Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short-term outcome after ischemic stroke and 24-h blood pressure variability: association and predictors

Abstract

To examine the association between blood pressure (BP) variability measured within 24 h after admission for acute ischemic stroke and functional outcome 30 days after stroke onset and to find outcome predictors. A total of 174 patients were included in this retrospective study. Supine BP was measured every 4 h during the first 24 h after admission. The functional outcome was assessed using the modified Rankin Scale. BP parameters including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure (PP) were examined. A set of six variability indices was calculated, including standard deviation (SD), successive variation (SV), difference between maximum and minimum value (DMM), and maximal successive change (MSC). Patients with high SBP or PP variability measures were significantly more likely to develop an unfavorable outcome. All PP variability indices displayed the highest correlations with the outcome. This association was confirmed in logistic regression analysis, both in univariable model and a model adjusted to the baseline National Institute of Health Stroke Scale score and mean BP (the OR for an unfavorable outcome following a 10-mmHg increase in SD, SV, MSC, and DMM parameters was in the interval 1.4–2.7, p < 0.05). Following receiver operating characteristic analysis, the PP parameters yielded area under the curve (AUC) values between 0.654 and 0.666, p < 0.005. Thus, in the acute phase of ischemic stroke, the SD and MSC indices of PP variability during the first 24 h after admission were robustly associated with patients’ 30-day outcomes and served as predictors of unfavorable outcomes with thresholds of 14 and 26 mmHg, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Qureshi AI, Qureshi MH. Acute hypertensive response in patients with intracerebral hemorrhage pathophysiology and treatment. J Cereb Blood Flow Metab. 2018;38:1551–63.

    PubMed  Google Scholar 

  2. Leonardi-Bee J, Bath PMW, Phillips SJ, Sandercock PAG. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33:1315–20.

    PubMed  Google Scholar 

  3. Jordan JD, Powers WJ. Cerebral autoregulation and acute ischemic stroke. Am J Hypertens. 2012;25:946–50.

    PubMed  Google Scholar 

  4. Sandset EC. Blood pressure in acute stroke. Lancet Neurol. 2014;13:342–3.

    PubMed  Google Scholar 

  5. Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, et al. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J Intern Med. 2004;255:257–65.

    CAS  PubMed  Google Scholar 

  6. Berge E, Cohen G, Lindley RI, Sandercock P, Wardlaw JM, Sandset EC, et al. Effects of blood pressure and blood pressure-lowering treatment during the first 24 h among patients in the Third International Stroke Trial of Thrombolytic Treatment for Acute Ischemic Stroke. Stroke. 2015;46:3362–9.

    CAS  PubMed  Google Scholar 

  7. ENOS Trial Investigators Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. Lancet. 2015;385:617–28.

    Google Scholar 

  8. Ji M, Li S-J, Hu W-L. Effects of different antihypertensive drugs on blood pressure variability in patients with ischemic stroke. Eur Rev Med Pharm Sci. 2014;18:2491–5.

    CAS  Google Scholar 

  9. Anderson CS, Huang Y, Lindley RI, Chen X, Arima H, Chen G, et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an International, Randomised, Open-Label, Blinded-Endpoint, Phase 3 Trial. Lancet. 2019;393:877–88.

    PubMed  Google Scholar 

  10. Kellert L, Hametner C, Ahmed N, Rauch G, MacLeod MJ, Perini F, et al. Reciprocal interaction of 24-hour blood pressure variability and systolic blood pressure on outcome in stroke thrombolysis. Stroke. 2017;48:1827–34.

    PubMed  Google Scholar 

  11. Ntaios G, Lambrou D, Michel P. Blood pressure change and outcome in acute ischemic stroke: the impact of baseline values, previous hypertensive disease and previous antihypertensive treatment. J Hypertens. 2011;29:1583–9.

    CAS  PubMed  Google Scholar 

  12. de Havenon A, Bennett A, Stoddard GJ, Smith G, Chung L, O’Donnell S, et al. Determinants of the impact of blood pressure variability on neurological outcome after acute ischaemic stroke. Stroke Vasc Neurol. 2017;2:1–6.

    PubMed  PubMed Central  Google Scholar 

  13. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens. 2003;21:2251–7.

    CAS  PubMed  Google Scholar 

  14. Manning LS, Rothwell PM, Potter JF, Robinson TG. Prognostic significance of short-term blood pressure variability in acute stroke: systematic review. Stroke. 2015;46:2482–90.

    PubMed  Google Scholar 

  15. Manning L, Hirakawa Y, Arima H, Wang X, Chalmers J, Wang J, et al. Blood pressure variability and outcome after acute intracerebral haemorrhage: a post-hoc analysis of INTERACT2, a randomised controlled trial. Lancet Neurol. 2014;13:364–73.

    PubMed  Google Scholar 

  16. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, et al. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the SAMURAI rt-PA registry. Stroke. 2013;44:816–8.

    PubMed  Google Scholar 

  17. Tomii Y, Toyoda K, Suzuki R, Naganuma M, Fujinami J, Yokota C, et al. Effects of 24-hour blood pressure and heart rate recorded with ambulatory blood pressure monitoring on recovery from acute ischemic stroke. Stroke. 2011;42:3511–7.

    PubMed  Google Scholar 

  18. Polish Neurological Society. Wytyczne postępowania w udarze mózgu. Pol Prz Neurol. 2019;15 Suppl A:A1–A156.

    Google Scholar 

  19. Michalak S, Kazmierski R, Hellmann A, Wysocka E, Kocialkowska-Adamczewska D, Wencel-Warot A, et al. Serum paraoxonase/arylesterase activity affects outcome in ischemic stroke patients. Cerebrovasc Dis. 2011;32:124–32.

    CAS  PubMed  Google Scholar 

  20. Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF. Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke. 2000;31:463–8.

    CAS  PubMed  Google Scholar 

  21. Kang J, Ko Y, Park JH, Kim W-J, Jang MS, Yang MH, et al. Effect of blood pressure on 3-month functional outcome in the subacute stage of ischemic stroke. Neurology. 2012;79:2018–24.

    PubMed  PubMed Central  Google Scholar 

  22. Adams HP, Leclerc JR, Bluhmki E, Clarke W, Hansen MD, Hacke W. Measuring outcomes as a function of baseline severity of ischemic stroke. Cerebrovasc Dis. 2004;18:124–9.

    PubMed  Google Scholar 

  23. Domanski MJ, Davis BR, Pfeffer MA, Kastantin M, Mitchell GF. Isolated systolic hypertension: prognostic information provided by pulse pressure. Hypertension. 1999;34:375–80.

    CAS  PubMed  Google Scholar 

  24. Millar JA, Lever AF, Burke V. Pulse pressure as a risk factor for cardiovascular events in the MRC Mild Hypertension Trial. J Hypertens. 1999;17:1065–72.

    CAS  PubMed  Google Scholar 

  25. Hayes A, Krippendorff K. Answering the call for a standard reliability measure for coding data. Commun Methods Measures. 2007;1:77–89.

    Google Scholar 

  26. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform. 2005;38:404–15.

    PubMed  Google Scholar 

  27. Kamieniarz M, Włodarska M, Tokłowicz R, Łukomski T, Kaźmierski R. Wpływ zmienności ciśnienia tętniczego krwi w pierwszej dobie udaru niedokrwiennego mózgu na przebieg choroby. Anestezjologia i Ratow 2014;8:144–51.

    Google Scholar 

  28. Veloudi P, Sharman JE. Methodological factors affecting quantification of blood pressure variability: a scoping review. J Hypertens. 2018;36:711–19.

    CAS  PubMed  Google Scholar 

  29. Kario K, Shin J, Chen C-H, Buranakitjaroen P, Chia Y-C, Divinagracia R, et al. Expert panel consensus recommendations for ambulatory blood pressure monitoring in Asia: The HOPE Asia Network. J Clin Hypertens. 2019;21:1250–83.

    Google Scholar 

  30. Ko Y, Park JH, Yang MH, Ko S-B, Han M-K, Oh CW, et al. The significance of blood pressure variability for the development of hemorrhagic transformation in acute ischemic stroke. Stroke. 2010;41:2512–8.

    PubMed  Google Scholar 

  31. Xu J, Liu Y, Wang A, Gao Y, Wang Y, Wang Y. Blood pressure fluctuation pattern and stroke outcomes in acute ischemic stroke. Hypertens Res. 2019;42:1776–82.

    PubMed  Google Scholar 

  32. Martins AI, Sargento-Freitas J, Jesus-Ribeiro J, Correia I, Cardoso L, Gomes JP, et al. Blood pressure variability in acute ischemic stroke: the role of early recanalization. Eur Neurol. 2018;80:63–67.

    PubMed  Google Scholar 

  33. Buratti L, Cagnetti C, Balucani C, Viticchi G, Falsetti L, Luzzi S, et al. Blood pressure variability and stroke outcome in patients with internal carotid artery occlusion. J Neurol Sci. 2014;339:164–8.

    PubMed  Google Scholar 

  34. Selvaraj S, Steg PG, Elbez Y, Sorbets E, Feldman LJ, Eagle KA, et al. Pulse pressure and risk for cardiovascular events in patients with atherothrombosis: from the REACH Registry. J Am Coll Cardiol. 2016;67:392–403.

    PubMed  Google Scholar 

  35. Geeganage C, Tracy M, England T, Sare G, Moulin T, Woimant F, et al. Relationship between baseline blood pressure parameters (including mean pressure, pulse pressure, and variability) and early outcome after stroke: data from the Tinzaparin in Acute Ischaemic Stroke Trial (TAIST). Stroke. 2011;42:491–3.

    CAS  PubMed  Google Scholar 

  36. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Google Scholar 

  37. Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circ Res. 2017;120:472–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002;7:51–62.

    PubMed  Google Scholar 

  39. Steppan J, Barodka V, Berkowitz DE, Nyhan D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol Res Pract. 2011;2011:263585.

    PubMed  PubMed Central  Google Scholar 

  40. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    PubMed  Google Scholar 

  41. Chen Y, Shen F, Liu J, Yang G-Y. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol. 2017;2:65–72.

    PubMed  PubMed Central  Google Scholar 

  42. Avolio AP, Kuznetsova T, Heyndrickx GR, Kerkhof PLM, Li JK-J. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. Adv Exp Med Biol. 2018;1065:153–68.

    PubMed  Google Scholar 

  43. Mattace-Raso FUS, van der Cammen TJM, Hofman A, van Popele NM, Bos ML. Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    PubMed  Google Scholar 

  44. Dolan E, Thijs L, Li Y, Atkins N, McCormack P, McClory S, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension. 2006;47:365–70.

    CAS  PubMed  Google Scholar 

  45. Geeganage C, Sare G, Bath PMW. Pulse pressure as a predictor of stroke. Expert Rev Neurother. 2008;8:165–7.

    PubMed  Google Scholar 

  46. Sprigg N, Gray LJ, Bath PMW, Boysen G, De Deyn PP, Friis P, et al. Relationship between outcome and baseline blood pressure and other haemodynamic measures in acute ischaemic stroke: data from the TAIST trial. J Hypertens. 2006;24:1413–7.

    CAS  PubMed  Google Scholar 

  47. de Havenon A, Bennett A, Stoddard GJ, Smith G, Wang H, Wold J, et al. Increased blood pressure variability is associated with worse neurologic outcome in acute anterior circulation ischemic stroke. Stroke Res Treat. 2016;2016:7670161.

    PubMed  PubMed Central  Google Scholar 

  48. Delgado-Mederos R, Ribo M, Rovira A, Rubiera M, Munuera J, Santamarina E, et al. Prognostic significance of blood pressure variability after thrombolysis in acute stroke. Neurology. 2008;71:552–8.

    CAS  PubMed  Google Scholar 

  49. Minhas JS, Wang X, Lavados PM, Moullaali TJ, Arima H, Billot L, et al. Blood pressure variability and outcome in acute ischemic and hemorrhagic stroke: a post hoc analysis of the HeadPoST study. J Hum Hypertens. 2019;33:411–8.

    PubMed  PubMed Central  Google Scholar 

  50. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute stroke: post hoc analysis of the controlling hypertension and hypotension immediately post stroke and continue or stop post-stroke antihypertensives collaborative study trials. Stroke. 2015;46:1518–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor J. Moczko for suggestions and discussion during statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kamieniarz-Mędrygał.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamieniarz-Mędrygał, M., Łukomski, T. & Kaźmierski, R. Short-term outcome after ischemic stroke and 24-h blood pressure variability: association and predictors. Hypertens Res 44, 188–196 (2021). https://doi.org/10.1038/s41440-020-00534-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-00534-9

Keywords

This article is cited by

Search

Quick links