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Abstract
Recently, deleterious effects of aldosterone on the kidney via mineralocorticoid receptors (MRs) have been noted. MR
antagonists have been reported to show significant antialbuminuric effects when added to angiotensin-converting enzyme
inhibitors or angiotensin II type 1 receptor blockers. However, a decrease in the estimated glomerular filtration rate (eGFR)
has been reported during MR antagonist treatment. On the other hand, although the eGFR often decreases, significant
reductions in total mortality and cardiovascular events have been observed in large-scale clinical trials in patients with
chronic heart failure. What are the implications of the changes in eGFR due to MR antagonist treatment? Glomerular
hyperfiltration has been reported to occur with an aldosterone excess, and it can be seen that relative glomerular
hyperfiltration is rapidly corrected with MR antagonism, even without aldosterone excess. This is reflected in the initial
temporary decrease in the eGFR. After MR antagonist treatment, eGFR decreases temporarily, and it appears that renal
function has deteriorated. However, if renal function has actually deteriorated, a reduction in all-cause and cardiovascular
death is unlikely to occur in the clinical studies in patients with chronic heart failure. That is, the initial transient decrease in
eGFR by the MR antagonist appears to work effectively to provide fine adjustment of glomerular pressure, and this approach
works advantageously to suppress long-term cardiovascular events. It is expected that a number of long-term, large-scale
clinical research trials targeting renal events and all-cause and cardiovascular death in CKD patients treated with an MR
antagonist will be planned.
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Introduction

Chronic kidney disease (CKD) affects a large and growing
number of patients, and the control of its onset and pro-
gression has become an important clinical issue worldwide
[1]. CKD is a risk factor for end-stage renal failure as well
as a major risk factor for the development of cardiovascular
diseases, and it affects life expectancy [2–5]. The ther-
apeutic goals are to suppress the decrease in eGFR and

reduce proteinuria and albuminuria. However, a common
clinical experience during the treatment of CKD is that
these two goals cannot both be met. After antihypertensive
drugs are started, there is a decrease in eGFR, whereas
proteinuria and albuminuria are also decreasing at that time.

Recently, deleterious effects of aldosterone on the kidney
via mineralocorticoid receptors (MRs) have been noted
[6, 7]. MR antagonists have been reported to show sig-
nificant antiproteinuric and antialbuminuric effects when
added to angiotensin-converting enzyme (ACE) inhibitor
or angiotensin II type 1 receptor blocker (ARB) therapy
[8–13]. However, a decrease in eGFR has been reported
during MR antagonist treatment. On the other hand,
although eGFR is frequently decreased, significant reduc-
tions in total mortality and cardiovascular events by MR
antagonists have been observed in large-scale clinical trials
in patients with chronic heart failure [14–16]. What are the
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implications of the changes in eGFR due to MR antagonist
treatment? In this review paper, the renal effects of MR
antagonist treatment are summarized in terms of the effect
on eGFR.

An early temporary decrease in eGFR during
treatment and a decrease in eGFR over the
years have different meanings

Decreased eGFR is an independent risk factor for all-cause
mortality and death from cardiovascular disease [17]. This
is particularly evident when observing changes in eGFR on
a yearly basis, which is a significant risk factor for overall
mortality and coronary artery disease [5, 18–20]. There
were many renal and cardiovascular events in patients with
decreases of at least 12.7% in renal function after treatment
with an ACE inhibitor or ARB in the ONTARGET
(Ongoing Telmisartan Alone and in Combination
with Ramipril Global Endpoint Trial) trial or the TRANS-
CEND (Telmisartan Randomized Assessment Study in
ACE Intolerant Participants with Cardiovascular Disease)
trial [21].

On the other hand, after antihypertensive drugs are
started, a temporary, rapid decline in eGFR may be
observed. In this case, eGFR often recovers to some extent
early thereafter. From the analysis of the RENAAL
(Reduction of Endpoints in Non-Insulin-Dependent Dia-
betes Mellitus with the Angiotensin II antagonist Losartan)
trial, Holtkamp et al. showed that the ARB-treated group
had a significant decrease in eGFR compared with the
placebo group at 3 months after the start of treatment.
However, long-term changes in eGFR were slower in the
ARB-treated group [22]. Such a temporary decrease in
eGFR after the start of antihypertensive drugs is considered
to restore glomerular hyperfiltration [23]. On discontinua-
tion of ACE inhibitor or ARB therapy, eGFR recovers [24],
indicating that it does not cause irreversible renal dysfunc-
tion [25]. The degree of initial eGFR decline correlated
inversely with the subsequent decline in eGFR [23]. At the
time of strict blood pressure control, an early transient
decrease in eGFR is also often observed [26]. However, if
blood pressure is properly controlled, this initial transient
eGFR decline does not appear to be harmful [27–29].

In CKD and hypertension treatment, the implications are
different between an early temporary decrease in eGFR after
the start of treatment and the decrease in eGFR lasting for a
relatively long time. In the case of the early, temporary
decrease, eGFR mostly falls within a certain range, it does
not decrease greatly, and it recovers, although it is slightly
lower than the previous value, and there is no continuous
decline thereafter. In the long run, it is likely to be bene-
ficial. On the other hand, in the long-term decrease case, it is

an obvious risk factor for overall mortality and an inde-
pendent risk factor for cardiovascular events.

Implications of a transient, rapid eGFR
decline after initiation of treatment as
discussed from clinical studies using a
sodium–glucose cotransporter 2 (SGLT-2)
inhibitor

A significant reduction in the primary endpoint consisting
of the composite of cardiovascular death, nonfatal myo-
cardial infarction, and nonfatal stroke was shown in the
EMPA-REG OUTCOME (Empagliflozin Cardiovascular
Outcome Event Trial in Type 2 Diabetes Mellitus Patients)
trial using the SGLT-2 inhibitor empagliflozin [30]. In its
subanalysis, empagliflozin suppressed the transition to overt
proteinuria and renal events. The change in eGFR with
empagliflozin was very similar to that with ACE inhibitor or
ARB therapy. It dropped temporarily by approximately
4 weeks and remained stable at a level lower than the
previous value through 12 weeks. At 192 weeks, eGFR was
significantly higher than in the placebo group [31, 32].
Mostly similar results were also reported from the CAN-
VAS (Canagliflozin cardiovascular assessment study) and
CANVAS-R (CANVAS-Renal) studies using canagliflozin
[33, 34].

Diabetic patients are more likely to develop a rise in
intraglomerular pressure resulting in glomerular hyperfil-
tration. This is because the function of the afferent artery is
reduced, and the ability to maintain the proper intraglo-
merular pressure weakens [35]. Glomerular hyperfiltration
is a predictor of subsequent renal dysfunction, and untreated
patients have a higher frequency of proteinuria than treated
patients with less hyperfiltration [36, 37]. Empagliflozin
reduces intraglomerular pressure in type 1 diabetic patients
and corrects glomerular hyperfiltration [38, 39]. An SGLT-2
inhibitor suppresses sodium reabsorption in the proximal
tubule, and sodium chloride is transported to the macula
densa. Due to the increases in sodium and chloride ions in
the lumen, tubuloglomerular feedback causes the afferent
artery to contract and the intraglomerular pressure to
decrease [40]. SGLT-2 inhibitors are thought to be so-called
regulators of intraglomerular pressure, which are capable of
directly adjusting the intraglomerular pressure. The bene-
ficial effects shown in the EMPA-REG OUTCOME trial
and the CANVAS/CANVAS-R trial were attributed to
appropriate control and maintenance of intraglomerular
pressure by the SGLT-2 inhibitor.

Figure 1 shows the change in eGFR in the active and
placebo groups in the EMPA-REG OUTCOME trial [31].
Empagliflozin caused a temporary 5–6% decrease in eGFR
after 4 weeks of treatment, but eGFR recovered after
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12 weeks and stabilized at a lower value than before
treatment. The treatment maintained the level as it is. As a
result, a marked renal and cardiovascular protective effect
was shown. It is thought that the glomerular hyperfiltration
correction effect in the early stage of treatment is linked
to the long-term renal protective effect. With the temporary
correction of the intraglomerular pressure, the self-
regulatory function of the kidney may have begun to
work. Glomerular hyperfiltration cannot be judged only by
the absolute value of eGFR. Even if the absolute value of
eGFR is not high, it may be relatively high for the indivi-
dual because of age, sex, and underlying disease. From that
point of view, diabetes patients have a fairly high rate of
glomerular hyperfiltration [41]. Therefore, the temporary
lowering of eGFR at the initial phase is thought to be fol-
lowed by a long-term protective effect against the pro-
gression of renal dysfunction, even if the absolute value of
eGFR before treatment is not very high.

The shape of the graph of the eGFR change in the active
drug group in Fig. 1 may be a new predictor of the long-
term renal and cardiovascular protective effect in CKD
patients. More importantly, in the EMPA-REG OUTCOME
trial and the CANVAS/CANVAS-R trial, the prescription
rate of ACE inhibitors and ARBs was as high as 80–84%
[33, 42]. An SGLT-2 inhibitor was added to further adjust
the intraglomerular pressure to obtain a beneficial clinical
effect. That is, treatment with the ACE inhibitor or ARB
alone was insufficient. Therefore, MR antagonists, which
are another class of drugs that can adjust the intraglomerular
pressure, are expected to have a renoprotective effect.

Effect of MR antagonist treatment on eGFR

Glomerular hyperfiltration has been reported to occur with
an aldosterone excess [43]. Glomerular hyperfiltration with

aldosterone excess has also been shown to lead to a rapid
drop in eGFR when left to stand [44]. In fact, in patients
with primary aldosteronism, plasma aldosterone levels have
been reported to be important predictors of renal dysfunc-
tion [45]. In studies involving the general population, the
aldosterone-renin ratio and plasma aldosterone concentra-
tions were inversely correlated with the eGFR, and as
plasma aldosterone concentrations increase, the risk of
developing CKD increases [46]. That is, a high plasma
aldosterone concentration even within the normal range
suggests that glomerular pressure may be increased and may
be involved in renal dysfunction. Basic experiments
have demonstrated that aldosterone contracts both the
afferent and efferent arteries in a dose-dependent manner,
but the efferent artery contracts more strongly [47]; thus,
the intraglomerular pressure rises. Therefore, glomerular
capillary pressure is increased in the experimental model
of mineralocorticoid-salt hypertension [48]. However,
according to Arima et al., contraction of the afferent and
efferent arteries by aldosterone is a nongenomic effect that
is not suppressed by spironolactone and is not mediated by
the classical MR [47]. There are some basic research reports
on so-called putative membrane MR-mediated actions that
cannot be blocked by MR antagonists. However, it has
recently become clear that almost all actions of aldosterone
are mediated by the classical MR [49], and in fact, data
strongly suggest that the contractile actions of the efferent
artery caused by aldosterone are blocked by an MR
antagonist.

Administration of an MR antagonist reduces eGFR, and
it is believed that relative glomerular hyperfiltration caused
by aldosterone has been relieved, but what does this mean
clinically for CKD treatment? Six months after surgery for
an aldosterone-producing adenoma, eGFR decreased by
~15%, but urinary albumin excretion and markers for tub-
ular damage were significantly reduced [43]. Treatment
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with the MR antagonist spironolactone in patients with
primary aldosteronism resulted in an average 8 ml/min
decrease in eGFR after 1 month, which was greater than that
of the conventional treatment group. However, proteinuria
was significantly reduced compared with the conventional
therapy group, and the decrease in eGFR was less than that
in the conventional therapy group after 1 year [50]. After
surgery or medical treatment of primary aldosteronism, the
decline in eGFR for up to 6 months was larger than in
patients with essential hypertension, but the progression of
eGFR did not differ thereafter between primary aldoster-
onism and essential hypertension. There were significantly
more primary aldosteronism patients who improved from
microalbuminuria to normoalbuminuria than essential
hypertension patients [51].

The effects of an MR antagonist on eGFR have also been
shown for conditions that do not necessarily cause aldos-
terone excess. Aldosterone breakthrough occurs in some
patients as a reincrease in plasma aldosterone after some
length of treatment with an ACE inhibitor or ARB [13, 52].
When aldosterone breakthrough occurs, the decrease in
eGFR is enhanced [53]. The EVALUATE (The Eplerenone
Combination Versus Conventional Agent to Lower Blood
Pressure on Urinary Antialbuminuric Treatment Effect) trial
was conducted to examine the antialbuminuric effects of the
MR antagonist eplerenone in nondiabetic Japanese CKD
patients with hypertension [54]. In that trial, a significant
decrease in eGFR was observed 8 weeks after treatment
with eplerenone, but it remained stable. The urinary albu-
min excretion rate in the early morning after 52 weeks,
which was the primary endpoint, was significantly reduced
in the eplerenone group.

From these studies, it can be seen that relative glomerular
hyperfiltration is rapidly corrected with MR antagonist
treatment, even without aldosterone excess. This is reflected
in the initial temporary decrease in the eGFR. As a result,
there are reductions in proteinuria and albuminuria in the
short term. However, there are few relatively long-term,
large-scale clinical studies of MR antagonists that assessed
long-term prognosis and cardiovascular system outcomes in
CKD patients.

Clinical significance of eGFR reduction by
MR antagonists demonstrated by large-scale
clinical studies targeting heart failure

The effects of MR antagonists on eGFR can be inferred
from large-scale clinical trials investigating the effects of
MR antagonists in patients with chronic heart failure
and left ventricular dysfunction after myocardial infarction
[14–16]. Despite the beneficial effects of MR antagonists
reported by clinical studies, MR antagonists are not

frequently used in conditions for which aggressive use is
recommended, such as chronic heart failure with reduced
systolic function (HFrEF) [55]. This is likely due to con-
cerns about renal dysfunction and hyperkalemia caused by
MR antagonists. However, when we analyze those studies
in detail, completely different interpretations appear.
Eplerenone has been shown to significantly reduce the
composite primary endpoint of all-cause mortality, cardio-
vascular death, and sudden cardiac death in the EPHESUS
(Eplerenone Post-acute Myocardial Infarction Heart Failure
Efficacy and Survival) study for patients with left ven-
tricular dysfunction after myocardial infarction [15]. In the
subanalysis of EPHESUS, when the effect on eGFR of
eplerenone was examined, there was a rapid decrease in
eGFR one month after the initiation of treatment, but it was
stable thereafter. One month later, patients with a 20% or
greater reduction in eGFR had a higher incidence of car-
diovascular events regardless of the pretreatment eGFR
value if they were not taking eplerenone. However, even
with a reduction of 20% or more, survival was improved,
and cardiovascular events were significantly suppressed in
the patients treated with eplerenone [56].

It has been shown in EMPHASIS-HF (the Eplerenone in
Mild Patients Hospitalization and Survival Study in Heart
Failure) study, which examined the effects of eplerenone in
patients with mild HFrEF, that the combined primary end-
point of cardiovascular death and first hospitalization for
heart failure was significantly reduced.

Total mortality was also reduced, and life expectancy
was improved [16]. In the subanalysis, after 21 months of
treatment, in 27% of cases, the eGFR decreased by 20% or
more, and in 14% of cases, it decreased by 30% or more.
Although this rate was high in the eplerenone treatment
group, there was a significant decrease in total mortality in
the eplerenone group. The eGFR in the eplerenone group
dropped rapidly in the first 5 months, which was consistent
with the behavior seen in previous reports [57]. After MR
antagonist treatment, eGFR decreases temporarily, and it
appears that renal function has deteriorated. However, even
if renal function has actually deteriorated, there is evidence
for a reduction in all-cause and cardiovascular death. That
is, the initial transient decrease in eGFR by the MR
antagonist appears to work effectively to provide fine
adjustment of glomerular pressure, and this works
advantageously to suppress long-term cardiovascular
events. Subgroup analysis of the groups with eGFR under
60 ml/min also showed the clinical efficacy of an MR
antagonist, since it did not inherently impair renal function
[58]. Such an effect is likely to apply to the renal protection
of CKD treatment. If glomerular pressure can be controlled
appropriately, it is thought that long-term renal protective
effects will occur. If the change in eGFR similar to that
shown in Fig. 1 can be confirmed after the treatment with
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MR antagonist, it can be inferred that the intraglomerular
pressure is properly controlled.

At what stage of CKD can the clinical effects of MR
antagonism be expected? The majority of previous clinical
studies have shown that an MR antagonist is most effective
in patients who have early stages of CKD with maintained
eGFR. The BARACK D (benefit of aldosterone receptor
antagonism in chronic kidney disease) trial is currently
underway to investigate the effects of spironolactone in
patients with CKD stage G3b [59]. The group with 25 mg of
spironolactone added to the standard treatment will be
compared with the placebo group, and the primary endpoint
will not be a surrogate marker, such as albuminuria or BNP,
but death or a cardiovascular event, and an impact will be
obtained if the result is superior.

CKD treatment from now on considering
intraglomerular pressure adjustment

Figure 2 shows the main hormones and peptides that act on
the renal afferent and efferent arteries and directly alter
intraglomerular pressure. Among them, ACE inhibitors and
ARBs are thought to act on the efferent artery, and SGLT-2
inhibitors are thought to act on the afferent artery. An MR
antagonist acts relatively more on the efferent artery [47].
ACE inhibitors and ARBs are the main therapeutic agents
for CKD, but it is difficult to sufficiently delay CKD pro-
gression. Therefore, an SGLT-2 inhibitor has been added to
provide further renal protection and suppress cardiovascular
events [30, 33, 34]. If there is an additional MR antagonist,
will there be further beneficial effects?

The CVD-REAL Nordic trial comparing cardiovascular
events of type 2 diabetic patients who started an SGLT-2
inhibitor or other hypoglycemic agent has been helpful [60].
In that trial, an ACE inhibitor or ARB was prescribed to
~67%, but the MR antagonist prescription rate was very

low, at 4.4%. In the group prescribed an MR antagonist, the
incidences of fatal cardiovascular events and major cardi-
ovascular events were reduced.

Conclusion

Relative glomerular hyperfiltration is rapidly corrected with
MR antagonist treatment, even without aldosterone excess.
This is reflected in the initial temporary decrease in the
eGFR. As a result, there are reductions in proteinuria and
albuminuria in the short term. A frequent temporary
decrease in eGFR at the initial phase and significant
reductions in total mortality and cardiovascular events by
MR antagonist have been observed in patients with chronic
heart failure. It is expected that a number of relatively long-
term, large-scale clinical research trials targeting renal
events and all-cause and cardiovascular death in CKD
patients treated with an MR antagonist will be planned.
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