Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binge drinking affects kidney function, osmotic balance, aldosterone levels, and arterial pressure in adolescent rats: the potential hypotensive effect of selenium mediated by improvements in oxidative balance

Abstract

Binge drinking (BD) during adolescence is related to hypertension. There are, however, few studies concerning the effects of BD on kidney function and osmotic balance in relation to arterial pressure. The mechanism by which BD affects kidney function is related to oxidation and inflammation. Recently, Se, an essential trace element possessing antioxidant properties, has also been shown to be related to renal Na+/K+-ATPase activity. This study examined the protective effects of 0.4 ppm selenite administered to adolescent rats in an intermittent i.p. BD model. BD consumption depleted kidney and serum Se deposits, decreased GPx activity, and increased biomolecule oxidation in these locations. In the kidneys, GPx1, GPx3, GPx4, and NF-κB expression also decreased, coinciding with an increase in caspase-3 expression. BD decreased creatinine clearance and fractional Na+ excretion (EFNa), increased transtubular K+ excretion (TTKG) and serum aldosterone (Aldo) levels, and reduced relative Aldo clearance. These effects led to hypernatremia, low urinary flow, and high systolic blood pressure. Se supplementation to BD rats significantly improved oxidative balance, and kidney GPx, NF-κB, and caspase-3 expression; slightly increased EFNa and slightly decreased TTKG and serum Aldo levels; and greatly increased relative Aldo clearance. Se supplementation did not, however, modify creatinine clearance. In conclusion, BD triggers kidney osmotic and ionic imbalances, which contribute to increasing systolic blood pressure. These disturbances could be related in part to Se and selenoprotein GPxs, which decrease oxidative, inflammatory and apoptotic alterations in the kidneys. Se supplementation prevents these changes, improves ionic disturbances, and decreases serum Aldo levels and systolic blood pressure.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Martinotti G, Lupi M, Carlucci L, Santacroce R, Cinosi E, Acciavatti T, et al. Alcohol drinking patterns in young people: a survey-based study. J Health Psychol. 2017;22:1889–96. https://doi.org/10.1177/1359105316667795.

    Article  PubMed  Google Scholar 

  2. Piano MR, Mazzuco A, Kang M, Phillips SA. Cardiovascular consequences of binge drinking: an integrative review with implications for advocacy, policy, and research. Alcohol Clin Exp Res. 2017;41:487–96. https://doi.org/10.1111/acer.13329.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33. https://doi.org/10.1161/01.HYP.0000052314.95497.78.

    CAS  Article  PubMed  Google Scholar 

  4. González J, Valls N, Brito R, Rodrigo R. Essential hypertension and oxidative stress: new insights. World J Cardiol. 2014;6:353–66. https://doi.org/10.4330/wjc.v6.i6.353.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar SD, Vasudevan DM. Alcohol induced effects on kidney. Indian J Clin Biochem. 2008;23:4–9. Accessed 1 Jun 2018

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matsumoto A, Nagasawa Y, Yamamoto R, Shinzawa M, Hasuike Y, Kuragano T, et al. The association of alcohol and smoking with CKD in a Japanese nationwide cross-sectional survey. Hypertens Res. 2017;40:771–8. https://doi.org/10.1038/hr.2017.25.

    Article  PubMed  Google Scholar 

  7. Dinu D, Nechifor MT, Movileanu L. Ethanol-induced alterations of the antioxidant defense system in rat kidney. J Biochem Mol Toxicol. 2006;19:386–95. https://doi.org/10.1002/jbt.20101.

    CAS  Article  Google Scholar 

  8. Rodrigo R, Thielemann L, Olea M, Muñoz P, Cereceda M, Orellana M. Effect of ethanol ingestion on renal regulation of water and electrolytes. Arch Med Res. 1998;29:209–18. http://www.ncbi.nlm.nih.gov/pubmed/9775453 Accessed 1 Jun 2018

    CAS  PubMed  Google Scholar 

  9. Amet Y, Plée-Gautier E, Berthou F, Adas F, French SW. Adaptation to chronic ethanol administration emphasized by fatty acid hydroxylations in rat liver and kidney microsomes. Eur J Nutr. 2000;39:270–6. http://www.ncbi.nlm.nih.gov/pubmed/11395987 Accessed 1 Jun 2018

    CAS  Article  PubMed  Google Scholar 

  10. Rodrigo R, Rivera G. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med. 2002;33:409–22. http://www.ncbi.nlm.nih.gov/pubmed/12126763 Accessed 1 Jun 2018

    CAS  Article  PubMed  Google Scholar 

  11. Assadi FK. Acute effect of ethanol on renal electrolyte excretion in rats. Alcohol. 2018;6:257–60. http://www.ncbi.nlm.nih.gov/pubmed/2660849 Accessed 1 Jun 2018

    Article  Google Scholar 

  12. Kim H-N, Kim S-H, Song S-W. Is alcohol drinking associated with renal impairment in the general population of South Korea? Kidney Blood Press Res. 2014;39:40–49. https://doi.org/10.1159/000355775.

    CAS  Article  PubMed  Google Scholar 

  13. Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 2017;8. https://doi.org/10.3389/fphys.2017.00600.

  14. Carreras O, Ojeda ML, Nogales F. Chapter 11 – Selenium dietary supplementation and oxidative balance in alcoholism. In: Molecular aspects of alcohol and nutrition. 2016. p. 133–42. https://doi.org/10.1016/B978-0-12-800773-0.00011-2.

    Chapter  Google Scholar 

  15. Ojeda ML, Rua RM, Murillo ML, Carreras O, Nogales F. Binge drinking during adolescence disrupts se homeostasis and its main hepatic selenoprotein expression. Alcohol Clin Exp Res. 2015;39:818–26 https://doi.org/10.1111/acer.12707.

    CAS  Article  Google Scholar 

  16. Ojeda ML, Carreras O, Sobrino P, Murillo ML, Nogales F. Biological implications of selenium in adolescent rats exposed to binge drinking: oxidative, immunologic and apoptotic balance. Toxicol Appl Pharmacol. 2017;329:165–72. https://doi.org/10.1016/j.taap.2017.05.037.

    CAS  Article  PubMed  Google Scholar 

  17. Burk RF, Olson GE, Winfrey VP, Hill KE, Yin D. Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. Am J Physiol Liver Physiol. 2011;301:G32–G38. https://doi.org/10.1152/ajpgi.00064.2011.

    CAS  Article  Google Scholar 

  18. Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, Austin LM, et al. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Ren Physiol. 2010;298:F1244–53. https://doi.org/10.1152/ajprenal.00662.2009.

    CAS  Article  Google Scholar 

  19. Hoffmann PR, Hoge SC, Li P-A, Hoffmann FW, Hashimoto AC, Berry MJ. The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res. 2007;35:3963–73. https://doi.org/10.1093/nar/gkm355.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Brigelius-Flohé R, Flohé L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48–59. https://doi.org/10.1016/j.abb.2016.08.003.

    CAS  Article  PubMed  Google Scholar 

  21. Ojeda ML, Nogales F, Murillo ML, Carreras O. Selenium or selenium plus folic acid-supplemented diets ameliorate renal oxidation in ethanol-exposed pups. Alcohol Clin Exp Res. 2012;36:404–12. https://doi.org/10.1111/j.1530-0277.2012.01788.x.

    CAS  Article  Google Scholar 

  22. Ozkol H, Bulut G, Balahoroglu R, Tuluce Y, Ozkol HU. Protective effects of selenium, N-acetylcysteine and vitamin E against acute ethanol intoxication in rats. Biol Trace Elem Res. 2017;175:177–85. https://doi.org/10.1007/s12011-016-0762-8.

    CAS  Article  PubMed  Google Scholar 

  23. Spear L. Modeling adolescent development and alcohol use in animals. Alcohol Res Health. 2000;24:115–23. http://www.ncbi.nlm.nih.gov/pubmed/11199278 Accessed 19 Jun 2018

    CAS  PubMed  PubMed Central  Google Scholar 

  24. National Institute on Alcohol Abuse and Alcoholism. NIAAA council approves definition of binge drinking. NIAAA Newsletter. 2004;3:3.

  25. Nogales F, Rua RM, Ojeda ML, Murillo ML, Carreras O. Oral or intraperitoneal binge drinking and oxidative balance in adolescent rats. Chem Res Toxicol. 2014;27:1926–33. https://doi.org/10.1021/tx5002628.

    CAS  Article  PubMed  Google Scholar 

  26. Ojeda ML, Nogales F, Vázquez B, Delgado MJ, Murillo ML, Carreras O. Pharmacology and cell metabolism: alcohol, gestation and breastfeeding: selenium as an antioxidant therapy. Alcohol Alcohol. 2009;44:272–7. https://doi.org/10.1093/alcalc/agp004.

    CAS  Article  PubMed  Google Scholar 

  27. Sindhu RK, Ehdaie A, Farmand F, Dhaliwal KK, Nguyen T, Zhan CD, et al. Expression of catalase and glutathione peroxidase in renal insufficiency. Biochim Biophys Acta. 2005;1743:86–92. https://doi.org/10.1016/j.bbamcr.2004.08.013.

    CAS  Article  PubMed  Google Scholar 

  28. Vaziri ND, Lin C-Y, Farmand F, Sindhu RK. Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int. 2003;63:186–94. https://doi.org/10.1046/j.1523-1755.2003.00711.x.

    CAS  Article  PubMed  Google Scholar 

  29. Knopp EA, Arndt TL, Eng KL, Caldwell M, LeBoeuf RC, Deeb SS, et al. Murine phospholipid hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping. Mamm Genome. 1999;10:601–5. http://www.ncbi.nlm.nih.gov/pubmed/10341094 Accessed 1 Jun 2018

    CAS  Article  PubMed  Google Scholar 

  30. Liang H, Yoo S-E, Na R, Walter CA, Richardson A, Ran Q. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem. 2009;284:30836–44. https://doi.org/10.1074/jbc.M109.032839.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Wullaert A, van Loo G, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev. 2007;28:365–86. https://doi.org/10.1210/er.2006-0031.

    CAS  Article  PubMed  Google Scholar 

  32. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96. https://doi.org/10.1016/j.cell.2004.07.013.

    CAS  Article  PubMed  Google Scholar 

  33. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J. 2000;351(Pt 1):183–93. http://www.ncbi.nlm.nih.gov/pubmed/10998361. Accessed 1 Jun 2018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Lu X-Y, Liu B-C, Wang L-H, Yang LL, Bao Q, Zhai YJ, et al. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes. Biochim Biophys Acta. 2015;1853:965–74. https://doi.org/10.1016/j.bbamcr.2015.01.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Huang H, You Y, Lin X, Tang C, Gu X, Huang M, et al. Inhibition of TRPC6 signal pathway alleviates podocyte injury induced by TGF-β1. Cell Physiol Biochem. 2017;41:163–72. https://doi.org/10.1159/000455985.

    CAS  Article  PubMed  Google Scholar 

  36. Latchoumycandane C, Nagy LE, McIntyre TM. Chronic ethanol ingestion induces oxidative kidney injury through taurine-inhibitable inflammation. Free Radic Biol Med. 2014;69:403–16. https://doi.org/10.1016/j.freeradbiomed.2014.01.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Latchoumycandane C, Nagy LE, McIntyre TM. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption. Free Radic Biol Med. 2015;86:179–90. https://doi.org/10.1016/j.freeradbiomed.2015.05.020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Godino A, Abate P, Amigone JL, Vivas L, Molina JC. Prenatal binge-like alcohol exposure alters brain and systemic responses to reach sodium and water balance. Neuroscience. 2015;311:92–104. https://doi.org/10.1016/j.neuroscience.2015.10.004.

    CAS  Article  PubMed  Google Scholar 

  39. Willey AR, Anderson RI, Morales M, Ramirez RL, Spear LP. Effects of ethanol administration on corticosterone levels in adolescent and adult rats. Alcohol. 2012;46:29–36. https://doi.org/10.1016/j.alcohol.2011.08.005.

    CAS  Article  PubMed  Google Scholar 

  40. Rodrigo R, Trujillo S, Bosco C, Orellana M, Thielemann L, Araya J. Changes in (Na+K)-adenosine triphosphatase activity and ultrastructure of lung and kidney associated with oxidative stress induced by acute ethanol intoxication. Chest. 2002;121:589–96. http://www.ncbi.nlm.nih.gov/pubmed/11834676 Accessed 1 Jun 2018

    CAS  Article  PubMed  Google Scholar 

  41. Barrero MJ, Ojeda ML, Díaz Castro J, Nogales F, Murillo ML, Carreras O. The effects of ethanol upon hydric balance and arterial pressure in rats: folic acid as a possible hypotensor. Life Sci. 2012;90:337–42. https://doi.org/10.1016/j.lfs.2011.12.008.

    CAS  Article  PubMed  Google Scholar 

  42. Ojeda L, Nogales F, Murillo L, Carreras O. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review. Biochem Cell Biol. 2018;96:178–188. https://doi.org/10.1139/bcb-2017-0069.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grants from the Andalusian Regional Government supporting the CTS-193 research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Ojeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sobrino, P., Ojeda, M., Nogales, F. et al. Binge drinking affects kidney function, osmotic balance, aldosterone levels, and arterial pressure in adolescent rats: the potential hypotensive effect of selenium mediated by improvements in oxidative balance. Hypertens Res 42, 1495–1506 (2019). https://doi.org/10.1038/s41440-019-0265-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0265-z

Keywords

  • Binge drinking
  • Systolic blood pressure
  • Kidney functions
  • Selenium
  • Glutathione peroxidase

Search

Quick links