Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circular RNAs in hypertension: challenges and clinical promise

Abstract

Hypertension (HT), or high blood pressure (BP), is a chronic disease that is common among populations worldwide. The occurrence of HT is one of the leading causes of cardiovascular morbidity and mortality in adults. Although multiple studies have stressed the multifactorial and multigenic nature of HT, uncertainties about its etiology persist, and current diagnostic biomarkers can explain only a small part of the phenotypic variance of BP. Hence, the search for novel biomarkers that enable early disease prevention and guided therapy is warranted. Regulatory circRNAs have emerged as the newest player in HT-related gene networks and hold promise for improving the accuracy of diagnosis. These RNAs are genome products that are formed through back-splicing of specific regions of pre-mRNAs. Evidence suggests that these RNA species are involved in various metabolic diseases. Recent studies have revealed that aberrant expression of circRNAs is relevant to the occurrence and development of HT. Accordingly, circRNAs are proposed as a new generation of predictive biomarkers and potential therapeutic targets for different forms of HT, including pulmonary hypertension and preeclampsia. This paper presents an overview of the findings from current research focusing on the emerging role of circRNAs in the pathogenesis of hypertension. Furthermore, some of the challenges encountered by circRNA studies are highlighted, and perspectives are provided on the future of research in this area.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005;365:217–23.

    PubMed  Google Scholar 

  2. Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet 2015;386:801–12.

    PubMed  Google Scholar 

  3. Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000;101:329–35. 2000

    CAS  PubMed  Google Scholar 

  4. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139:761–76.

    CAS  PubMed  Google Scholar 

  5. Hall WD. Risk reduction associated with lowering systolic blood pressure: review of clinical trial data. Am Heart J. 1999;138:225–30.

    CAS  PubMed  Google Scholar 

  6. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017;389:37–55.

    PubMed  PubMed Central  Google Scholar 

  7. Marteau JB, Zaiou M, Siest G, Visvikis-Siest S. Genetic determinants of blood pressure regulation. J Hypertens. 2005;23:2127–43.

    CAS  PubMed  Google Scholar 

  8. Simon PH, Sylvestre MP, Tremblay J, Hamet P. Key considerations and methods in the study of gene-environment interactions. Am J Hypertens. 2016;29:891–9.

    PubMed  Google Scholar 

  9. Wise IA, Charchar FJ. Epigenetic modifications in essential hypertension. Int J Mol Sci. 2016;17:451. https://doi.org/10.3390/ijms17040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossier BC, Bochud M, Devuyst O. The hypertension pandemic: an evolutionary perspective. Physiol. 2017;32:112–25.

    CAS  Google Scholar 

  11. Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004;43:10–7.

    CAS  PubMed  Google Scholar 

  12. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 2005;45:80–85.

    CAS  PubMed  Google Scholar 

  13. Tanira MO, Al Balushi KA. Genetic variations related to hypertension: a review. J Hum Hypertens. 2005;19:7–19.

    CAS  PubMed  Google Scholar 

  14. Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94:349–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayoglu B, Yuksel H, Cakmak HA, Dirican A, Cengiz M. Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem. 2016;49:821–7.

    CAS  PubMed  Google Scholar 

  16. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49:54–64.

    CAS  PubMed  Google Scholar 

  17. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bátkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87.

    PubMed  Google Scholar 

  20. Deng L, Bradshaw AC, Baker AH. Role of noncoding RNA in vascular remodelling. Curr Opin Lipido. 2016;27:439–48.

    CAS  Google Scholar 

  21. Lorenzen JM, Thum T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol. 2016;12:360–73.

    CAS  PubMed  Google Scholar 

  22. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–11.

    CAS  PubMed  Google Scholar 

  23. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–11.

    CAS  PubMed  Google Scholar 

  24. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–8.

    PubMed  PubMed Central  Google Scholar 

  26. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370–83.

    CAS  PubMed  Google Scholar 

  27. Dragomir M, Calin GA. Circular RNAs in Cancer - Lessons Learned From microRNAs. Front Oncol. 2018;8:179. https://doi.org/10.3389/fonc.2018.00307

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018;71:428–42.

    CAS  PubMed  Google Scholar 

  29. Xu Y. An overview of the main circRNA databases. Non-coding RNA Invest. 2017;1:22. https://doi.org/10.21037/ncri.2017.11.05

    Article  Google Scholar 

  30. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7:e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013;495:333–8.

    CAS  PubMed  Google Scholar 

  32. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409. https://doi.org/10.1186/s13059-014-0409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015;160:1125–34.

    CAS  PubMed  Google Scholar 

  34. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18:603–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015;58:870–85.

    CAS  PubMed  Google Scholar 

  37. Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14:1028–34.

    PubMed  Google Scholar 

  38. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526. https://doi.org/10.1126/science.aam8526

    Article  CAS  PubMed  Google Scholar 

  39. Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, et al. Scrambled exons. Cell 1991;64:607–13.

    CAS  PubMed  Google Scholar 

  40. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014;56:55–66.

    CAS  PubMed  Google Scholar 

  41. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK. Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA. 2014;111:6131–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2018;22:256–64.

    Google Scholar 

  43. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495:384–8.

    CAS  PubMed  Google Scholar 

  44. Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J. 2013;2013:923–5.

    Google Scholar 

  45. Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and Characterizing circRNA-Protein Interaction. Theranostics. 2017;7:4183–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2018;75:1071–98.

    CAS  PubMed  Google Scholar 

  47. Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17:79. https://doi.org/10.1186/s12943-018-0827-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li M, Ding W, Sun T, Tariq MA, Xu T, Li P, et al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J. 2018;285:220–32.

    CAS  PubMed  Google Scholar 

  49. Floris G, Zhang L, Follesa P, Sun T. Regulatory role of circular RNAs and neurological disorders. Mol Neurobiol. 2017;54:5156–65.

    CAS  PubMed  Google Scholar 

  50. Boeckel JN, Jaé N, Heumüller AW, Chen W, Boon RA, Stellos K, et al. Identification and Characterization of Hypoxia-regulated Endothelial Circular RNA. Circ Res. 2015;2015:884–90.

    Google Scholar 

  51. Zaiou M. Circular RNAs as potential biomarkers and therapeutic targets for metabolic diseases. In: Guest PC, editor. Reviews on biomarker studies of metabolic and metabolism-related disorders. Adv Exp Med Biol. 2019;1134. https://doi.org/10.1007/978-3-030-12668-1_10 (in press)

    Google Scholar 

  52. Bayoumi AS, Aonuma T, Teoh JP, Tang YL, Kim IM. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharm Sin. 2018;39:1100–9.

    CAS  Google Scholar 

  53. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.

    CAS  PubMed  Google Scholar 

  54. Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheuma. 2017;13:657–69.

    CAS  Google Scholar 

  55. Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics. Am J Hypertens. 2018;31:150–65.

    CAS  PubMed  Google Scholar 

  56. Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis. 2018;28:91–111.

    CAS  PubMed  Google Scholar 

  57. Zaiou M, Bakillah A. Epigenetic regulation of ATP-binding cassette protein A1 (ABCA1) gene expression: a new era to alleviate atherosclerotic cardiovascular disease. Diseases. 2018;6:E34. https://doi.org/10.3390/diseases6020034

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res. 2018;41:649–61.

    CAS  PubMed  Google Scholar 

  59. Leimena C, Qiu H, Non-Coding RNA. in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 2018;19:E927. https://doi.org/10.3390/ijms19040927

    Article  CAS  PubMed  Google Scholar 

  60. Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K, et al. MiR-192-5p in the kidney protects against the development of hypertension. Hypertension 2019;73:399–406. https://doi.org/10.1161/HYPERTENSIONAHA.118.11875

    Article  CAS  PubMed  Google Scholar 

  61. Krishnan R, Mani P, Sivakumar P, Gopinath V, Sekar D. Expression and methylation of circulating microRNA-510 in essential hypertension. Hypertens Res. 2017;40:361–3.

    CAS  PubMed  Google Scholar 

  62. Xu YP, He Q, Shen Z, Shu XL, Wang CH, Zhu JJ, et al. MiR-126a-5p is involved in the hypoxia-induced endothelial-to-mesenchymal transition of neonatal pulmonary hypertension. Hypertens Res. 2017;40:552–61.

    CAS  PubMed  Google Scholar 

  63. Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res. 2019. https://doi.org/10.1038/s41440-019-0248-0

    CAS  PubMed  Google Scholar 

  64. Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, et al. A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun. 2018;498:789–94.

    CAS  PubMed  Google Scholar 

  65. Santhanam P, Khitan Z, Khthir R. Association between serum total bilirubin and serum creatinine and the effect of hypertension. J Clin Hypertens. 2015;17:61–62.

    Google Scholar 

  66. Zheng S, Gu T, Bao X, Sun J, Zhao J, Zhang T, et al. Circular RNA hsa_circ_0014243 may serve as a diagnostic biomarker for essential hypertension. Exp Ther Med. 2019;17:1728–36.

    CAS  PubMed  Google Scholar 

  67. Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens. 2017;39:454–9.

    CAS  PubMed  Google Scholar 

  68. Haque S, Harries LW. Circular RNAs (circRNAs) in health and disease. Genes. 2017;8:E353. https://doi.org/10.3390/genes8120353

    Article  CAS  PubMed  Google Scholar 

  69. Cheng X, Joe B. Circular RNAs in rat models of cardiovascular and renal diseases. Physiol Genom. 2017;49:484–90.

    Google Scholar 

  70. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    CAS  PubMed  Google Scholar 

  71. Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics. 2017;7:2863–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thompson AAR, Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension. Trends Mol Med. 2017;23:31–45.

    CAS  PubMed  Google Scholar 

  73. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.

    PubMed  Google Scholar 

  74. Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, et al. Characteristics of circular RNA expression in lung tissues from mice with hypoxia‑induced pulmonary hypertension. Int J Mol Med. 2018;42:1353–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Madani M, Ogo T, Simonneau G. The changing landscape of chronic thromboembolic pulmonary hypertension management. Eur Respir Rev. 2017;26:170105. https://doi.org/10.1183/16000617.0105-2017

    Article  PubMed  Google Scholar 

  76. Pesavento R, Prandoni P. Prevention and treatment of the chronic thromboembolic pulmonary hypertension. Thromb Res. 2018;164:150–6.

    CAS  PubMed  Google Scholar 

  77. Chen Z, Nakajima T, Tanabe N, Hinohara K, Sakao S, Kasahara Y, et al. Susceptibility to chronic thromboembolic pulmonary hypertension may be conferred by miR-759 via its targeted interaction with polymorphic fibrinogen alpha gene. Hum Genet. 2010;128:443–52.

    CAS  PubMed  Google Scholar 

  78. Miao R, Wang Y, Wan J, Leng D, Gong J, Li J, et al. Microarray analysis and detection of micrornas associated with chronic thromboembolic pulmonary hypertension. Biomed Res Int. 2017;2017:8529796. https://doi.org/10.1155/2017/8529796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miao R, Dong XB, Gong JN, Li JF, Pang WY, Liu YY, et al. Analysis of significant microRNA associated with chronic thromboembolic pulmonary hypertension. Zhonghua Yi Xue Za Zhi. 2018;98:1397–402.

    CAS  PubMed  Google Scholar 

  80. Miao R, Wang Y, Wan J, Leng D, Gong J, Li J, et al. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension. Medicine 2017;96:e7354. https://doi.org/10.1097/MD.0000000000007354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet 2016;387:999–1011.

    PubMed  Google Scholar 

  82. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11:1102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Moghaddas Sani H, Zununi Vahed S, Ardalan M. Preeclampsia: a close look at renal dysfunction. Biomed Pharm. 2018;109:408–16.

    Google Scholar 

  84. Song X, Luo X, Gao Q, Wang Y, Gao Q, Long W. Dysregulation of LncRNAs in placenta and pathogenesis of preeclampsia. Curr Drug Targets. 2017;18:1165–70.

    CAS  PubMed  Google Scholar 

  85. Biró O, Nagy B, Rigó J Jr. Identifying miRNA regulatory mechanisms in preeclampsia by systems biology approaches. Hypertens Pregnancy. 2017;36:90–99.

    PubMed  Google Scholar 

  86. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 2012;143:389–97.

    CAS  PubMed  Google Scholar 

  87. Stubert J, Koczan D, Richter DU, Dieterich M, Ziems B, Thiesen HJ, et al. miRNA expression profiles determined in maternal sera of patients with HELLP syndrome. Hypertens Pregnancy. 2014;33:215–35.

    CAS  PubMed  Google Scholar 

  88. Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234:1052–61.

    CAS  PubMed  Google Scholar 

  89. Qian Y, Lu Y, Rui C, Qian Y, Cai M, Jia R. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39:1380–90.

    CAS  PubMed  Google Scholar 

  90. Zhang YG, Yang HL, Long Y, Li WL. Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG. 2016;123:2113–8.

    CAS  PubMed  Google Scholar 

  91. Jiang M, Lash GE, Zhao X, Long Y, Guo C, Yang H. CircRNA-0004904, CircRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem. 2018;46:2576–86.

    CAS  PubMed  Google Scholar 

  92. Hu X, Ao J, Li X, Zhang H, Wu J, Cheng W. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin Epigenetics. 2018;10:48. https://doi.org/10.1186/s13148-018-0482-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou W, Wang H, Wu X, Long W, Zheng F, Kong J, et al. The profile analysis of circular RNAs in human placenta of preeclampsia. Exp Biol Med. 2018;0:1–9. https://doi.org/10.1177/1535370218813525

    Article  CAS  Google Scholar 

  94. Zaiou M, El Amri H. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine. Clin Genet. 2017;91:355–70.

    CAS  PubMed  Google Scholar 

  95. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003;42:1206–52.

    CAS  PubMed  Google Scholar 

  96. Kok MGM, de Ronde MWJ, Moerland PD, Ruijter JM, Creemers EE, Pinto-Sietsma SJ. Small sample sizes in high-throughput miRNA screens: a common pitfall for the identification of miRNA biomarkers. Biomol Detect Quantif. 2015;15:1–5.

    Google Scholar 

  97. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015;12:361–74.

    CAS  PubMed  Google Scholar 

  98. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011;469:336–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun. 2017;490:104–10.

    CAS  PubMed  Google Scholar 

  100. Kramer H, Han C, Post W, Goff D, Diez-Roux A, Cooper R, et al. Racial/ethnic differences in hypertension and hypertension treatment and control in the multiethnic study of atherosclerosis (MESA). Am J Hypertens. 2004;17:963–70.

    PubMed  Google Scholar 

  101. Cooper RS, Kaufman JS. Race and hypertension: science and nescience. Hypertension 1998;32:813–6.

    CAS  PubMed  Google Scholar 

  102. Dluzen DF, Noren Hooten N, Zhang Y, Kim Y, Glover FE, Tajuddin SM, et al. Racial differences in microRNA and gene expression in hypertensive women. Sci Rep. 2016;6:35815. https://doi.org/10.1038/srep35815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zaiou.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaiou, M. Circular RNAs in hypertension: challenges and clinical promise. Hypertens Res 42, 1653–1663 (2019). https://doi.org/10.1038/s41440-019-0294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0294-7

Keywords

  • Circular RNAs (circRNAs)
  • Hypertension
  • Preeclampsia
  • Pulmonary hypertension
  • microRNAs (miRNAs)

This article is cited by

Search

Quick links