ARTICLE

Examination of the associations between m⁶A-associated singlenucleotide polymorphisms and blood pressure

Xing-Bo Mo^{1,2,3} · Shu-Feng Lei^{1,2,3} · Yong-Hong Zhang^{1,3} · Huan Zhang^{1,3}

Received: 3 November 2018 / Revised: 25 April 2019 / Accepted: 6 May 2019 / Published online: 7 June 2019 © The Japanese Society of Hypertension 2019

Abstract

 N^6 -methyladenosine (m⁶A) has been shown to play critical roles in many biological processes and a variety of diseases. The aim of this study was to investigate the association between m⁶A-associated single-nucleotide polymorphisms (m⁶A-SNPs) and blood pressure (BP) in large-scale genome-wide association studies and to test whether m⁶A-SNPs are enriched among the SNPs that were associated with BP. Furthermore, gene expression analysis was performed to obtain additional evidence for the identified m⁶A-SNPs. We found 1236 m⁶A-SNPs that were nominally associated with BP, and 33 of them were significant genome wide. The proportion of m⁶A-SNPs with a P < 0.05 was significantly higher than that of non-m⁶A-SNPs. Using fgwas, we found that SNPs associated with diastolic BP ($P < 5 \times 10^{-8}$) were significantly enriched with m⁶A-SNPs (log 2 enrichment of 2.67, 95% confidence interval: [0.42, 3.68]). Approximately 10% of the BP-associated m⁶A SNPs were associated with coronary artery disease or stroke. Most of these m⁶A-SNPs were strongly associated with gene expression. We showed that rs56001051, rs9847953, rs197922, and rs740406 were associated with *C1orf167* (P = 0.019), *ZNF589* (P = 0.013), *GOSR2* (P = 0.001), and *DOT1L* (P = 0.032) expression levels in peripheral blood mononuclear cells of 40 Chinese individuals, respectively. The present study identified many BP-associated m⁶A-SNPs and demonstrated their potential functionality. The results suggested that m⁶A might play important roles in BP regulation.

Keywords Blood pressure · m⁶A · Methylation · Genome-wide association study · Gene expression

Introduction

Hypertension is one of the most important risk factors for cardiovascular diseases, which is the leading cause of death worldwide [1]. As with other complex traits, evidence from familial studies suggests that hypertension is caused by a combination of genetic and environmental factors. The

Supplementary information The online version of this article (https://doi.org/10.1038/s41440-019-0277-8) contains supplementary material, which is available to authorized users.

Huan Zhang hzhang3@suda.edu.cn

- ¹ Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
- ² Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
- ³ Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China

heritability of blood pressure (BP) has been estimated at approximately 40–60% [2]. Large-scale meta-analysis studies of genome-wide association studies (GWAS) have identified numerous single-nucleotide polymorphisms (SNPs) for BP [3–5]. In addition, BP-associated missense variants have been identified by exome-wide studies of large samples [6–8].

Although GWAS have revolutionized the understanding of the genetic architecture of BP, the interpretation of the GWAS results is still a major challenge. Delineation of GWAS variants by distinguishing the functional variants from the rest should be helpful for this. Nonsynonymous variants, as well as genetic variants that have the capacity to alter protein binding [9] and affect RNA splicing [10] and editing [11], are potential BP functional variants.

 N^6 -methyladenosine (m⁶A) is a pervasive RNA modification in eukaryotes. It has become a hot research topic because of its critical roles not only in the regulation of gene expression [12], messenger RNA (mRNA) stability [13], and homeostasis [14] but also in the pathogenesis of various diseases [15]. Recent studies have shown that genetic variants influence m⁶A by changing the RNA sequences of the target sites or key flanking nucleotides [16]. This kind of putative functional SNP is called an m^6A -associated SNP (m^6A -SNP). If m^6A modification was interrupted by an m^6A -SNP, the biological process by which m^6A functions would be disturbed [16]. Thus, m^6A -SNPs may have regulatory potential to affect gene expression and mRNA stability and homeostasis, which may consequently affect diseases such as hypertension.

Evaluation of the effect of genetic variants on m⁶A modification will increase our understanding of the variants' pathogenic molecular mechanisms and uncover new causal variants. However, although GWAS have identified >400 loci that harbor DNA sequence variants that influence BP [5, 17], identification of m⁶A-SNPs is very rare, and thus far, the relationship between m⁶A-SNPs and BP is still unclear. In addition, determining the association between m⁶A and BP in large samples on a genome-wide scale is difficult to achieve. Using the GWAS identified BPassociated m⁶A-SNPs as a bridge, we can indirectly assess the relationship between m⁶A and hypertension. Thus, in this study, we investigated the association between m⁶A-SNPs and BP in large-scale GWAS and aimed to identify the enrichment of m⁶A-SNPs among the SNPs that were associated with BP.

Methods

Determination of m⁶A-SNPs for BP

In this study, we first investigated the effect of a new functional variant, m⁶A-SNPs, on systolic BP (SBP) and diastolic BP (DBP) in the published summary data of three large-scale GWAS [3–5]. The first is the 2011 GWAS, which comprised 69,395 individuals. The raw data used in the present analysis were the downloaded summary results from the initial GWAS, which included association P values of almost 2.5 million SNPs. The second is the 2016 GWAS, which examined the association between 196,725 variants of the custom genotyping microarray Cardio-Metabochip and SBP and DBP in 201,529 individuals of European ancestry. The available summary data contained P values for 128,272 variants. We also evaluated the effect of the m⁶A-SNPs on BP in the summary data from the 2018 GWAS, the third study [5]. This GWAS dataset comprised the summary results for the association between more than 10 million SNPs and SBP and DBP, which were evaluated in 317,756 individuals from the UK Biobank [18].

To screen out the m⁶A-SNPs from these millions of SNPs, we annotated them using a list of m⁶A-SNPs that were downloaded from the m6AVar database (http://m6ava r.renlab.org/). The list contains 13,703 high (miCLIP/PA-

m⁶A-seq experiments), 54,222 medium (MeRIP-Seq experiments), and 284,089 low (genome-wide prediction based on Random Forest algorithm) confidence level m⁶A-SNPs for humans [16]. After annotation of the SNPs in the GWAS summary dataset by the list of m⁶A-SNPs (merged the entire set of m⁶A-SNPs with each of the BP GWAS datasets), we identified the m⁶A-SNPs that were associated with BP. Those m⁶A-SNPs with *P* values <0.05 were considered in the following analyses.

Enrichment analysis

Among BP-associated SNPs, we determined if m^6A -SNPs were overrepresented compared to what would be expected by chance. We randomly sampled 1000 sets of non-m⁶A-SNPs (the same number of m^6A -SNPs) from the GWAS datasets for SBP and DBP as the matched background and then determined if the proportion of m^6A -SNPs with *P* value <0.05 was significantly higher than the proportion of non-m⁶A-SNPs with *P* value <0.05 in the 1000 sets for each trait.

In addition, fgwas was used to assess the functional enrichment of m⁶A-SNPs as a functional annotation in SBP and DBP. The fgwas, which was a practical tool for genetic and developmental analysis of complex traits or diseases, takes advantage of summary statistics of genome-wide association and incorporates functional annotation information into a GWAS to estimate the enrichment of GWAS findings in the annotation type (e.g., m⁶A-SNPs) [19]. The software (version 0.3.6) can be downloaded at https://github.com/joepickrell/fgwas.

Association in East Asian populations

Because of substantial ethnic differences in allele frequencies and disease susceptibility, BP association has not been necessarily replicated in East Asians [20]. We looked for evidence on associations between the identified m⁶A-SNPs and BP traits in three GWAS from East Asian populations. The first study analyzed genome-wide (475,157) SNP data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip [21]. The second study was a GWAS meta-analysis of mean arterial pressure and pulse pressure among 26,600 East Asian participants [22]. Genome-wide data for approximately 2.4 million SNPs were available. Third, the supplementary data from a meta-analysis of GWASs of BP and hypertension in 11,816 Chinese individuals followed by replication studies, including 69,146 additional individuals were also searched [23]. The m⁶A-SNPs with P values <0.05 were considered.

Association with coronary artery disease and stroke

We evaluated the associations between the identified BPassociated m⁶A-SNPs and coronary artery disease (CAD) using the summary data from a large-scale 1000 Genomesbased GWAS meta-analysis of CAD carried out by the CARDIoGRAMplusC4D consortium [24]. This study comprised approximately 185,000 individuals who were mainly (77%) of European descent. This dataset is publicly available at http://www.cardiogramplusc4d.org/data-dow nloads/.

We also evaluated the associations between the identified m^6A -SNPs and ischemic stroke using the summary data from previous GWAS, which comprised 60,341 ischemic stroke patients and approximately 400,000 controls [25]. The raw data used in the present analysis were the downloaded summary results from the initial GWAS, which included association *P* values of almost eight million SNPs and indels for ischemic stroke. The dataset is publicly available at the MEGASTROKE website (http://mega stroke.org/). The m^6A -SNPs with CAD or stroke association *P* values <0.05 were considered in this analysis.

Gene expression analysis

The m⁶A-SNPs may take part in gene expression regulation through exerting influence on RNA modification; thus, they may be associated with gene expression levels. We carried out expression quantitative locus (eQTL) analysis to obtain evidence on associations between the identified BPassociated m⁶A-SNPs and gene expression using the HaploReg browser (https://pubs.broadinstitute.org/mammals/ha ploreg/haploreg.php). HaploReg is a database that manually collates and updates data from large sample eQTL studies and contains data from the ENCODE project [26]. Furthermore, we tested genotypes and mRNA expression levels in peripheral blood mononuclear cells (PBMCs) of 40 unrelated Chinese Han individuals (age range from 27 to 67 years) using reverse transcription-polymerase chain reaction to obtain additional evidence to support the top BP-associated $m^{6}A$ -SNPs.

Results

BP-associated m⁶A-SNPs

The first step of this study was to select m⁶A-SNPs from the BP GWAS dataset according to the annotation information of the 352,014 m⁶A-SNPs in the m6AVar database. We found 1712 unique m⁶A-SNPs in the 2011 GWAS dataset. Among these SNPs, 97 (5.7%) and 129 (7.5%) (166 unique) were nominally (P < 0.05) associated with SBP and DBP, respectively. Two of the 1712 tested m⁶A-SNPs reached a significance level of 1.5×10^{-5} . The most significant m⁶A-SNP for SBP ($P = 2.68 \times 10^{-6}$) and DBP ($P = 9.58 \times 10^{-8}$) was rs7398833 in the *CUX2* gene. The second m⁶A-SNP was rs13096477 in the *SLC4A7* gene ($P = 2.85 \times 10^{-6}$ for DBP).

We found 94 unique m⁶A-SNPs in the 2016 GWAS dataset, and a total of 32 m⁶A-SNPs were associated with SBP and/or DBP among the 128,272 variants (P < 0.05). Rs9847953 (*ZNF589*), rs1801253 (*ADRB1*), and rs7398833 (*CUX2*) reached the genome-wide significance level ($P < 5 \times 10^{-8}$) (Table 1). The association between rs197922 (*GOSR2*) and SBP was also significant ($P = 9.58 \times 10^{-8}$).

In the UK Biobank data of GWAS-2018, 761 (11.1%) and 799 (12.1%) (1236 unique) m⁶A-SNPs were nominally (P < 0.05) associated with SBP and DBP (Supplementary Tables 1 and 2), respectively. Among these SNPs, 13 and 26 (33 unique) were associated with SBP and DBP at the genome-wide significance level (Tables 2 and 3), respectively. These genome-wide significant m⁶A-SNPs were in linkage disequilibrium ($r^2 \ge 0.2$ in Europeans) with the sentinel SNPs of the corresponding BP-associated loci (Supplementary Table 3). The four significant m⁶A-SNPs found in GWAS-2016 were all significant in GWAS-2018.

Table 1 The significant m⁶A -SNPs for SBP and DBP in GWAS-2016

SNP rsID	Gene	CHR	Position ^a	MA	MAF	P value				m ⁶ A
						SBP 2011	DBP 2011	SBP 2016	DBP 2016	Function ^b
rs9847953	ZNF589	3	48,282,695	G	0.23	2.30E - 04	9.18E - 04	7.36E-08	1.39E-09	Loss
rs1801253	ADRB1	10	115,805,056	С	0.34	4.11E - 04	3.41E - 04	7.08E - 13	1.17E - 13	Loss
rs7398833	CUX2	12	111,786,892	С	0.24	2.68E - 06	9.58E -08	2.07E - 07	3.50E - 09	Gain
rs197922	GOSR2	17	45,008,570	А	0.35	5.62E - 03	6.24E - 02	9.58E - 08	3.91E - 03	Loss

 $m^{6}A$ -SNP N^{6} -methyladenosine-associated single-nucleotide polymorphisms, GWAS genome-wide association studies, CHR chromosome, DBP diastolic blood pressure, MA minor allele, MAF minor allele frequency, SBP systolic blood pressure, SNP single-nucleotide polymorphism ^aAssembly: GRCh37.p13

^bThe minor alleles may result in loss or gain of m⁶A sites

SNP ISID	Gene	CHR	Position ^a	EA	EAF	GWAS							eQTL effect	Confidence level	m ⁶ A function ^c
						β SBP	P SBP	β CAD	$P \mathrm{CAD}$	β stroke	P stroke	Asian ^b			
rs56001051	C1 orf167	1	11,838,841	IJ	0.10	-0.0378	1.49E - 21	I	I	I	ī	Yes	cis	Low	Gain
rs715	CPSI	2	211,543,055	U	0.29	-0.0155	5.67E - 09	I	I	I	1	No	trans	Low	Loss
rs1733860	PODXL	7	131,185,995	A	0.36	0.0160	$1.70\mathrm{E}-10$	I	I	I	I	No	trans	Low	Gain
rs9657518	RPILI	8	10,467,589	U	0.34	0.0160	$2.89 \mathrm{E} - 08$	I	I	I	I	Yes	trans	Low	Gain
rs4639	NEIL2	8	11,644,751	IJ	0.41	0.0160	$1.03 \mathrm{E} - 10$	I	I	I	I	No	cis	Low	Gain
rs1801253	ADRBI	10	115,805,056	U	0.34	0.0182	9.24E - 11	I	I	I	I	No	cis	Low	Loss
rs3758911	<i>CWF19L2</i>	11	107,197,640	C	0.32	0.0142	4.28E - 08	I	I	I	I	No	cis	Low	Gain
rs7398833	CUX2	12	111,786,892	U	0.24	-0.0201	7.33E-12	-0.0344	1.22E - 03	-0.0431	1.78E - 05	No	trans	Low	Gain
rs1885986	SMG6	17	2,203,175	IJ	0.34	-0.0173	2.07E - 11	I	I	I	I	No	cis	Medium	Loss
rs17650901	MAPT	17	44,039,691	IJ	0.23	-0.0168	9.87E - 09	I	I	I	I	No	cis	Low	Loss
rs1881193	KANSLI	17	44,248,769	C	0.23	-0.0169	8.73E - 09	I	I	I	I	No	trans	Medium	Loss
rs197922	GOSR2	17	45,008,570	A	0.35	0.0166	1.30E - 10	0.0313	$9.70 \mathrm{E} - 04$	I	I	Yes	cis	Low	Loss
rs740406	DOTIL	19	2,232,221	IJ	0.07	0.0295	2.79E - 08	-0.0381	$3.03 \mathrm{E} - 02$	I	I	Yes	cis	Low	Gain

^bWhether the BP association has been replicated in East Asians ²The effect alleles may result in loss or gain of $m^{6}A$ sites

Assembly: GRCh37.p13

Lesult in loss or gain of $m_{e^{V}}$ sites pull $m_{e^{V}}$ sites **Associate** To SN in To DIC

Association in East Asian populations

In the three GWAS from East Asian populations, we found that 57 of the 1236 identified m⁶A-SNPs were nominally associated with BP (Supplementary Tables 1 and 2). Among the m⁶A-SNPs that were significantly associated with BP at a genome-wide significance level in Europeans, rs56001051 (*Clorf167*, P = 0.046) and rs197922 (*GOSR2*, P = 0.041) were associated with hypertension. rs853678 (*ZSCAN31*, P = 0.021), rs9657518 (*RP1L1*, P = 0.024), rs197922 (*GOSR2*, P = 0.031), and rs740406 (*DOT1L*, P = 0.018) were associated with mean arterial pressure. rs740406 (*DOT1L*, $P = 5.0 \times 10^{-4}$) was associated with pulse pressure in East Asian populations.

Association with CAD and stroke

To further evaluate whether the 1236 BP-associated m⁶A-SNPs were associated with CAD, we tested for association in approximately 185,000 individuals by using the CAR-DIoGRAMplusC4D GWAS dataset [24]. We found that 78 of the 761 SBP-associated m⁶A-SNPs and 72 of the 799 DBP-associated m⁶A-SNPs seemed to be associated with CAD (P < 0.05) (Supplementary Tables 1 and 2). The most significant ($P = 4.50 \times 10^{-9}$) m⁶A-SNP for CAD was the nonsense SNP rs12286 of the *ADAMTS7* gene (Supplementary Table 2). We found that 56 of the 761 SBPassociated m⁶A-SNPs and 61 of the 799 DBP-associated m⁶A-SNPs seemed to be associated with ischemic stroke (P

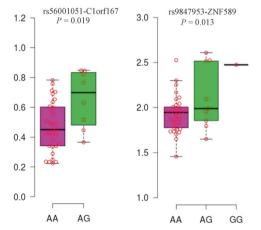
The 1236 m⁶A-SNPs were associated with 1241 m⁶A sites, 4.2% and 18.0% of which belong to the high and medium confidence levels, respectively. Among these high and medium confidence level SNPs, 2 and 8 (9 unique) were associated with SBP and DBP at the genome-wide significance level (Tables 2 and 3), respectively.

Enrichment of m⁶A-SNPs

By applying the genome-wide association data of GWAS-2011 and GWAS-2018, we carried out the enrichment analyses. The proportion of non-m⁶A-SNPs with GWAS *P* values <0.05 for DBP (95% confidence interval [CI]: [4.4%, 6.5%], *P* = 6.68 × 10⁻⁵) was significantly lower than that of the m⁶A-SNPs in the GWAS-2011 data. However, it was not significant for SBP (95% CI: [4.3%, 6.5%], *P* = 0.31). In the GWAS-2018 data, the proportion of non-m⁶A-SNPs with GWAS *P* values <0.05 for SBP (95% CI: [9.5%, 10.9%], *P* = 3.47 × 10⁻³) and DBP (95% CI: [9.8%, 11.2%], *P* = 5.81 × 10⁻⁶) was significantly lower than the m⁶A-SNPs. Using fgwas, we found that SNPs associated with DBP (*P* < 5 × 10⁻⁸) were significantly enriched with m⁶A-SNPs (log 2 enrichment of 2.67, 95% CI: [0.42, 3.68]).

Table 3 The significant m^6A -SNPs for DBP in GWAS-2018

SNP rsID	Gene	CHR	CHR Position ^a	EA	EAF	GWAS							eQTL effect	eQTL effect Confidence level m6A function ^c	m6A function ^c
						β DBP	P DBP	β CAD	P CAD	β stroke	P stroke	Asian ^b			
rs56001051	C1orf167	-	11,838,841	IJ	0.10	-0.0354	4.50E - 19	I	I	I	I	Yes	cis	Low	Gain
rs8024	PO0	1	201,845,575	A	0.32	0.0166	1.62E - 10	0.0416	3.60E - 05	0.0258	7.03E - 03	No	cis	High	Loss
rs2275155	SDCCAG8	1	243,493,907	H	0.33	0.0257	1.06E - 21	I	I	Ι	Ι	No	cis	Low	Loss
rs9847953	ZNF589	Э	48,282,695	IJ	0.23	-0.0152	7.59E09	-0.0317	1.99 E - 03	Ι	Ι	No	cis	Low	Loss
rs1353776	AMOTL2	3	134,077,470	IJ	0.39	-0.0142	3.14E - 08	I	Ι	-0.0267	7.95E - 03	No	trans	Low	Gain
rs3757138	BTN3A2	9	26,376,103	IJ	0.11	-0.0199	$3.49 \mathrm{E} - 08$	I	Ι	I	Ι	No	cis	High	Loss
rs1978	BTN3A2	9	26,377,573	A	0.11	-0.0200	3.10E-08	Ι	I	Ι	Ι	No	cis	Low	Gain
rs853678	ZSCAN31	9	28,297,313	A	0.11	-0.0188	1.48E - 08	Ι	I	0.0258	3.04E - 02	Yes	cis	Medium	Loss
rs2232423	ZSCAN12	9	28,366,151	IJ	0.08	-0.0243	2.26E - 10	I	Ι	Ι	Ι	No	trans	Medium	Loss
rs450630	SCAND3	9	28,542,424	A	0.42	-0.0151	9.56E - 10	Ι	Ι	Ι	Ι	No	cis	Medium	Loss
rs9262143	PPPIR18	9	30,652,781	Г	0.09	-0.0207	$2.63 \mathrm{E} - 09$	Ι	Ι	Ι	Ι	No	cis	Low	Gain
rs1049633	DDRI	9	30,867,527	A	0.09	-0.0211	8.35E - 10	I	I	Ι	Ι	No	trans	Medium	Loss
rs2233974	C6orf15	9	31,080,016	IJ	0.15	-0.0195	2.96E - 10	I	Ι	Ι	Ι	No	trans	Low	Gain
rs707908	HLA-C	9	31,238,053	U	0.39	0.0209	3.80E - 16	Ι	Ι	Ι	Ι	No	cis	Low	Loss
rs3115672	MSH5	9	31,727,897	Г	0.08	-0.0254	1.94E - 12	Ι	Ι	Ι	Ι	No	trans	Low	Gain
rs4993986	HLA-DQBI	9	32,627,652	IJ	0.50	0.0152	3.45E - 09	I	Ι	Ι	Ι	No	trans	High	Loss
rs564449	EPO	L	100,321,138	IJ	0.11	-0.0240	3.61E - 10	-0.0387	9.45E - 03	Ι	Ι	No	trans	Low	Gain
rs1733860	PODXL	L	131,185,995	A	0.36	0.0141	1.94E - 08	I	Ι	Ι	Ι	No	trans	Low	Gain
rs2979247	ERII	×	8,888,948	IJ	0.41	0.0173	4.41E - 12	Ι	I	Ι	Ι	No	cis	Low	Loss
rs4639	NEIL2	×	11,644,751	IJ	0.41	0.0177	9.98E - 13	Ι	Ι	I	Ι	No	cis	Low	Gain
rs1801253	ADRBI	10	115,805,056	U	0.34	0.0242	$6.04\mathrm{E}-18$	Ι	Ι	Ι	Ι	No	cis	Low	Loss
rs7398833	CUX2	12	111,786,892	U	0.24	-0.0257	2.00E - 18	-0.0344	1.22E - 03	-0.0431	1.78E - 05	No	trans	Low	Gain
rs12828755	PITPNM2	12	123,470,586	H	0.22	-0.0201	7.00E - 11	Ι	I	-0.0299	1.14E - 02	No	cis	Low	Gain
rs72681869	SOS2	14	50,655,357	U	0.01	-0.0779	4.97E - 11	Ι	Ι	Ι	i	No	trans	Low	Gain
rs1885986	SMG6	17	2,203,175	IJ	0.34	-0.0155	2.06E - 09	I	Ι	Ι	Ι	No	cis	Medium	Gain
rs6066802	PREXI	20	47,261,017	U	0.26	-0.0157	2.04E - 08	0.0293	3.61E - 03	I	I	No	cis	Low	Gain
$m^{6}A$ -SNP N pressure, E^{4} ^a Assembly:	⁵ -methyladeno effect allele, GRCh37,p13	sine-ass EAF efi	ociated singl fect allele fre	e-nuc] Juenc	leotide] y, <i>eQT</i> 1	polymorphi L expressior	sms, <i>GWAS</i> (quantitative	genome-wi locus, SBI	de association P systolic bloc	a studies, (CAD coronary, SE standard	y artery l error, S	disease, CHR a	m^{6} 4-SNP N^{6} -methyladenosine-associated single-nucleotide polymorphisms, GWAS genome-wide association studies, CAD coronary artery disease, CHR chromosome, DBP diastolic blood pressure, EA effect allele, EAF effect allele frequency, eQTL expression quantitative locus, SBP systolic blood pressure, SE standard error, SNP single-nucleotide polymorphism ^a Assembly: GRCh37.013	diastolic m
^a Assembly:	^a Assembly: GRCh37.p13			-)	-	-		`	-			0		

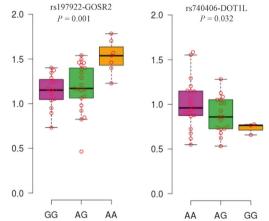

^bWhether the BP association has been replicated in East Asians

°The effect alleles may result in loss or gain of m^6A sites

< 0.05) (Supplementary Tables 1 and 2). The most significant ($P = 1.78 \times 10^{-5}$) m⁶A-SNP for ischemic stroke was rs7398833 in the 3'-untranslated region (UTR) of the *CUX2* gene. For the 33 BP-associated m⁶A-SNPs that passed the genome-wide significance level, rs7398833, rs197922, rs740406, rs8024, rs9847953, rs564449, and rs6066802 were associated with CAD, and rs7398833, rs8024, rs1353776, rs853678, and rs12828755 were associated with ischemic stroke (P < 0.05) (Tables 2 and 3). Among them, rs7398833 in *CUX2* and rs8024 in *IPO9* were associated with both CAD ($P = 1.22 \times 10^{-3}$ and 1.78×10^{-5}) and ischemic stroke ($P = 3.60 \times 10^{-5}$ and 7.03×10^{-3}) with consistent effects, respectively.

Gene expression analysis

To further clarify the possible functional mechanisms underlying the identified m⁶A-SNPs in association with BP. we investigated whether they were associated with the expression levels of local genes. Most of these m⁶A-SNPs were strongly associated with gene expression in cis or trans effects. In total, 359 (217 for SBP and 246 for DBP) of the 1236 BP-associated m⁶A-SNPs (P < 0.05) may have a cis effect on the 339 corresponding genes in different cells or tissues (Supplementary Tables 1 and 2). Some of these 359 m⁶A-SNPs were found in multiple tissues or cells, and 20 of them could be considered *cis*-eQTLs ($P < 5 \times 10^{-8}$) (Tables 2 and 3). These cis-eQTLs are proxies of the sentinel variants in the BP-associated loci (Supplementary Table 3). Fifty-eight of the 359 *cis*-effect m⁶A-SNPs showed associations with CAD, and 33 showed associations with ischemic stroke. The most significant cis-eQTLs for SBP, DBP, CAD, and ischemic stroke were rs56001051


in *Clorf167* ($P = 1.49 \times 10^{-21}$), rs2275155 in *SDCCAG8* ($P = 1.06 \times 10^{-21}$), rs12286 in *ADAMTS7* ($P = 4.50 \times 10^{-9}$), and rs5213 in *KCNJ11* ($P = 2.46 \times 10^{-5}$), respectively.

We noticed that rs56001051 (*Clorf167*), rs197922 (*GOSR2*), rs740406 (*DOT1L*), rs8024 (*IPO9*), rs9847953 (*ZNF589*), rs853678 (*ZSCAN31*), rs12828755 (*PITPNM2*), and rs6066802 (*PREX1*) were significantly associated with BP ($P < 5 \times 10^{-8}$) and *cis*-eQTLs in Europeans and showed evidence of association with BP traits in the East Asian populations or association with CAD or stroke. We tested the relationship between these eight BP-associated m⁶A-SNPs and mRNA expression levels of the corresponding genes in PBMCs from Chinese individuals. We found that rs56001051, rs9847953, rs197922, and rs740406 were associated with *Clorf167* (P = 0.019), *ZNF589* (P = 0.013), *GOSR2* (P = 0.001), and *DOT1L* (P = 0.032) expression levels, respectively (Fig. 1).

Discussion

This study represents the first effort to identify m^6A -SNPs that influence BP by excavating data from large-scale GWAS. We found many m^6A -SNPs that were associated with BP. These m^6A -SNPs (e.g., rs9847953 and rs197922) might be functional variants that have the potential to affect gene expression (e.g., *ZNF589*, *GOSR2*), by which they affect BP.

Delineation of m⁶A-SNPs for BP has the potential to pinpoint this kind of multifunctional SNP as a causal variant. Studies have shown that m⁶A modification plays a pivotal role in the regulation of downstream molecular events, such as nuclear export, stability, translatability,

Fig. 1 Association between top blood pressure (BP)-associated N^6 methyladenosine-associated single-nucleotide polymorphisms (m⁶A-SNPs) and messenger RNA (mRNA) expression levels. The association between m⁶A-SNPs and mRNA expression levels was evaluated in peripheral blood mononuclear cells (PBMCs) of 40 Chinese individuals. The minor allele G carriers of rs56001051 tended to have

higher *Clorf167* gene expression levels. The minor allele G carriers of rs9847953 tended to have higher *ZNF589* gene expression levels. The minor allele A carriers of rs197922 tended to have higher *GOSR2* gene expression levels. The minor allele G carriers of rs740406 tended to have higher *DOT1L* gene expression levels

splicing, and miRNA processing [27]. The m⁶A-SNPs, which were quite close to the methylation sites or were the exact methylation site, would lead to gain or loss of m⁶A methylation sites [16]. Therefore, one of the functional interpretations for the association between m⁶A-SNPs and BP is that the SNPs could influence m⁶A methylation. On the other hand, we noticed that many of the identified m⁶A-SNPs were missense mutations or variants that could influence transcription. Indeed, most of the identified m⁶A-SNPs have the potential to alter the binding of regulatory elements, which may in turn regulate gene expression. The nonsynonymous variants could not only change the encoded amino acids but also influence promoter activity, mRNA stability, and structure, and subcellular localization of proteins [28]. SNPs in UTRs are known to have the ability to alter microRNA or transcription factor binding. Thus, the functional interpretations for the missense and regulatory m⁶A-SNPs should include these well-known inherent attributes. However, although we have identified many BP-associated m⁶A-SNPs and first demonstrated that m⁶A-SNPs may play important roles in BP regulation, to date, how m⁶A affects BP is unclear. The underlying mechanisms still need to be elucidated.

Some of the identified m⁶A-SNPs and genes showed strong associations with BP. For example, the nonsynonymous m⁶A-SNP rs9847953 in ZNF589 has the potential to alter the binding of 32 proteins and a regulatory motif LBP-1 and is located in CpG islands and DNase I hypersensitive sites (Supplementary Fig. 1). ZNF589 protein, also known as stem cell zinc-finger 1 (SZF1), belongs to the large family of Krüppel-associated box domain zinc-finger transcription factors. A recent study has established the role of SZF1/ ZNF589 as a new functional regulator of the hematopoietic system [29]. Data from the Atherosclerosis Risk in Communities study and the Women's Genome Health Study have shown that the missense (Lys67Arg) m⁶A-SNP rs197922 in GOSR2 is associated with hypertension in white individuals [30]. As our analyses showed that rs9847953 and rs197922 were strongly associated with gene expression levels, the identified m⁶A-SNPs may have the potential to regulate BP by altering gene expression. The nonsynonymous m⁶A-SNP rs1801253 in ADRB1 has the ability to alter the binding of proteins ELF1 and MAX and a regulatory motif STAT and is located in CpG islands and DNase I hypersensitive sites (Supplementary Fig. 1). The β_1 adrenergic receptor is crucial in regulating cardiac output and agents by preventing lower blood pressure [31]. The association between rs1801253 (known as Arg389Gly, which was identified in 1999) and hypertension has been well studied [31–33]. This polymorphism and β -blocker treatment duration are independent factors associated with βblocker treatment outcome [34]. The detected BP-associated m⁶A-SNP in 12q24.11 was rs7398833 in the CUX2 gene, while the reported SNP was rs3184504 in *SH2B3* [3]. The *CUX2* gene has been shown to directly regulate the expression of NeuroD and function at multiple levels during spinal cord neurogenesis [35]. The association between rs7398833 and BP has not been reported before, but SNPs in this gene have been shown to be associated with type 1 diabetes [36] and CAD [37]. The present study showed that the rs7398833 C allele may result in the gain of an m⁶A site and may lead to lower SBP and DBP levels and lower risk of CAD and ischemic stroke. The associations between these m⁶A-SNPs and BP were not significant in GWAS-2011. However, as the sample size increased in GWAS-2016 and GWAS-2018, the associations were confirmed. These m⁶A-SNPs and genes should be important candidates for further genetic association and functional studies.

This study has several limitations. First, the sample sizes of BP GWAS from East Asian populations were small, so very few associations between m⁶A-SNPs and BP have been identified. Second, only a very small proportion of m⁶A SNPs were examined in this study (1712 of 313,000). To fully recognize the impact of m⁶A-SNPs on BP regulation, the effects of a large number of m⁶A-SNPs (especially the rare variants) on BP should be evaluated in larger datasets (e.g., sequencing data). Finally, the functionalities of the detected SNPs, especially the effects on m⁶A modification, have not been validated by technical and biological experiments. Further experimental studies are needed to determine their functions, for example, by performing gene editing at the single nucleotide of the SNP and observing the effect on gene expression in cell lines or the effect on BP in animals.

In summary, the present study found many BPassociated m⁶A-SNPs and demonstrated their potential functionalities. This study increased our understanding of the regulation patterns of SNPs and may provide new clues for further detection of the functional mechanism underlying the associations between SNPs and hypertension. Although we found supplementary functional information to support the significant findings, further studies are needed to elucidate the mechanisms.

Acknowledgements The study was supported by the Natural Science Foundation of China (81773508, 81673263), the Key Research Project (Social Development Plan) of Jiangsu Province (BE2016667), the Startup Fund from Soochow University (Q413900313, Q413900412), and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;9455:217–23.
- Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;1:80–5.
- Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;10:1171–84.
- Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;7367:103–9.
- Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;10:1412–25.
- Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;10:1162–70.
- Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;10:1151–61.
- Yu B, Pulit SL, Hwang SJ, Brody JA, Amin N, Auer PL, et al. Rare exome sequence variants in CLCN6 reduce blood pressure levels and hypertension risk. Circ Cardiovasc Genet. 2016;1:64–70.
- Mao F, Xiao L, Li X, Liang J, Teng H, Cai W, et al. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res. 2016;D1:D154–63.
- Wu X, Hurst LD. Determinants of the usage of splice-associated cis-motifs predict the distribution of human pathogenic SNPs. Mol Biol Evol. 2016;2:518–29.
- Ramaswami G, Deng P, Zhang R, Anna Carbone M, Mackay TF, Li JB. Genetic mapping uncovers *cis*-regulatory landscape of RNA editing. Nat Commun. 2015;6:8194.
- Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N⁶methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;5:313–26.
- Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N⁶methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;7481:117–20.
- Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, et al. *N*(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;10:870–8.
- Visvanathan A, Somasundaram K. mRNA traffic control reviewed: N⁶-methyladenosine (m(6) A) takes the driver's seat. BioEssays. 2017;1:1700093.
- Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y. et al. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res. 2018;D1:D139–45.
- Kraja AT, Cook JP, Warren HR, Surendran P, Liu C, Evangelou E, et al. New blood pressure-associated loci identified in meta-analyses of 475 000 individuals. Circ Cardiovasc Genet. 2017;10: e001778.
- Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;3:e1001779.
- Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;4:559–73.

- Liu Z, Qi H, Liu B, Liu K, Wu J, Cao H, et al. Genetic susceptibility to salt-sensitive hypertension in a Han Chinese population: a validation study of candidate genes. Hypertens Res. 2017;10:876–84.
- Yang HC, Liang YJ, Chen JW, Chiang KM, Chung CM, Ho HY, et al. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genomewide gene-based association study. PLoS ONE. 2012;3:e32907.
- Kelly TN, Takeuchi F, Tabara Y, Edwards TL, Kim YJ, Chen P, et al. Genome-wide association study meta-analysis reveals transethnic replication of mean arterial and pulse pressure loci. Hypertension. 2013;5:853–9.
- Lu X, Wang L, Lin X, Huang J, Charles Gu C, He M, et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet. 2015;24:865–74.
- Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;10:1121–30.
- Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;4:524–37.
- Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40: D930–34.
- Visvanathan A, Somasundaram K. mRNA traffic control reviewed: N⁶-methyladenosine (m(6) A) takes the driver's seat. BioEssays . 2018;1:1700093.
- 28. Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3–22.
- Venturini L, Stadler M, Manukjan G, Scherr M, Schlegelberger B, Steinemann D, et al. The stem cell zinc finger 1 (SZF1)/ZNF589 protein has a human-specific evolutionary nucleotide DNA change and acts as a regulator of cell viability in the hematopoietic system. Exp Hematol. 2016;4:257–68.
- Meyer TE, Shiffman D, Morrison AC, Rowland CM, Louie JZ, Bare LA, et al. GOSR2 Lys67Arg is associated with hypertension in whites. Am J Hypertens. 2009;2:163–8.
- Bengtsson K, Melander O, Orho-Melander M, Lindblad U, Ranstam J, Rastam L, et al. Polymorphism in the beta(1)-adrenergic receptor gene and hypertension. Circulation. 2001;2:187–90.
- Kong H, Li X, Zhang S, Guo S, Niu W. The beta1-adrenoreceptor gene Arg389Gly and Ser49Gly polymorphisms and hypertension: a meta-analysis. Mol Biol Rep. 2013;6:4047–53.
- 33. Wang H, Liu J, Liu K, Liu Y, Wang Z, Lou Y, et al. betaladrenoceptor gene Arg389Gly polymorphism and essential hypertension risk in general population: a meta-analysis. Mol Biol Rep. 2013;6:4055–63.
- 34. Wu D, Li G, Deng M, Song W, Huang X, Guo X, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015;3:424–34.
- Iulianella A, Sharma M, Durnin M, Vanden Heuvel GB, Trainor PA. Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis. Development. 2008;4:729–41.
- Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 Genomesbased imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium Phase 1 Data. Eur J Hum Genet. 2012;7:801–5.
- Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, et al. A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 2013;3:120–6.