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Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of
PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing
evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are
two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked
deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In
this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and
discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular
functions and participate in the development of PE.
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Introduction

Pre-eclampsia (PE) is a pregnancy-specific syndrome of
gestational hypertension that complicates 3–5% of preg-
nancies worldwide [1]. PE is associated with multi-organ
damage and is lethal to both gravidas and newborns if
improperly addressed. The etiology of PE remains incom-
pletely understood and is probably heterogeneous. Placental
dysfunction, including inadequate cytotrophoblast migra-
tion and invasion, poor vascular remodeling of the uterine
spiral arteries, and placental hypoperfusion, are believed to
be central to the development of PE [2]. Placenta hypo-
perfusion and the associated ischemia–reperfusion (I/R)
injury stimulate the placenta to release soluble anti-
angiogenic factors such as soluble fms-like tyrosine kinase
1 (sFlt-1) and soluble endoglin (sEng), causing widespread

maternal vascular endothelial dysfunction and vasocon-
striction through the nitric oxide (NO)- and endothelin-1
dependent pathways [1, 3]. In addition, early abnormal
immune activity in the placenta may impact cytotrophoblast
migration and invasion, and subsequent chronic systemic
inflammation in the mother may also contribute to the
genesis of PE [4, 5]. Therefore, PE is likely a multifactorial
syndrome caused by alterations in multiple regulatory
pathways at different anatomical sites. Understanding the
molecular events underlying the pathology is essential for
developing preventative and therapeutic approaches for PE.

The Apelin receptor APJ (also known as APLNR or
AGTRL1), is a Class A G protein-coupled receptor (GPCR)
[6]. APJ receptor signaling is an important regulator of
blood pressure, angiogenesis, cardiovascular function, fluid
homeostasis, energy metabolism, cell proliferation/migra-
tion, apoptosis, oxidative stress, and inflammation [7–10].
A recent study revealed that the APJ system also plays a
critical role in the development of PE. Deletion of Elabela
(also known as Apela or Toddler), a ligand for the APJ
receptor, triggers PE-like symptoms such as hypertension
and proteinuria in mouse, and ELABELA administration
could relieve these symptoms [11]. However, the specific
mechanism through which the APJ system leads to PE is
unknown. In this review, we summarize the latest studies on
the functions of the APJ system in cardiovascular system
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and discuss the potential mechanism through which the APJ
system contributes to the development of PE.

Function of APELIN-APJ signaling in cardiovascular
system

Activation of APELIN receptor can inhibit forskolin-
stimulated cAMP production, and its activation is sensi-
tive to pertussis toxin, indicating that APJ is coupled to
inhibitory G proteins (Gi) [12]. The human APJ protein
consists of 380 amino acid residues and is highly conserved
among vertebrates [6]. To date, two endogenous ligands,
APELIN and ELABELA have been identified; of these
ligands, APELIN was the first identified and is the better
studied APJ ligand [13]. APELIN is initially produced as a
77-amino-acid preproprotein. After removal of the signal
peptide, the 55-residue proapelin may be further cleaved by
endopeptidases at several paired basic residues (Arg-Arg
and Arg-Lys) to produce a range of C-terminal fragments,
including APELIN-36, −17, −13, and the post-
translationally modified (Pyr1) APELIN-13. These pep-
tides are all agonists of the APJ receptor but may present
different tissue distributions and potencies [9, 14] [15]

Both APELIN and the APJ receptor are widely expressed
in the heart, brain, pancreas, lung, liver, kidney and placenta
[9, 16, 17], and all are highly expressed in the endothelial
cells of various vessels [18–20]. Consistent with their pro-
minent expression in the cardiovascular system, APELIN/
APJ has well-documented vasoactive functions [21, 22].
Systemic infusions of APELIN lower blood pressure in
humans and rodents [23, 24] and cause vasorelaxation of
glomerular arterioles, resulting in increased diuresis [25].
Mechanistically, APELIN stimulates the expression and
activity of eNOS, increases endothelial production of NO
[18, 25, 26], and antagonizes the vasoconstriction activity of
angiotensin II by upregulating angiotensin-converting
enzyme 2 (ACE2) expression [27, 28]. In cerebral artery
vascular smooth muscle cells, APELIN controls the vas-
cular tone of the cerebral artery by inhibiting large-
conductance Ca2+-activated K+ (BKCa) channel via a
PI3K-dependent signaling pathway [29].

The APELIN-APJ system also possesses angiogenic
potential. In vitro, APELIN treatment stimulates endothelial
cells and vascular smooth muscle cells to proliferate via the
PI3K-Akt, PKC, ERK and NOTCH signaling pathways
[30–33]. In the postmyocardial infarction heart, APELIN
enhances the homing of vascular progenitor cells, increases
angiogenesis and improves cardiac repair [34], while
APELIN deficiency compromises in vivo myocardial
angiogenesis [35]. A recent study showed that APJ is highly
enriched in tumor blood vessels and that pharmacological
blockage of Apelin-APJ signaling inhibits tumor angio-
genesis and growth [36].

APELIN is a potent stimulator of cardiac contractility by
activating the PKCε and ERK1/2 signaling pathway
[37, 38]. Systemic APELIN treatment increases coronary
blood flow [23], increases cardiac contractile reserve and
improves the hemodynamic profile [39], whereas mouse
knockout of Apelin or APJ leads to impaired cardiac con-
tractility under aging or stress conditions [40]. Furthermore,
loss of Apelin exacerbates myocardial infarction while
APELIN perfusion protects the heart from
ischemia–reperfusion injury by suppressing the oxidative
damage to the sarcoplasmic reticulum function [35, 41].

ELABELA is a non-redundant ligand for APJ

APJ-null, but not Apelin-null, mice display overt congenital
cardiac anomalies [40, 42]. Such phenotypic inconsistency
was explained by the recent discovery of ELABELA, the
second endogenous ligand of APJ [43, 44]. ELABELA was
initially annotated as a non-coding RNA but was later
confirmed to contain a 54–amino-acid open reading frame
with a predicted signal sequence [43]. The mature peptide
includes ELABELA-32, ELABELA-22 and ELABELA-11
isoforms as a result of differential cleavage, with the
shortest isoform 11 being highly conserved across verte-
brate species [45]. ELABELA mRNA or peptide has been
detected in induced pluripotent stem cells (iPSCs), human
embryonic stem cells, and mouse embryonic endoderm. In
the adults, ELABELA expression is detected in the kidney,
prostate, placenta and plasma but not as widely as APELIN
and APJ [33, 44, 46]. Like APELIN, ELABELA is also
abundantly expressed in the endothelial cells of the heart
and various blood vessels [47, 48].

Like APELIN, ELABELA peptide increases cardiac
contractility and induces coronary vasodilation by activat-
ing ERK in the cardiac tissues, but its mechanism is inde-
pendent of PKC activation [47, 48]. ELABELA also
improves cardiac function by downregulating angiotensin-
converting enzyme (ACE) expression in stressed hearts
[49]. Injection of ELABELA increases diuresis and water
intake in rats [7]. ELABELA is also essential for mouse
embryonic angiogenesis [11].

ELABELA also plays a non-redundant role to APELIN.
During zebrafish embryogenesis, Elabela is the earliest
ligand for APJ before the onset of gastrulation, whereas
apelin expression begins 5 h later, during gastrulation [44].
Loss of either Elabela or APJ impair endoderm differ-
entiation and mesodermal cell migration and severely dis-
rupts cardiac development, whereas the Apelin knockout
has no such dramatic effect [43, 44, 50]. The Elabela null,
but not Apelin null, mouse is associated with PE symptoms
[11]. Moreover, ELABELA also functions as an endogen-
ous growth factor that sustains hESC self-renewal via the
PI3K/Akt pathway. Interestingly, hESCs do not express
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APJ, suggesting that ELABELA may signal through an
alternate unknown receptor in supporting stem cell self-
renewal [46].

Functions of ELABELA and APJ signaling in the
pathophysiology of PE

Ho et al. reported that Elabela knockout pregnant mice
exhibited PE-like symptom such as kidney glomerular
endotheliosis, proteinuria, and hypertension and that these
symptoms can be normalized by systemic infusion of
recombinant ELABELA peptide, indicating that ELABELA
signaling is necessary for regulating maternal-placental
vascular homeostasis to prevent PE [11]. A lack of ELA-
BELA causes damages to the placenta and the maternal
cardiovascular system, both of which are linked to PE. In
the placenta, Elabela is predominantly expressed in villous
cytotrophoblasts and syncytiotrophoblasts. Loss of Elabela
expression delays syncytiotrophoblast differentiation,
impairs APJ signaling in the neighboring fetal endothelial
cells, and disrupts placental angiogenesis. These changes
result in an overall pathological change to the placenta, as
evidenced by elevated hypoxia and inflammation and a
thinner labyrinth. On the maternal side, Elabela knockout
results in endothelial damage and higher systolic blood
pressure, while ELABELA peptide infusion normalizes the
blood pressure, consistent with the vasorelaxation function
of ELABELA. It is currently unclear whether the develop-
ment of PE-like symptoms is primarily due to placental
defects or maternal vascular dysfunction or both as a result
of ELABELA deficiency. It is also unclear through what
mechanism does ELABELA regulate trophoblast differ-
entiation and invasion and placenta angiogenesis. As men-
tioned earlier, ELABELA may have a second receptor in
addition to APJ, and this second receptor might also med-
iate specific anti-PE functions of ELABELA in the placenta.

As discussed earlier, APJ signaling activates the PI3K/
Akt pathway and NO production in endothelial cells, pro-
moting vasodilation and angiogenesis. Competent NO sig-
naling has protective effects on placental function and
maintenance of vascular tone. In the placenta, eNOS is
abundantly expressed in the syncytiotrophoblasts and
endothelial cells [51]. The NO level is often decreased in
the placenta and plasma of humans with PE [52, 53]; long-
term NOS inhibition produces PE-like syndrome in animal
models [54], while glyceryl trinitrate-induced release of NO
can improve utero-placental perfusion [55], suggesting that
abnormal NO signaling may be involved in the pathology of
PE. As eNOS activity is regulated by PI3K/Akt signaling
[56], which is downregulated in the hypoxic [57] and PE
placenta [58, 59], APJ signaling may regulate placental
development partly through modulating PI3K/Akt-eNOS
activity in the trophoblast or fetal endothelial cells.

Increased reactive oxygen species (ROS) level or ROS-
mediated damage has been observed in human PE placenta
[60–62]. ROS can scavenge NO, forming the reactive
nitrogen species ONOO−. that further induces eNOS
uncoupling and compromises NO production and NO-
mediated vasorelaxation [63, 64]. Thus, placental oxidative
stress has been proposed as an important cause of PE
[65, 66]. In cultured adipocytes, APELIN treatment can
inhibit the production and release of ROS by modulating the
expression of anti-oxidant and pro-oxidant enzymes in an
ERK-, AMPK- and Akt-dependent manner [67]. In cultured
cardiomyocytes, APELIN treatment can inhibit the genera-
tion of ROS and apoptosis following ischemic/reperfusion
injury by enhancing superoxide dismutase activity and ERK
and Akt signaling [68]. Furthermore, Heme oxygenase-1
(HO-1) is an important enzyme that catabolizes ROS to
prevent hypertension [69]. HO-1 expression and HO-1-
mediated inhibition of sEng release from the placenta are
dependent on Akt [59]. Thus, APJ signaling may play an
important protective role in vascular integrity by suppressing
oxidative damage in the hypoperfused placenta.

The anti-apoptotic activity of Apelin has been observed
in various cell types, including cardiomyocytes, vascular
smooth muscle cells, endothelial cells and osteoblasts
[70–73], and this effect is induced by the activation of ERK
and Akt [74]. In the central nervous system, APELIN can
stimulate Akt phosphorylation after hypoxic/ischemic
injury, and inhibiting PI3K reverses the phosphorylation
and attenuates the protective effects on apoptosis [75].
Inhibition of APJ signaling by Elabela knockout results in
increased apoptosis in the placenta [11]. Thus, competent
APJ signaling is required to prevent apoptosis, which is
frequently observed in placentas with PE. [62, 76–78]

During normal pregnancy, the invasion of extravillous
cytotrophoblasts into the uterine spiral arteries converts
them from small, high-resistance vessels to wide caliber,
low-resistance vessels. In the placenta with PE, this process
is incomplete, and shallow trophoblast invasion is observed
[1, 79]. The transformation of villous cytotrophoblasts into
migratory and invasive extravillous cytotrophoblast at the
tip of the chorionic villi requires epithelial to mesenchymal
transition (EMT) [80]. Ho et al. reported that ELABELA
can stimulate trophoblast-like JAR choriocarcinoma cells to
acquire a more invasive phenotype in vitro, indicating that
ELABELA-APJ may positively regulate trophoblast inva-
sion, though the mechanism is unknown [11]. TGF-β is a
well-known inducer of EMT during many physiological and
pathological processes, such as embryonic development,
cancer progression and metastasis, and post-injury organ
fibrosis [81]. However, in the placenta, TGF-β inhibits
rather than promotes trophoblast invasion. Its mechanism
has not been fully defined but may involve inhibiting the
activity and expression of multiple extracellular proteolytic
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enzymes [82–84] and suppressing vascular endothelial
cadherin (VE-cadherin) expression [85]. One study pro-
vided in vitro evidence that TGF-β may inhibit trophoblast
EMT by upregulating epithelial-cadherin and beta-catenin
expression [86]. Increased levels of TGF-β1/3 [87, 88] and
E-cadherin [87, 89, 90] and a reduced level of VE-cadherin
have been detected in the trophoblasts of patients with PE
[89]. APJ activation can inhibit TGF-β signaling in a
number of in vivo and in vitro fibrosis models [91–94].
Therefore, APJ activity may be required in the normal
placenta to counteract the inhibitory effect of TGF-β on
trophoblast invasion, which may explain the impaired tro-
phoblast invasion in the Elabela-null placenta, as reported
by Ho et al (2017) [11].

Conclusion and prospects

ELABELA- and APELIN-APJ signaling regulate important
aspects of placental development and maternal cardiovas-
cular homeostasis (Fig 1). ELABELA- and APELIN-APJ
promote angiogenesis and cytotrophoblast invasion, support
NO production to increase uterine blood flow, reduce oxi-
dative stress, and suppress apoptosis in the placenta. Sys-
temically, ELABELA and APELIN lower blood pressure and
enhance cardiac function through their vasodilation effects.
Many of these actions are executed through the activation of

ERK and Akt and inhibition of TGF-β. Experiments on
mouse models have demonstrated that ELABELA deficiency
promotes PE and cardiovascular disease in mice. However,
the clinical relevance of ELABELA, APELIN and their
receptor APJ remains an open question. A recent study did
not find altered expression of ELABELA in placentas from
humans with PE, though the findings from 82 patients with
PE need to be verified in larger cohort studies [95].
Assuming that the loss of ELABELA-APJ signaling may not
account for a significant number of patients, given its wide-
spread vasorelaxation activity, would APJ agonist treatment
alleviate PE syndrome due to other causes? Wang et al
(2017) found that systemic APELIN treatment significantly
ameliorated the symptoms of PE in a rat model of PE
induced by reduced uterine perfusion pressure [96]. Whether
APELIN, or perhaps even more importantly ELABELA, has
a similar therapeutic efficacy in human PE remains to be
tested in the future.
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Fig. 1 The biological function of ELABELA and APJ signaling in the
placental development and maternal cardiovascular homeostasis. In the
placenta, ELABELA- and APELIN-APJ promote cytotrophoblast
invasion/proliferation and fetal vessel angiogenesis, support NO pro-
duction to increase uterine blood flow, reduce oxidative stress, and

suppress apoptosis. Systemically, ELABELA and APELIN lower
blood pressure and enhance cardiac function through their vasodilation
effects. Loss of ELABELA or APJ signaling perturbs the placental and
maternal vascular function, and contributes to PE.
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