Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased arterial velocity pulse index is an independent factor related to skeletal muscle mass reduction and tissue damage in patients with cardiovascular disease

Abstract

Reduced skeletal muscle mass is the most important component of sarcopenia. Aging and chronic diseases, including chronic heart failure, are the causes of reduced skeletal muscle mass. However, little is known about the mechanism of skeletal muscle mass reduction in patients with cardiovascular disease (CVD). The purpose of this study was to assess the associations among skeletal muscle mass reduction, endothelial function, and other markers of advanced vascular damage in CVD patients. This was a retrospective cross-sectional analysis that included 310 inpatients with CVD in our hospital. Flow-mediated vasodilation (FMD) was performed to assess early vascular damage, i.e., endothelial dysfunction. The arterial velocity pulse index (AVI) and arterial pressure volume index (API) were assessed to reveal signs of advanced vascular damage, such as arterial stiffening and increased peripheral resistance. The bioelectrical phase angle (PA), as a marker of tissue damage, and the skeletal muscle index (SMI) were measured. Correlation analyses were performed among these parameters. Sarcopenia was diagnosed in 25.5% of patients according to the Asian Working Group for Sarcopenia criteria. Greater progression of arterial stiffness, shown by a higher AVI, and more severe tissue damage, shown by a narrower PA, were found in individuals with sarcopenia. Stepwise multivariate regression analysis showed that sex, age, PA, hypertension, and AVI were factors independently correlated with SMI. In conclusion, advanced vascular damage, such as increased arterial stiffness and peripheral resistance, might play an important role in the reduction in skeletal muscle mass, possibly through damage to skeletal muscle tissue in CVD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Xue Q-L. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27:1–15. https://doi.org/10.1016/j.cger.2010.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harada H, Kai H, Niiyama H, Nishiyama Y, Katoh A, Yoshida N, et al. Effectiveness of cardiac rehabilitation for prevention and treatment of sarcopenia in patients with cardiovascular disease—a retrospective cross-sectional analysis. J Nutr Health Aging. 2017;21:449–56. https://doi.org/10.1007/s12603-016-0743-9.

    Article  CAS  PubMed  Google Scholar 

  4. Harada H, Kai H, Shibata R, Niiyama H, Nishiyama Y, Murohara T, et al. New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE. 2017;12:e0178123. https://doi.org/10.1371/journal.pone.0178123.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ter Avest E, Stalenhoef AF, de Graaf J. What is the role of non-invasive measurements of atherosclerosis in individual cardiovascular risk prediction? Clin Sci. 2007;112:507–16.

    Article  Google Scholar 

  6. Briet M, Boutouyrie P, Laurent S, London GM. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82:388–400. https://doi.org/10.1038/ki.2012.131.

    Article  PubMed  Google Scholar 

  7. Nilsson PM, Boutouyrie P, Cunha P, Kotsis V, Narkiewicz K, Parati G. et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens. 2013;31:1517–26. https://doi.org/10.1097/HJH.0b013e328361e4bd.

    Article  CAS  PubMed  Google Scholar 

  8. Cunha PG, Cotter J, Oliveira P, Vila I, Boutouyrie P, Laurent S, et al. Pulse wave velocity distribution in a cohort study: from arterial stiffness to early vascular aging. J Hypertens. 2015;33:1438–45. https://doi.org/10.1097/HJH.0000000000000565.

    Article  CAS  PubMed  Google Scholar 

  9. Scuteri A, Tesauro M, Rizza S, Iantorno M, Federici M, Lauro D, et al. Endothelial function and arterial stiffness in normotensive normoglycemic first-degree relatives of diabetic patients are independent of the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2008;18:349–56.

    Article  CAS  PubMed  Google Scholar 

  10. Scuteri A, Morrell CH, Orrù M, Strait JB, Tarasov KV, Ferreli LA. et al. Longitudinal perspective on the conundrum of central arterial stiffness, blood pressure, and aging. Hypertension. 2014;64:1219–27. https://doi.org/10.1161/HYPERTENSIONAHA.114.04127.

    Article  CAS  PubMed  Google Scholar 

  11. Komine H, Asai Y, Yokoi T, Yoshizawa M. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement. Biomed Eng Online. 2012;11:6. https://doi.org/10.1186/1475-925X-11-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shisei datum. http://www.shisei-d.co.jp.

  13. Okamoto M, Nakamura F, Musha T, Kobayashi Y. Association between novel arterial stiffness indices and risk factors of cardiovascular disease. BMC Cardiovasc Disord. 2016;16:211–17. https://doi.org/10.1186/s12872-016-0389-x.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hitsumoto T. Arterial velocity pulse index as a novel marker of atherosclerosis using pulse wave analysis on high sensitivity troponin T in hypertensive patients. Cardiol Res. 2017;8:36–43. https://doi.org/10.14740/cr545w.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilhelm-Leen ER, Hall YN, Horwitz RI, Chertow GM. Phase angle, frailty and mortality in older adults. J Gen Intern Med. 2013;29:147–54. https://doi.org/10.1007/s11606-013-2585-z.

    Article  PubMed Central  Google Scholar 

  16. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, et al. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer. 2008;8:249–55. https://doi.org/10.1186/1471-2407-8-249.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer. 2009;9:37–42. https://doi.org/10.1186/1471-2407-9-37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr. 2004;92:957–62. https://doi.org/10.1079/BJN20041292.

    Article  CAS  PubMed  Google Scholar 

  19. Norman K, Stobaus N, Zocher D, Bosy-Westphal A, Szramek A, Scheufele R, et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am J Clin Nutr. 2010;92:612–19. https://doi.org/10.3945/ajcn.2010.29215.

    Article  CAS  PubMed  Google Scholar 

  20. Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. JAMDA. 2014;15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025.

    Article  PubMed  Google Scholar 

  21. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23:1430–53. https://doi.org/10.1016/j.clnu.2004.09.012.

    Article  PubMed  Google Scholar 

  22. Tanimoto Y, Watanabe M, Sun W, Sugiura Y, Tsuda Y, Kimura M, et al. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch Gerontol Geriatrics. 2012;55:e9–13. https://doi.org/10.1016/j.archger.2012.06.015.

    Article  Google Scholar 

  23. Sueta D, Yamamoto E, Tanaka T, Hirata Y, Sakamoto K, Tsujita K, et al. The accuracy of central blood pressure wave form by novel mathematical transformation of non-invasive measurement. Int J Cardiol. 2015;189:244–46. https://doi.org/10.1016/j.ijcard.2015.03.182.

    Article  PubMed  Google Scholar 

  24. Sasaki-Nakashima R, Kino T, Chen L, Doi H, Minegishi S, Abe K, et al. Successful prediction of cardiovascular risk by new non-invasive vascular indexes using suprasystolic cuff oscillometric waveform analysis. J Cardiol. 2017;69:30–37. https://doi.org/10.1016/j.jjcc.2016.06.004.

    Article  PubMed  Google Scholar 

  25. Kanahara M, Harada H, Katoh A, Ikeda H. New methodological approach to improve reproducibility of brachial artery flow-mediated dilatation. Echocardiography. 2014;31:197–202. https://doi.org/10.1111/echo.12307.

    Article  PubMed  Google Scholar 

  26. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–82. https://doi.org/10.1093/aje/kwq433.

    Article  PubMed  Google Scholar 

  27. Scuteri A, Rovella V, Alunni Fegatelli D, Tesauro M, Gabriele M, Di Daniele N. An operational definition of SHATS (Systemic hemodynamic atherosclerotic syndrome): role of arterial stiffness and blood pressure variability in elderly hypertensive subjects. Int J Cardiol. 2018;263:132–7. https://doi.org/10.1016/j.ijcard.2018.03.117.

    Article  PubMed  Google Scholar 

  28. Mogi M, Kohara K, Tabara Y, Tsukuda K, Igase M, Horiuchi M. Correlation between the 24-h urinary angiotensinogen or aldosterone level and muscle mass: Japan shimanami health promoting program study. Hypertens Res. 2018;41:326–33. https://doi.org/10.1038/s41440-018-0021-9.

    Article  CAS  PubMed  Google Scholar 

  29. Tabara Y, Igase M, Setoh K, Kawaguchi T, Okada Y, Ohara M, et al. Clinical significance of an elevated ankle-brachial index differs depending on the amount of appendicular muscle mass: the J-SHIPP and Nagahama studies. Hypertens Res. 2018;41:354–62. https://doi.org/10.1038/s41440-018-0020-x.

    Article  PubMed  Google Scholar 

  30. Yamanashi H, Koyamatsu J, Nagayoshi M, Shimizu Y, Kawashiri SY, Kondo H. Screening validity of arterial pressure-volume index and arterial velocity-pulse index for preclinical atherosclerosis in Japanese community-dwelling adults: the Nagasaki Islands Study. J Atheroscler Thromb. 2018;25:792–8. https://doi.org/10.5551/jat.43125.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Timmerman KL, Volpi E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis. 2013;23:S44–50. https://doi.org/10.1016/j.numecd.2012.03.013.

    Article  CAS  PubMed  Google Scholar 

  32. Scuteri A, Stuehlinger MC, Cooke JP, Wright JG, Lakatta EG, Anderson DE, et al. Nitric oxide inhibition as a mechanism for blood pressure increase during salt loading in normotensive postmenopausal women. J Hypertens. 2003;21:1339–46. https://doi.org/10.1097/01.hjh.0000059082.43904.02.

    Article  CAS  PubMed  Google Scholar 

  33. Scuteri A, Tesauro M, Guglini L, Lauro D, Fini M, Di Daniele N. Aortic stiffness and hypotension episodes are associated with impaired cognitive function in older subjects with subjective complaints of memory loss. Int J Cardiol. 2013;169:371–7. https://doi.org/10.1016/j.ijcard.2013.09.009.

    Article  PubMed  Google Scholar 

  34. Basile C, Della-Morte D, Cacciatore F, Gargiulo G, Galizia G, Roselli M, et al. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp Gerontol. 2014;58:43–6. https://doi.org/10.1016/j.exger.2014.07.009.

    Article  PubMed  Google Scholar 

  35. Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12:433–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demirci MS, Demirci C, Ozdogan O, Kircelli F, Akcicek F, Basci A, et al. Relations between malnutrition–inflammation–atherosclerosis and volume status. The usefulness of bioimpedance analysis in peritoneal dialysis patients. Nephrol Dial Transpl. 2011;26:1708–16. https://doi.org/10.1093/ndt/gfq588.

    Article  Google Scholar 

  37. Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc. 2002;50:1947–54.

    Article  PubMed  Google Scholar 

  38. Moreno-Franco B, Pérez-Tasigchana RF, Lopez-Garcia E, Laclaustra M, Gutierrez-Fisac JL, Rodríguez-Artalejo F, et al. Socioeconomic determinants of sarcopenic obesity and frail obesity in community-dwelling older adults: the Seniors-ENRICA Study. Sci Rep. 2018;8:10760. https://doi.org/10.1038/s41598-018-28982-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14:513–37. https://doi.org/10.1038/s41574-018-0062-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Misako Ando for the assessment of nutritional status and the measurement of the bioelectrical impedance assay and Yuya Tsukada and Michiya Kishimoto for obtaining physical performance data to diagnose sarcopenia.

Funding

Novartis Pharmaceuticals Japan and Daiichi-Sankyo Company Limited provided research grants (HH), but they had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript. This study was supported in part by MEXT/JSPS KAKENHI grant #16K09468 (HK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhito Harada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, H., Ikeda, H., Nishiyama, Y. et al. Increased arterial velocity pulse index is an independent factor related to skeletal muscle mass reduction and tissue damage in patients with cardiovascular disease. Hypertens Res 43, 534–542 (2020). https://doi.org/10.1038/s41440-020-0404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0404-6

Keywords

This article is cited by

Search

Quick links