Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic modification: a regulatory mechanism in essential hypertension

Abstract

Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al., American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

  3. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.

    Article  CAS  PubMed  Google Scholar 

  4. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of bloodpressure variability. Nat Rev Cardiol. 2013;10:143–55.

    Article  PubMed  Google Scholar 

  5. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    Article  CAS  PubMed  Google Scholar 

  6. Martinez-Aguayo A, Fardella C. Genetics of hypertensive syndrome. Horm Res. 2009;71:253–9.

    CAS  PubMed  Google Scholar 

  7. Franceschini N, Le TH. Genetics of hypertension: discoveries from the bench to human populations. Am J Physiol Ren Physiol. 2014;306:F1–11.

    Article  CAS  Google Scholar 

  8. Morgado J, Sanches B, Anjos R, Coelho C. Programming of essential hypertension: what pediatric cardiologists need to know. Pediatr Cardiol. 2015;36:1327–37.

    Article  PubMed  Google Scholar 

  9. Griffin KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70:687–94.

    Article  CAS  PubMed  Google Scholar 

  10. Gasecki D, Kwarciany M, Nyka W, Narkiewicz K. Hypertension, brain damage and cognitive decline. Curr Hypertens Rep. 2013;15:547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112:1365–79.

    Article  CAS  PubMed  Google Scholar 

  12. Timberlake DS, O'Connor DT, Parmer RJ. Molecular genetics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens. 2001;10:71–9.

    Article  CAS  PubMed  Google Scholar 

  13. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genomewide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelly TN, Takeuchi F, Tabara Y, Edwards TL, Kim YJ, Chen P et al. Genome-wide association study meta-analysis reveals transethnic replication of mean arterial and pulse pressure loci. Hypertension. 2013;62:853–9.

    Article  CAS  PubMed  Google Scholar 

  17. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loscalzo J, Handy DE Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm Circ. 2014; 4:169–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wise IA, Charchar FJ. Epigenetic modifications in essential hypertension. Int J Mol Sci. 2016;17:451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lopez-Jaramillo P, Camacho PA, Forero-Naranjo L. The role of environment and epigenetics in hypertension. Expert Rev Cardiovasc Ther. 2013;11:1455–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47:1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens KE, Miaskowski CA, Levine JD, Pullinger CR, Aouizerat BE. Epigenetic regulation and measurement of epigenetic changes. Biol Res Nurs. 2013;15:373–81.

    Article  CAS  PubMed  Google Scholar 

  23. Raftopoulos L, Katsi V, Makris T, Tousoulis D, Stefanadis C, Kallikazaros I. Epigenetics, the missing link in hypertension. Life Sci. 2015;129:22–6.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Snieder H. Genome-wide association studies and beyond: what's next in blood pressure genetics? Hypertension. 2010;56:1035–7.

    Article  CAS  PubMed  Google Scholar 

  25. Fagard RH. Exercise is good for your blood pressure: effects of endurance training and resistance training. Clin Exp Pharmacol Physiol. 2006;33:853–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ash GI, Eicher JD, Pescatello LS. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: the 2013 update. Curr Hypertens Rev. 2013;9:130–47.

    Article  CAS  PubMed  Google Scholar 

  27. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2:e405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Abbott A. Project set to map marks on genome. Nature. 2010;463:596–7.

    Article  PubMed  Google Scholar 

  29. Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA. 2008;299:1345–50.

    Article  CAS  PubMed  Google Scholar 

  30. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Millis RM. Epigenetics and hypertension. Curr Hypertens Rep. 2011;13:21–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem. 2001;268:1–6.

    Article  CAS  PubMed  Google Scholar 

  33. Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 2003;22:6335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics. 2011;6:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riviere G, Lienhard D, Andrieu T, Vieau D, Frey BM, Frey FJ. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics. 2011;6:478–89.

    Article  CAS  PubMed  Google Scholar 

  36. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.

    Article  CAS  PubMed  Google Scholar 

  37. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–13.

    Article  CAS  PubMed  Google Scholar 

  38. Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet. 2010;3:567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Asp Med. 2013;34:883–901.

    Article  CAS  Google Scholar 

  40. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010;5:e15367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones PA. The DNA methylation paradox. Trends Genet. 1999;15:34–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32:4100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Branco MR, Ficz G, Reik W. Uncovering the role of 5-ydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13:7–13.

    Article  PubMed  CAS  Google Scholar 

  45. Song CX, Yi C, He C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol. 2012;30:1107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Liu P, Yang C, Cowley AW Jr., Liang M. Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence. Hypertension. 2014;63:827–38.

    Article  CAS  PubMed  Google Scholar 

  47. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16:CR149–55.

    CAS  PubMed  Google Scholar 

  48. Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30:79–84.

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Falkner B, Zhu H, Shi H, Su S, Xu X et al. A genome-wide methylation study on essential hypertension in young African American males. PLoS ONE. 2013;8:e53938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Assadi F. Relation of left ventricular hypertrophy to microalbuminuria and Creactive protein in children and adolescents with essential hypertension. Pediatr Cardiol. 2008;29:580–4.

    Article  PubMed  Google Scholar 

  51. Stenzig J, Schneeberger Y, Loser A, Peters BS, Schaefer A, Zhao RR et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 2018;120:53–63.

    Article  CAS  PubMed  Google Scholar 

  52. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol. 2007;213:384–90.

    Article  CAS  PubMed  Google Scholar 

  53. Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y et al. Wholegenome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol. 2014;15:R49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X et al. Selective chemical labeling reveals the genome-wide distribution of 5- hydroxymethylcytosine. Nat Biotechnol. 2011;29:68–72.

    Article  CAS  PubMed  Google Scholar 

  57. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.

    Article  CAS  PubMed  Google Scholar 

  58. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–70.

    Article  CAS  PubMed  Google Scholar 

  59. Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM et al. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension. 2013;62:572–8.

    Article  CAS  PubMed  Google Scholar 

  60. Fardella CE, Mosso L, Gomez-Sanchez C, Cortes P, Soto J, Gomez L et al. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinol Metab. 2000;85:1863–7.

    CAS  PubMed  Google Scholar 

  61. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;199:323–7.

    Article  CAS  PubMed  Google Scholar 

  62. Baserga M, Kaur R, Hale MA, Bares A, Yu X, Callaway CW et al. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehydrogenase type 2 in a sexspecific manner. Am J Physiol Regul Integr Comp Physiol. 2010;299:R334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Y, Gong X, Chen L, Li L, Liang Y, Chen S et al. Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet. 2014;22:734–40.

    Article  CAS  PubMed  Google Scholar 

  64. Takeda Y, Demura M, Wang F, Karashima S, Yoneda T, Kometani M et al. Epigenetic regulation of aldosterone synthase gene by sodium and angiotensin II. J Am Heart Assoc. 2018;7:e008281.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Lee HA, Baek I, Seok YM, Yang E, Cho HM, Lee DY et al. Promoter hypomethylation upregulates Na+-K+-2Cl- cotransporter 1 in spontaneously hypertensive rats. Biochem Biophys Res Commun. 2010;396:252–7.

    Article  CAS  PubMed  Google Scholar 

  66. Cho HM, Lee HA, Kim HY, Han HS, Kim IK. Expression of Na + -K + -2Clcotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens. 2011;24:1286–93.

    Article  CAS  PubMed  Google Scholar 

  67. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006;7:3–14.

    Article  CAS  PubMed  Google Scholar 

  68. Wang F, Demura M, Cheng Y, Zhu A, Karashima S, Yoneda T et al. Dynamic CCAAT/enhancer binding protein-associated changes of DNA methylation in the angiotensinogen gene. Hypertension. 2014;63:281–8.

    Article  CAS  PubMed  Google Scholar 

  69. Calhoun DA. Aldosterone and cardiovascular disease: smoke and fire. Circulation. 2006;114:2572–4.

    Article  PubMed  Google Scholar 

  70. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan R, Mao SQ, Gu TL, Zhong FD, Gong ML, Hao LM et al. Preliminary analysis of the association between methylation of the ACE2 promoter and essential hypertension. Mol Med Rep. 2017;15:3905–11.

    Article  CAS  PubMed  Google Scholar 

  72. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17:227–38.

    Article  PubMed  CAS  Google Scholar 

  73. Litwin M, Michalkiewicz J, Trojanek J, Niemirska A, Wierzbicka A, Szalecki M. Altered genes profile of renin-angiotensin system, immune system, and adipokines receptors in leukocytes of children with primary hypertension. Hypertension. 2013;61:431–6.

    Article  CAS  PubMed  Google Scholar 

  74. Fan R, Mao S, Zhong F, Gong M, Yin F, Hao L et al. Association of AGTR1 promoter methylation levels with essential hypertension risk: a matched case- control study. Cytogenet Genome Res. 2015;147:95–102.

    Article  PubMed  CAS  Google Scholar 

  75. Lin J, Lin S, Wu Y, Wang X, Wu S, Li H. Hypomethylation of the angiotensin II type I receptor (AGTR1) gene along with environmental factors increases the risk for essential hypertension. Cardiology. 2017;137:126–35.

    Article  CAS  PubMed  Google Scholar 

  76. Pei F, Wang X, Yue R, Chen C, Huang J, Huang J et al. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochem. 2015;402:1–8.

    Article  CAS  PubMed  Google Scholar 

  77. den Ouden DT, Meinders AE. Vasopressin: physiology and clinical use in patients with vasodilatory shock: a review. Neth J Med. 2005;63:4–13.

    Google Scholar 

  78. Auger CJ, Coss D, Auger AP, Forbes-Lorman RM. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc Natl Acad Sci USA. 2011;108:4242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JF, Murphy D. Epigenetic control of the vasopressin promoter explains physiological ability to regulate vasopressin transcription in dehydration and salt loading states in the rat. J Neuroendocrinol. 2016;28:4.

    Article  CAS  Google Scholar 

  80. Cowley AW, Jr. Cushman WC, Quillen EW, Jr. Skelton MM, Langford HG. Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake. Hypertension. 1981;3(3 Pt 2):I93–100.

    PubMed  Google Scholar 

  81. Morton JJ, Padfield PL. Vasopressin and hypertension in man. J Cardiovasc Pharmacol. 1986;8 Suppl 7:S101–6.

    Article  CAS  PubMed  Google Scholar 

  82. Mao SQ, Fan R, Gu TL, Zhong QL, Gong ML, Dong CZ et al. Hypermethylation of SCNN1A gene-body increases the risk of essential hypertension. Int J Clin Exp Pathol. 2016;9:8047–56.

    CAS  Google Scholar 

  83. Zhong Q, Liu C, Fan R, Duan S, Xu X, Zhao J et al. Association of SCNN1B promoter methylation with essential hypertension. Mol Med Rep. 2016;14:5422–8.

    Article  CAS  PubMed  Google Scholar 

  84. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  85. Cirino G, Fiorucci S, Sessa WC. Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends Pharmacol Sci. 2003;24:91–5.

    Article  CAS  PubMed  Google Scholar 

  86. Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens. 2015;33:1128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao L, Chalupsky K, Stefani E, Cai H. Mechanistic insights into folic aciddependent vascular protection: Dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. J Mol Cell Cardiol. 2009;47:752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan Y, Fish JE, D'Abreo C, Lin S, Robb GB, Teichert AM et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 2004;279:35087–100.

    Article  CAS  PubMed  Google Scholar 

  89. Iravanian S, Dudley SC, Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm. 2008;5 Suppl 6:S12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res. 2005;97:629–36.

    Article  CAS  PubMed  Google Scholar 

  91. Dasgupta C, Chen M, Zhang H, Yang S, Zhang L. Chronic hypoxia duringgestation causes epigenetic repression of the estrogen receptor-alpha gene in ovine uterine arteries via heightened promoter methylation. Hypertension. 2012;60:697–704.

    Article  CAS  PubMed  Google Scholar 

  92. Meems LM, Mahmud H, Buikema H, Tost J, Michel S, Takens J et al. Parental vitamin D deficiency during pregnancy is associated with increased blood pressure in offspring via Panx1 hypermethylation. Am J Physiol Heart Circ Physiol. 2016;311:H1459–69.

    Article  PubMed  Google Scholar 

  93. Mannelli M, Pupilli C, Lanzillotti R, Ianni L, Serio M. Catecholamines and blood pressure regulation. Horm Res. 1990;34:156–60.

    Article  CAS  PubMed  Google Scholar 

  94. Esler M, Eikelis N, Schlaich M, Lambert G, Alvarenga M, Kaye D et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann N Y Acad Sci. 2008;1148:338–48.

    Article  CAS  PubMed  Google Scholar 

  95. Higuchi T, Kanzaki H, Nakayama H, Fujimoto M, Hatayama H, Kojima K et al. Induction of tissue inhibitor of metalloproteinase 3 gene expression during in vitro decidualization of human endometrial stromal cells. Endocrinology. 1995;136:4973–81.

    Article  CAS  PubMed  Google Scholar 

  96. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J et al. Expressional and epigenetic alterations of placental serine protease inhibitors—SERPINA3 is a potential marker of preeclampsia. Hypertension. 2007;49:76–83.

    Article  CAS  PubMed  Google Scholar 

  97. Gascoin-Lachambre G, Buffat C, Rebourcet R, Chelbi ST, Rigourd V, Mondon F et al. Cullins in human intrauterine growth restriction: expressional and epigenetic alterations. Placenta. 2010;31:151–7.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang LN, Liu PP, Wang L, Yuan F, Xu L, Xin Y et al. Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS ONE. 2013;8:e63455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bayoumy NMK, El-Shabrawi MM, Leheta OF, Omar HH. alpha-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin Exp Hypertens. 2017;39:764–8.

    Article  CAS  PubMed  Google Scholar 

  100. Jin F, Li X, Wang Z, Liu Y, Liu J, Sun D et al. Association of mitofusin 2 methylation and essential hypertension: a case-control study in a Chinese population. Hypertens Res. 2018;41:605–13.

    Article  CAS  PubMed  Google Scholar 

  101. Mao SQ, Sun JH, Gu TL, Zhu FB, Yin FY, Zhang LN. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J Hum Hypertens. 2017;31:530–6.

    Article  CAS  PubMed  Google Scholar 

  102. Mao S, Gu T, Zhong F, Fan R, Zhu F, Ren P et al. Hypomethylation of the Toll-like receptor-2 gene increases the risk of essential hypertension. Mol Med Rep. 2017;16:964–70.

    Article  CAS  PubMed  Google Scholar 

  103. Bao XJ, Mao SQ, Gu TL, Zheng SY, Zhao JS, Zhang LN. Hypomethylation of the interferon gamma gene as a potential risk factor for essential hypertension: a case-control study. Tohoku J Exp Med. 2018;244:283–90.

    Article  CAS  PubMed  Google Scholar 

  104. Fan R, Wang WJ, Zhong QL, Duan SW, Xu XT, Hao LM et al. Aberrant methylation of the GCK gene body is associated with the risk of essential hypertension. Mol Med Rep. 2015;12:2390–4.

    Article  CAS  PubMed  Google Scholar 

  105. Rodriguez-Iturbe B. Arteriolar remodeling in essential hypertension: are connective tissue growth factor and transforming growth factor involved? Kidney Int. 2006;69:1104–5.

    Article  CAS  PubMed  Google Scholar 

  106. Irmak MK, Sizlan A. Essential hypertension seems to result from melatonininduced epigenetic modifications in area postrema. Med Hypotheses. 2006;66:1000–7.

    Article  CAS  PubMed  Google Scholar 

  107. Pojoga LH, Williams JS, Yao TM, Kumar A, Raffetto JD, do Nascimento GRA et al. Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension. Am J Physiol-Heart Circ Physiol. 2011;301:H1862–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci USA. 2013;110:20164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Samavat S, Ahmadpoor P, Samadian F. Aldosterone, hypertension, and beyond. Iran J Kidney Dis. 2011;5:71–6.

    PubMed  Google Scholar 

  110. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76:75–100.

    Article  CAS  PubMed  Google Scholar 

  111. Frias-Lasserre D, Villagra CA. The Importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol. 2017;8:2483.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tabuchi TM, Rechtsteiner A, Jeffers TE, Egelhofer TA, Murphy CT, Strome S. Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat Commun. 2018;9:4310.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Lee HA, Cho HM, Lee DY, Kim KC, Han HS, Kim IK. Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications. Hypertension. 2012;59:621–6.

    Article  CAS  PubMed  Google Scholar 

  114. Wang J, Yin N, Deng Y, Wei Y, Huang Y, Pu X et al. Ascorbic acid protects against hypertension through downregulation of ACE1 gene expression mediated by histone deacetylation in prenatal inflammation-induced offspring. Sci Rep. 2016;6:39469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fish JE, Matouk CC, Rachlis A, Lin S, Tai SC, D'Abreo C et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005;280:24824–38.

    Article  CAS  PubMed  Google Scholar 

  116. Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na(+)-K(+)-2Cl(-) cotransporter 1 via histone modification in the aortas of angiotensin IIinduced hypertensive rats. Hypertens Res. 2012;35:819–24.

    Article  CAS  PubMed  Google Scholar 

  117. Duarte JD, Zineh I, Burkley B, Gong Y, Langaee TY, Turner ST et al. Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide. J Transl Med. 2012;10:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang D, Yu ZY, Cruz P, Kong Q, Li S, Kone BC. Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney Int. 2009;75:260–7.

    Article  CAS  PubMed  Google Scholar 

  119. Mehrotra A, Joe B, de la Serna IL. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J Cell Physiol. 2013;228:2337–42.

    Article  CAS  PubMed  Google Scholar 

  120. Guild SJ, Eppel GA, Malpas SC, Rajapakse NW, Stewart A, Evans RG. Regional responsiveness of renal perfusion to activation of the renal nerves. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1177–86.

    Article  PubMed  Google Scholar 

  121. DiBona GF. Physiology in perspective: the Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289:R633–41.

    Article  CAS  PubMed  Google Scholar 

  122. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR et al. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet. 2006;38:1124–32.

    Article  CAS  PubMed  Google Scholar 

  123. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F et al. Epigenetic modulation of the renal betaadrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80.

    Article  CAS  PubMed  Google Scholar 

  124. Acres OW, Satou R, Navar LG, Kobori H. Contribution of a nuclear factor-kappaB binding site to human angiotensinogen promoter activity in renal proximal tubular cells. Hypertension. 2011;57:608–13.

    Article  CAS  PubMed  Google Scholar 

  125. Li C, Li Y, Li Y, Liu H, Sun Z, Lu J et al. Glucocorticoid repression of human with-no-lysine (K) kinase-4 gene expression is mediated by the negative response elements in the promoter. J Mol Endocrinol. 2008;40:3–12.

    Article  CAS  PubMed  Google Scholar 

  126. Abrahams JM, Lenart CJ, Tobias ME. Temporal variation of induction neurogenesis in a rat model of transient middle cerebral artery occlusion. Neurol Res. 2009;31:528–33.

    Article  PubMed  Google Scholar 

  127. Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol. 2014;25:1148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Akechi T, Momino K, Yamashita T, Fujita T, Hayashi H, Tsunoda N et al. Contribution of problem-solving skills to fear of recurrence in breast cancer survivors. Breast Cancer Res Treat. 2014;145:205–10.

    Article  PubMed  Google Scholar 

  129. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  130. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. 2008;410:9–17.

    Article  CAS  PubMed  Google Scholar 

  131. Morris KV. siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci. 2005;62:3057–66.

    Article  CAS  PubMed  Google Scholar 

  132. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    Article  CAS  PubMed  Google Scholar 

  133. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A et al. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl). 2017;95:1369–85.

    Article  CAS  Google Scholar 

  135. Nguyen Dinh Cat A, Ouvrard-Pascaud A, Tronche F, Clemessy M, Gonzalez- Nunez D, Farman N et al. Conditional transgenic mice for studying the role of the glucocorticoid receptor in the renal collecting duct. Endocrinology. 2009;150:2202–10.

    Article  PubMed  CAS  Google Scholar 

  136. Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology. 2008;149:2477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res. 2018;41:649–61.

    Article  CAS  PubMed  Google Scholar 

  138. Cheng W, Liu T, Jiang F, Liu C, Zhao X, Gao Y et al. microRNA-155 regulates angiotensin II type 1 receptor expression in umbilical vein endothelial cells from severely pre-eclamptic pregnant women. Int J Mol Med. 2011;27:393–9.

    CAS  PubMed  Google Scholar 

  139. Marques FZ, Campain AE, Tomaszewski M, Zukowska-Szczechowska E, Yang YH, Charchar FJ et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8.

    Article  CAS  PubMed  Google Scholar 

  140. Sober S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun. 2010;391:727–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jackson KL, Marques FZ, Watson AMD, Palma-Rigo K, Nguyen-Huu TP, Morris BJ et al. A novel interaction between. sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62:775–81.

    Article  CAS  PubMed  Google Scholar 

  142. Di Castro S, Scarpino S, Marchitti S, Bianchi F, Stanzione R, Cotugno M et al. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension. 2013;61:534–41.

    Article  PubMed  CAS  Google Scholar 

  143. Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the beta1 and beta3-adrenoreceptor pathways. J Mol Cell Cardiol. 2013;65:127–36.

    Article  CAS  PubMed  Google Scholar 

  144. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28:510–6.

    Article  CAS  PubMed  Google Scholar 

  145. Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Investig. 2013;123:3378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009;200:661 e661–7.

    Article  CAS  Google Scholar 

  147. Wang G, Wu L, Chen Z, Sun J. Identification of crucial miRNAs and the targets in renal cortex of hypertensive patients by expression profiles. Ren Fail. 2017;39:92–9.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang X, Wang X, Wu J, Peng J, Deng X, Shen Y et al. The diagnostic values of circulating microRNAs for hypertension and bioinformatic analysis. Biosci Rep. 2018;38. pii: BSR20180525 https://www.ncbi.nlm.nih.gov/pubmed/29961674.

  149. Khaliq OP, Murugesan S, Moodley J, Mackraj I. Differential expression of miRNAs are associated with the insulin signaling pathway in preeclampsia and gestational hypertension. Clin Exp Hypertens. 2018;40:744–751. https://www.ncbi.nlm.nih.gov/pubmed/29381395.

    Article  CAS  PubMed  Google Scholar 

  150. Yi F, Hao Y, Chong X, Zhong W. Overexpression of microRNA-506-3p aggravates the injury of vascular endothelial cells in patients with hypertension by downregulating Beclin1 expression. Exp Ther Med. 2018;15:2844–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Krishnan R, Mani P, Sivakumar P, Gopinath V, Sekar D. Expression and methylation of circulating microRNA-510 in essential hypertension. Hypertens Res. 2017;40:361–3.

    Article  CAS  PubMed  Google Scholar 

  152. Liao J, Zhang Y, Ye F, Zhang L, Chen Y, Zeng F et al. Epigenetic regulation of L-type voltage-gated Ca(2+) channels in mesenteric arteries of aging hypertensive rats. Hypertens Res. 2017;40:441–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EMU, LJM, and RCB were supported by AHA SFRN23680000 and NIH UL1 TR001425 (CTSA). MA was a postdoctoral fellowship recipient of the AHA SFRN23680000. SS was supported by NIH National Heart, Lung, and Blood grants, including R01HL130356 and R01HL105826, and the American Heart Association (AHA) Midwest Affiliate Research Programs, including Cardiovascular Genome-Phenome Study 15CVGPSD27020012 and Catalyst 17CCRG33671128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Urbina.

Ethics declarations

Conflict of interest

SS provides consulting services to AstraZeneca and Amgen unrelated to the content of this manuscript. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Sadayappan, S., Becker, R.C. et al. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 42, 1099–1113 (2019). https://doi.org/10.1038/s41440-019-0248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0248-0

Keywords

  • Epigenetic
  • Hypertension
  • Methylation
  • MicroRNA

This article is cited by

Search

Quick links