.onc.1204726.
Delaloy C, Lu J, Houot A-M, Disse-Nicodeme S, Gasc J-M, Corvol P, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol. 2003;23:9208–21. https://doi.org/10.1128/MCB.23.24.9208-9221.2003.
O’Reilly M. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol. 2003;14:2447–56. https://doi.org/10.1097/01.ASN.0000089830.97681.3B.
Vidal-Petiot E, Cheval L, Faugeroux J, Malard T, Doucet A, Jeunemaitre X. et al. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLoS One. 2012;7:e37751. https://doi.org/10.1371/journal.pone.0037751.
Gong H, Tang Z, Yang Y, Sun L, Zhang W, Wang W, et al. A patient with pseudohypoaldosteronism type II caused by a novel mutation in WNK4 gene. Endocrine. 2008;33:230–4. https://doi.org/10.1007/s12020-008-9084-8.
Golbang AP, Murthy M, Hamad A, Liu C-H, Cope G, Van’t Hoff W, et al. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene. Hypertension. 2005;46:295–300. https://doi.org/10.1161/01.HYP.0000174326.96918.d6.
Yang S-S, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, et al. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4D561A/+ knockin mouse model. Cell Metab. 2007;5:331–44. https://doi.org/10.1016/j.cmet.2007.03.009.
Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013;3:858–68. https://doi.org/10.1016/j.celrep.2013.02.024.
Castañeda-Bueno M, Cervantes-Pérez LG, Vázquez N, Uribe N, Kantesaria S, Morla L, et al. Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA. 2012;109:7929–34. https://doi.org/10.1073/pnas.1200947109.
Takahashi D, Mori T, Nomura N, Khan MZH, Araki Y, Zeniya M, et al. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci Rep. 2014;34. https://doi.org/10.1042/BSR20140047.
Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V, Wu S, et al. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA. 2013;110:14366–71. https://doi.org/10.1073/pnas.1304230110.
Liu Z, Xie J, Wu T, Truong T, Auchus RJ, Huang C-L. Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models. Hum Mol Genet. 2011;20:855–66. https://doi.org/10.1093/hmg/ddq525.
Hadchouel J, Soukaseum C, Busst C, Zhou X-o, Baudrie V, Zurrer T, et al. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. Proc Natl Acad Sci USA. 2010;107:18109–14. https://doi.org/10.1073/pnas.1006128107.
Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ, Xie J, et al. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell. 2018;29:499–509. https://doi.org/10.1091/mbc.E17-08-0529.
Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodríguez-Gama A, Vázquez N, Gonzalez-Rodriguez X, et al. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol Ren Physiol. 2018;315:F734–45. https://doi.org/10.1152/ajprenal.00145.2018.
Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem. 2005;280:42685–93. https://doi.org/10.1074/jbc.M510042200.
Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17–24. https://doi.org/10.1042/BJ20051180.
Piechotta K, Lu J, Delpire E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem. 2002;277:50812–9. https://doi.org/10.1074/jbc.M208108200.
Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HKR, et al. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J. 2006;397:223–31. https://doi.org/10.1042/BJ20060220.
Zagórska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH, Thastrup J, et al. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol. 2007;176:89–100. https://doi.org/10.1083/jcb.200605093.
Yang S-S, Lo Y-F, Wu C-C, Lin S-W, Yeh C-J, Chu P, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21:1868–77. https://doi.org/10.1681/ASN.2009121295.
Pacheco-Alvarez D, Cristóbal PS, Meade P, Moreno E, Vazquez N, Muñoz E, et al. The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem. 2006;281:28755–63. https://doi.org/10.1074/jbc.M603773200.
Hossain Khan MZ, Sohara E, Ohta A, Chiga M, Inoue Y, Isobe K, et al. Phosphorylation of Na-Cl cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun. 2012;425:456–61. https://doi.org/10.1016/j.bbrc.2012.07.124.
Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanović S, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2:63–75. https://doi.org/10.1002/emmm.200900058.
Chiga M, Rafiqi FH, Alessi DR, Sohara E, Ohta A, Rai T, et al. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. J Cell Sci. 2011;124:1391–5. https://doi.org/10.1242/jcs.084111.
Lai F, Orelli BJ, Till BG, Godley LA, Fernald AA, Pamintuan L, et al. Molecular characterization of KLHL3, a human homologue of the Drosophila kelch gene. Genomics. 2000;66:65–75. https://doi.org/10.1006/geno.2000.6181.
Ohta A, Schumacher F-R, Mehellou Y, Johnson C, Knebel A, Macartney TJ, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013;451:111–22. https://doi.org/10.1042/BJ20121903.
Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA. 2013;110:7838–43. https://doi.org/10.1073/pnas.1304592110.
Wu G, Peng J-B. Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett. 2013;587:1717–22. https://doi.org/10.1016/j.febslet.2013.04.032.
Mori Y, Wakabayashi M, Mori T, Araki Y, Sohara E, Rai T, et al. Decrease of WNK4 ubiquitination by disease-causing mutations of KLHL3 through different molecular mechanisms. Biochem Biophys Res Commun. 2013;439:30–4. https://doi.org/10.1016/j.bbrc.2013.08.035.
Susa K, Sohara E, Rai T, Zeniya M, Mori Y, Mori T, et al. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet. 2014;23:5052–60. https://doi.org/10.1093/hmg/ddu217.
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, et al. KLHL3 knockout mice reveal the physiological role of KLHL3 and the pathophysiology of pseudohypoaldosteronism type II caused by mutant KLHL3. Mol Cell Biol. 2017;37. https://doi.org/10.1128/MCB.00508-16.
Araki Y, Rai T, Sohara E, Mori T, Inoue Y, Isobe K, et al. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open. 2015;4:1509–17. https://doi.org/10.1242/bio.013276.
Ferdaus MZ, Miller LN, Agbor LN, Saritas T, Singer JD, Sigmund CD, et al. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight. 2017;2. https://doi.org/10.1172/jci.insight.96700.
McCormick JA, Yang C-L, Zhang C, Davidge B, Blankenstein KI, Terker AS, et al. Hyperkalemic hypertension–associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest. 2014;124:4723–36. https://doi.org/10.1172/JCI76126.
Yoshida S, Araki Y, Mori T, Sasaki E, Kasagi Y, Isobe K, et al. Decreased KLHL3 expression is involved in the pathogenesis of pseudohypoaldosteronism type II caused by cullin 3 mutation in vivo. Clin Exp Nephrol. 2018;22:1251–7. https://doi.org/10.1007/s10157-018-1593-z.
Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 2013;32:2307–20. https://doi.org/10.1038/emboj.2013.173.
Schumacher F, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, et al. Characterisation of the Cullin‐3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015;7:1285–306. https://doi.org/10.15252/emmm.201505444.
Pintard L, Kurz T, Glaser S, Willis JH, Peter M, Bowerman B. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol. 2003;13:911–21. https://doi.org/10.1016/s0960-9822(03)00336-1.
Cornelius RJ, Zhang C, Erspamer KJ, Agbor LN, Sigmund CD, Singer JD, et al. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Physiol. 2018;315:F1006–18. https://doi.org/10.1152/ajprenal.00602.2017.
Cornelius RJ, Si J, Cuevas CA, Nelson JW, Gratreak BDK, Pardi R, et al. Renal COP9 signalosome deficiency alters CUL3-KLHL3-WNK signaling pathway. J Am Soc Nephro. 2018. https://doi.org/10.1681/ASN.2018030333.
Abdel Khalek W, Rafael C, Loisel-Ferreira I, Kouranti I, Clauser E, Hadchouel J, et al. Severe arterial hypertension from cullin 3 mutations is caused by both renal and vascular effects. J Am Soc Nephrol. 2019;30:811–23. https://doi.org/10.1681/ASN.2017121307.
Agbor LN, Ibeawuchi S-RC, Hu C, Wu J, Davis DR, Keen HL, et al. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.91015.
Susa K, Sohara E, Takahashi D, Okado T, Rai T, Uchida S. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3. Biochem Biophys Res Commun. 2017;491:727–32. https://doi.org/10.1016/j.bbrc.2017.07.121.
Kotchen TA, Cowley AW, Frohlich ED. Salt in Health and Disease—a delicate balance. N Engl J Med. 2013;368:1229–37. https://doi.org/10.1056/NEJMra1212606.
Hall JE. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation. 2016;133:894–906. https://doi.org/10.1161/CIRCULATIONAHA.115.018526.
Chiga M, Rai T, Yang S-S, Ohta A, Takizawa T, Sasaki S, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008;74:1403–9. https://doi.org/10.1038/ki.2008.451.
San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA. 2009;106:4384–9. https://doi.org/10.1073/pnas.0813238106.
Talati G, Ohta A, Rai T, Sohara E, Naito S, Vandewalle A, et al. Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun. 2010;393:844–8. https://doi.org/10.1016/j.bbrc.2010.02.096.
van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH, Zietse R, et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 2011;79:66–76. https://doi.org/10.1038/ki.2010.290.
Cheng L, Poulsen SB, Wu Q, Esteva-Font C, Olesen ETB, Peng L, et al. Rapid aldosterone-mediated signaling in the DCT increases activity of the thiazide-sensitive NaCl cotransporter. J Am Soc Nephrol. 2019;30:1454–70. https://doi.org/10.1681/ASN.2018101025.
Wolley MJ, Wu A, Xu S, Gordon RD, Fenton RA, Stowasser M. In primary aldosteronism, mineralocorticoids influence exosomal sodium-chloride cotransporter abundance. J Am Soc Nephrol. 2017;28:56–63. https://doi.org/10.1681/ASN.2015111221.
Czogalla J, Vohra T, Penton D, Kirschmann M, Craigie E, Loffing J. The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion. Pflügers Arch—Eur J Physiol. 2016;468:849–58. https://doi.org/10.1007/s00424-016-1798-5.
Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, et al. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol. 2016;27:2436–45. https://doi.org/10.1681/ASN.2015070815.
Shibata S, Arroyo JP, Castaneda-Bueno M, Puthumana J, Zhang J, Uchida S, et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci USA. 2014;111:15556–61. https://doi.org/10.1073/pnas.1418342111.
Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. PURE investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371:601–11. https://doi.org/10.1056/NEJMoa1311989.
Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506. https://doi.org/10.1016/S0140-6736(18)31376-X.
O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371:612–23. https://doi.org/10.1056/NEJMoa1311889.
Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21:39–50. https://doi.org/10.1016/j.cmet.2014.12.006.
Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang C-L, Ellison DH. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. 2016;89:127–34. https://doi.org/10.1038/ki.2015.289.
Wade JB, Liu J, Coleman R, Grimm PR, Delpire E, Welling PA. SPAK-mediated NCC regulation in response to low-K+ diet. Am J Physiol Ren Physiol. 2015;308:F923–31. https://doi.org/10.1152/ajprenal.00388.2014.
Ferdaus MZ, Barber KW, López-Cayuqueo KI, Terker AS, Argaiz ER, Gassaway BM, et al. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J Physiol. 2016;594:4945–66. https://doi.org/10.1113/JP272311.
Vitzthum H, Seniuk A, Schulte LH, Müller ML, Hetz H, Ehmke H. Functional coupling of renal K + and Na + handling causes high blood pressure in Na + replete mice. J Physiol. 2014;592:1139–57. https://doi.org/10.1113/jphysiol.2013.266924.
Castañeda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vázquez N, Moreno E, et al. Modulation of NCC activity by low and high K + intake: insights into the signaling pathways involved. Am J Physiol Physiol. 2014;306:F1507–19. https://doi.org/10.1152/ajprenal.00255.2013.
Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride Sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7:ra41. https://doi.org/10.1126/scisignal.2005050.
Wang M-X, Cuevas CA, Su X-T, Wu P, Gao Z-X, Lin D-H, et al. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018;93:893–902. https://doi.org/10.1016/j.kint.2017.10.023.
Wu P, Gao Z-X, Zhang D-D, Su X-T, Wang W-H, Lin D-H. Deletion of Kir5.1 impairs renal ability to excrete potassium during increased dietary potassium intake. J Am Soc Nephrol. 2019;30:1425–38. https://doi.org/10.1681/ASN.2019010025.
Nomura N, Shoda W, Wang Y, Mandai S, Furusho T, Takahashi D, et al. Role of ClC-K and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney. Biosci Rep. 2018;38. https://doi.org/10.1042/BSR20171243.
Chen J-C, Lo Y-F, Lin Y-W, Lin S-H, Huang C-L, Cheng C-J. WNK4 kinase is a physiological intracellular chloride sensor. Proc Natl Acad Sci USA. 2019;116:4502–7. https://doi.org/10.1073/pnas.1817220116.
Nomura N, Shoda W, Uchida S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin Exp Nephrol. 2019;23:1175–80. https://doi.org/10.1007/s10157-019-01766-x.
Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. Increasing plasma [K +] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Physiol. 2014;306:F1059–68. https://doi.org/10.1152/ajprenal.00015.2014.
Shoda W, Nomura N, Ando F, Mori Y, Mori T, Sohara E, et al. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int. 2017;91:402–11. https://doi.org/10.1016/j.kint.2016.09.001.
Penton D, Moser S, Wengi A, Czogalla J, Rosenbaek LL, Rigendinger F, et al. Protein phosphatase 1 inhibitor–1 mediates the cAMP-dependent stimulation of the renal NaCl cotransporter. J Am Soc Nephrol. 2019;30:737–50. https://doi.org/10.1681/ASN.2018050540.
Chen J, Gu D, Huang J, Rao DC, Jaquish CE, Hixson JE GenSalt Collaborative Research Group, et al. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China: a dietary intervention study. Lancet. 2009;373:829–35. https://doi.org/10.1016/S0140-6736(09)60144-6.
Chávez-Canales M, Arroyo JP, Ko B, Vázquez N, Bautista R, Castañeda-Bueno M. et al. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens. 2013;31:303–11. https://doi.org/10.1097/HJH.0b013e32835bbb83.
Komers R, Rogers S, Oyama TT, Xu B, Yang C-L, McCormick J, et al. Enhanced phosphorylation of Na(+)-Cl- co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci. 2012;123:635–47. https://doi.org/10.1042/CS20120003.
Sohara E, Rai T, Yang S-S, Ohta A, Naito S, Chiga M. et al. Acute insulin stimulation induces phosphorylation of the Na-Cl cotransporter in cultured distal mpkDCT cells and mouse kidney. PLoS One. 2011;6:e24277. https://doi.org/10.1371/journal.pone.0024277.
Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60:981–90. https://doi.org/10.1161/HYPERTENSIONAHA.112.201509.
Ishizawa K, Wang Q, Li J, Xu N, Nemoto Y, Morimoto C, et al. Inhibition of sodium glucose cotransporter 2 attenuates the dysregulation of Kelch-Like 3 and NaCl cotransporter in obese diabetic mice. J Am Soc Nephrol. 2019;30:782–94. https://doi.org/10.1681/ASN.2018070703.
Yoshizaki Y, Mori Y, Tsuzaki Y, Mori T, Nomura N, Wakabayashi M, et al. Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun. 2015;467:229–34. https://doi.org/10.1016/j.bbrc.2015.09.184.
Punzi HA, Punzi CF. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hypertens Rep. 2004;6:106–10. https://doi.org/10.1007/s11906-004-0084-7.
Mori T, Kikuchi E, Watanabe Y, Fujii S, Ishigami-Yuasa M, Kagechika H, et al. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J. 2013;455:339–45. https://doi.org/10.1042/BJ20130597.
Kikuchi E, Mori T, Zeniya M, Isobe K, Ishigami-Yuasa M, Fujii S, et al. Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters. J Am Soc Nephrol. 2015;26:1525–36. https://doi.org/10.1681/ASN.2014060560.
Yamada K, Park H-M, Rigel DF, DiPetrillo K, Whalen EJ, Anisowicz A, et al. Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol. 2016;12:896–8. https://doi.org/10.1038/nchembio.2168.
Hashimoto H, Nomura N, Shoda W, Isobe K, Kikuchi H, Yamamoto K, et al. Metformin increases urinary sodium excretion by reducing phosphorylation of the sodium-chloride cotransporter. Metabolism. 2018;85:23–31. https://doi.org/10.1016/j.metabol.2018.02.009.
Townsend RR, Taler SJ. Management of hypertension in chronic kidney disease. Nat Rev Nephrol. 2015;11:555–63. https://doi.org/10.1038/nrneph.2015.114.
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Hypertension. 2015;65:569–76. https://doi.org/10.1161/HYPERTENSIONAHA.114.04975.
Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MTX, Riquier-Brison AD, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123:2011–23. https://doi.org/10.1172/JCI65460.
Kobayashi R, Wakui H, Azushima K, Uneda K, Haku S, Ohki K, et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 2017;91:1115–25. https://doi.org/10.1016/j.kint.2016.10.035.
Rucker AJ, Rudemiller NP, Crowley SD. Salt, hypertension, and immunity. Annu Rev Physiol. 2018;80:283–307. https://doi.org/10.1146/annurev-physiol-021317-121134.
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215:21–33. https://doi.org/10.1084/jem.20171773.
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60. https://doi.org/10.1084/jem.20070657.
Zhang J, Patel MB, Griffiths R, Mao A, Song Y, Karlovich NS, et al. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension. 2014;64:1275–81. https://doi.org/10.1161/HYPERTENSIONAHA.114.03863.
Yoshida S, Takeuchi T, Kotani T, Yamamoto N, Hata K, Nagai K, et al. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J Hum Hypertens. 2014;28:165–9. https://doi.org/10.1038/jhh.2013.80.
Furusho T, Sohara E, Mandai S, Kikuchi H, Takahashi N, Fujimaru T, et al. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease. Kidney Int. 2020;97:713–27. https://doi.org/10.1016/j.kint.2019.11.021.
Roy A, Al-Qusairi L, Donnelly BF, Ronzaud C, Marciszyn AL, Gong F, et al. Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. J Clin Invest. 2015;125:3433–48. https://doi.org/10.1172/JCI75245.
Takahashi D, Mori T, Sohara E, Tanaka M, Chiga M, Inoue Y, et al. WNK4 is an adipogenic factor and its deletion reduces diet-induced obesity in mice. EBioMedicine. 2017;18:118–27. https://doi.org/10.1016/j.ebiom.2017.03.011.
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, et al. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Metab. 2018;314:E53–65. https://doi.org/10.1152/ajpendo.00108.2017.
Mandai S, Mori T, Nomura N, Furusho T, Arai Y, Kikuchi H, et al. WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-27414-0.
Köchl R, Thelen F, Vanes L, Brazão TF, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075–83. https://doi.org/10.1038/ni.3495.
Perry JSA, Morioka S, Medina CB, Iker Etchegaray J, Barron B, Raymond MH, et al. Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat Cell Biol. 2019;21:1532–43. https://doi.org/10.1038/s41556-019-0431-1.
Dbouk HA, Weil LM, Perera GKS, Dellinger MT, Pearson G, Brekken RA, et al. Actions of the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and SPAK. Proc Natl Acad Sci USA. 2014;111:15999–6004. https://doi.org/10.1073/pnas.1419057111.
Xie J, Yoon J, Yang S-S, Lin S-H, Huang C-L. WNK1 protein kinase regulates embryonic cardiovascular development through the OSR1 signaling cascade. J Biol Chem. 2013;288:8566–74. https://doi.org/10.1074/jbc.M113.451575.
Gallolu Kankanamalage S, Karra AS, Cobb MH. WNK pathways in cancer signaling networks. Cell Commun Signal. 2018;16:72. https://doi.org/10.1186/s12964-018-0287-1.
Acknowledgements
This work was supported in part by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) [Grant Numbers: 25221306–00, 19H01049, 18K19534, 16H05314, and 19H03672], a Health Labor Science Research Grant from the Ministry of Health, Labor, and Welfare, AMED under Grant Number JP18ek0109304, and grants from the Yukiko Ishibashi Foundation and the Salt Science Research Foundation (1925).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Furusho, T., Uchida, S. & Sohara, E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 43, 733–743 (2020). https://doi.org/10.1038/s41440-020-0437-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41440-020-0437-x
Keywords
This article is cited by
-
CYLD alleviates NLRP3 inflammasome-mediated pyroptosis in osteoporosis by deubiquitinating WNK1
Journal of Orthopaedic Surgery and Research (2024)
-
Pathophysiological role of Na–Cl cotransporter in kidneys, blood pressure, and metabolism
Human Cell (2024)
-
Biomolecular condensates in kidney physiology and disease
Nature Reviews Nephrology (2023)
-
Kelch-like protein 3 in human disease and therapy
Molecular Biology Reports (2022)