Close association between circulating high-sensitivity cardiac troponin I and metabolic syndrome in the general population


Individuals with metabolic syndrome reportedly have an increased risk of cardiovascular disease, although the association between asymptomatic myocardial damage and metabolic syndrome has not been sufficiently investigated. The present study investigated possible associations between circulating cardiac troponin and metabolic syndrome or related factors. Subjects undergoing their annual health checkups were enrolled in the study (n = 1242). Laboratory measurements included serum high-sensitivity cardiac troponin I (hs-cTnI) and plasma B-type natriuretic peptide (BNP). Individual salt intake was estimated by calculating 24-h urinary sodium excretion from spot urine. Subjects whose electrocardiograms revealed ST-T segment abnormalities or who had renal insufficiency or a history of cardiovascular events were excluded. Subjects with metabolic syndrome had higher hs-cTnI levels than those without, but their BNP levels were equivalent. hs-cTnI levels were significantly associated with the presence and components of metabolic syndrome. Logistic regression analysis with the endpoint of hs-cTnI levels higher than the median value identified metabolic syndrome as an independent determinant of increased hs-cTnI levels. Additionally, urinary salt excretion levels were increased in subjects with metabolic syndrome or any of its components. Logistic regression analysis with the endpoint of metabolic syndrome revealed that hs-cTnI levels were independently associated with the presence of metabolic syndrome. A close association between hs-cTnI levels and the presence of metabolic syndrome, at least partially mediated by increased salt intake, was confirmed to exist in the general population. The findings support the idea that patients with metabolic syndrome develop asymptomatic myocardial damage without obvious ischaemic findings, which leads to increased cardiovascular risk.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    PubMed  Google Scholar 

  2. 2.

    Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, Kabir M, et al. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med. 2007;120:S3–S8.

    CAS  PubMed  Google Scholar 

  3. 3.

    Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.

    PubMed  Google Scholar 

  4. 4.

    Committee to Evaluate Diagnostic Standards for Metabolic Syndrome. Definition and the diagnostic standard for metabolic syndrome—Committee to Evaluate Diagnostic Standards for Metabolic Syndrome. Nihon Naika Gakkai Zasshi. 2005;94:794–809.

    Google Scholar 

  5. 5.

    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    CAS  PubMed  Google Scholar 

  6. 6.

    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Google Scholar 

  7. 7.

    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.

    PubMed  Google Scholar 

  8. 8.

    Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev Chronic Dis. 2017;14:E24.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Noda H, Iso H, Saito I, Konishi M, Inoue M, Tsugane S, JPHC Study Group. The impact of the metabolic syndrome and its components on the incidence of ischemic heart disease and stroke: the Japan public health center-based study. Hypertens Res. 2009;32:289–98.

    PubMed  Google Scholar 

  10. 10.

    Haffner SM. Abdominal adiposity and cardiometabolic risk: do we have all the answers? Am J Med. 2007;120:S10–S16.

    CAS  PubMed  Google Scholar 

  11. 11.

    Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009;196:193–222.

    CAS  Google Scholar 

  12. 12.

    Czernichow S, Greenfield JR, Galan P, Jellouli F, Safar ME, Blacher J, et al. Macrovascular and microvascular dysfunction in the metabolic syndrome. Hypertens Res. 2010;33:293–7.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis. 2010;20:140–6.

    CAS  PubMed  Google Scholar 

  14. 14.

    Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59:635–43.

    CAS  PubMed  Google Scholar 

  15. 15.

    Oh SW, Han KH, Han SY, Koo HS, Kim S, Chin HJ. Association of sodium excretion with metabolic syndrome, insulin resistance, and body fat. Medicine (Baltim). 2015;94:e1650.

    CAS  Google Scholar 

  16. 16.

    Won JC, Hong JW, Noh JH, Kim DJ. Association between estimated 24-h urinary sodium excretion and metabolic syndrome in Korean Adults: the 2009 to 2011 Korea National Health and Nutrition Examination Survey. Medicine (Baltim). 2016;95:e3153.

    CAS  Google Scholar 

  17. 17.

    Ju SY, Lee JY, Kim DH. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly: a meta-analysis of prospective cohort studies. Medicine (Baltim). 2017;96:e8491.

    Google Scholar 

  18. 18.

    Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56:1113–32.

    Google Scholar 

  19. 19.

    Heidenreich PA, Alloggiamento T, Melsop K, McDonald KM, Go AS, Hlatky MA. The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes: a meta-analysis. J Am Coll Cardiol. 2001;38:478–85.

    CAS  PubMed  Google Scholar 

  20. 20.

    Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med. 2009;361:858–67.

    CAS  Google Scholar 

  21. 21.

    deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Guzzardi MA, Iozzo P. Fatty heart, cardiac damage, and inflammation. Rev Diabet Stud. 2011;8:403–17.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Reiter M, Twerenbold R, Reichlin T, Benz B, Haaf P, Meissner J, et al. Early diagnosis of acute myocardial infarction in patients with pre-existing coronary artery disease using more sensitive cardiac troponin assays. Eur Heart J. 2012;33:988–97.

    CAS  PubMed  Google Scholar 

  24. 24.

    Seliger SL, Hong SN, Christenson RH, Kronmal R, Daniels LB, Lima JAC, et al. High-sensitive cardiac troponin T as an early biochemical signature for clinical and subclinical heart failure: MESA (Multi-Ethnic Study of Atherosclerosis). Circulation. 2017;135:1494–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Aeschbacher S, Schoen T, Bossard M, van der Lely S, Glättli K, Todd J, et al. Relationship between high-sensitivity cardiac troponin I and blood pressure among young and healthy adults. Am J Hypertens. 2015;28:789–96.

    CAS  PubMed  Google Scholar 

  26. 26.

    Sugiura T, Dohi Y, Takase H, Ito A, Fujii S, Ohte N. Differential effects of brachial and central blood pressures on circulating levels of high-sensitivity cardiac troponin I in the general population. Atherosclerosis. 2018;269:185–91.

    CAS  PubMed  Google Scholar 

  27. 27.

    Milwidsky A, Fisher E, Brzezinski RY, Ehrenwald M, Shefer G, Stern N, et al. Metabolic syndrome is associated to high-sensitivity cardiac troponin T elevation. Biomarkers.

    PubMed  Google Scholar 

  28. 28.

    Pokharel Y, Sun W, Villareal DT, Selvin E, Virani SS, Ndumele CE, et al. Association between high-sensitivity troponin T and cardiovascular risk in individuals with and without metabolic syndrome: The ARIC study. Eur J Prev Cardiol. 2017;24:628–38.

    PubMed  Google Scholar 

  29. 29.

    Kamata K, Tochikubo O. Estimation of 24-h urinary sodium excretion using lean body mass and overnight urine collected by a pipe-sampling method. J Hypertens. 2002;20:2191–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuchi M, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens Res. 2014;37:253–392.

    PubMed  Google Scholar 

  31. 31.

    Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, et al. Diagnostic criteria for dyslipidemia. Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb. 2007;14:155–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest. 2010;1:212–28.

    Google Scholar 

  33. 33.

    Sugiura T, Dohi Y, Takase H, Fujii S, Ohte N. Findings relevant to the QRS wave in the resting electrocardiogram are associated with circulating concentrations of high-sensitivity cardiac troponin I in the general population. J Am Soc Hypertens. 2018;12:614–20.

    PubMed  Google Scholar 

  34. 34.

    Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51:93–102.

    CAS  PubMed  Google Scholar 

  35. 35.

    Cauwenberghs N, Knez J, Thijs L, Haddad F, Vanassche T, Yang WY, et al. Relation of insulin resistance to longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc. 2018;7:e008315.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17:122.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wu C, Liu K, Bertoni AG, Ouyang P, Bluemke DA, Lima JA. Metabolic syndrome is associated with impaired diastolic function independently of MRI-derived myocardial extracellular volume: the MESA study. Diabetes. 2018;67:1007–12.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–54.

    PubMed  Google Scholar 

  39. 39.

    Ye X, Yu Z, Li H, Franco OH, Liu Y, Lin X. Distributions of C-reactive protein and its association with metabolic syndrome in middle-aged and older Chinese people. J Am Coll Cardiol. 2007;49:1798–805.

    CAS  PubMed  Google Scholar 

  40. 40.

    Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    PubMed  Google Scholar 

  41. 41.

    Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res. 2007;101:335–47.

    CAS  PubMed  Google Scholar 

  42. 42.

    Abel ED, O'Shea KM, Ramasamy R. Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol. 2012;32:2068–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hattori T, Murase T, Takatsu M, Nagasawa K, Matsuura N, Watanabe S, et al. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome. J Am Heart Assoc. 2014;3:e001312.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jover B, Reynes C, Rugale C, Reboul C, Jeanson L, Tournier M, et al. Sodium restriction modulates innate immunity and prevents cardiac remodeling in a rat model of metabolic syndrome. Biochim Biophys Acta. 2017;1863:1568–74.

    CAS  Google Scholar 

  45. 45.

    Aeschbacher S, Schoen T, Bossard M, van der Lely S, Glättli K, Todd J, et al. Relationship between high-sensitivity cardiac troponin I and blood pressure among young and healthy adults. Am J Hypertens. 2015;28:789–96.

    CAS  PubMed  Google Scholar 

  46. 46.

    Sugiura T, Takase H, Toriyama T, Goto T, Ueda R, Dohi Y. Circulating levels of myocardial proteins predict future deterioration of congestive heart failure. J Card Fail. 2005;11:504–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    van der Linden N, Klinkenberg LJ, Bekers O, Loon LJ, Dieijen-Visser MP, Zeegers MP, et al. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: a meta-analysis. Medicine (Baltim). 2016;95:e5703.

    Google Scholar 

  48. 48.

    Willeit P, Welsh P, Evans JDW, Tschiderer L, Boachie C, Jukema JW, et al. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants. J Am Coll Cardiol. 2017;70:558–68.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Gomes AV, Potter SD, Szczesna-Cordary D. The role of troponin in muscle contraction. Life. 2002;54:323–33.

    CAS  PubMed  Google Scholar 

  50. 50.

    Kimenai DM, Martens RJH, Kooman JP, Stehouwer CDA, Tan FES, Schaper NC, et al. Troponin I and T in relation to cardiac injury detected with electrocardiography in a population-based cohort—the Maastricht study. Sci Rep. 2017;7:6610.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tomonori Sugiura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugiura, T., Dohi, Y., Takase, H. et al. Close association between circulating high-sensitivity cardiac troponin I and metabolic syndrome in the general population. Hypertens Res 42, 1768–1775 (2019).

Download citation


  • Metabolic syndrome
  • High-sensitivity cardiac troponin I
  • Myocardial damage
  • Blood pressure
  • Urinary salt excretion

Further reading