Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional pathways associated with human carotid atheroma: a proteomics analysis

Abstract

Advances in large-scale analysis are becoming very useful in understanding health and disease. Here, we used high-throughput mass spectrometry to identify differentially expressed proteins between early and advanced lesions. Carotid endarterectomy samples were collected and dissected into early and advanced atherosclerotic lesion portions. Proteins were extracted and subjected to liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Differentially expressed proteins were identified and verified using multiple reaction monitoring (MRM), on which advanced systems biology and enrichment analyses were performed. The identified proteins were further compared to the transcriptomic data of 32 paired samples obtained from early and advanced atherosclerotic lesions. A total of 95 proteins were upregulated, and 117 proteins were downregulated in advanced lesions compared to early atherosclerotic lesions (p < 0.05). The upregulated proteins were associated with proatherogenic processes, whereas downregulated proteins were involved in extracellular matrix organization and vascular smooth muscle cytoskeleton. Many of the identified proteins were linked to various “upstream regulators”, among which TGFβ had the highest connections. Specifically, a total of 19 genes were commonly upregulated, and 30 genes were downregulated at the mRNA and protein levels. These genes were involved in vascular smooth muscle cell activity, for which enriched transcription factors were identified. This study deciphers altered pathways in atherosclerosis and identifies upstream regulators that could be candidate targets for treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. WHO | The top 10 causes of death. WHO. http://www.who.int/mediacentre/factsheets/fs310/en/index.html. Accessed 27 Feb 2013.

  2. Vinereanu D. Risk factors for atherosclerotic disease: present and future. Herz. 2006;31 (Suppl 3):5–24.

  3. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–460S.

    Article  CAS  PubMed  Google Scholar 

  4. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22:399–411. https://doi.org/10.1016/j.hlc.2013.03.001

    Article  PubMed  Google Scholar 

  5. Vivanco F, Padial LR, Darde VM, de la Cuesta F, Alvarez-Llamas G, Diaz-Prieto N, et al. Proteomic biomarkers of atherosclerosis. Biomark Insights. 2008;3:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. World Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA. 1997;277:925–6.

    Article  Google Scholar 

  7. Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20:1177–8.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai T-H, Song E, Zhu R, Di Poto C, Wang M, Luo Y, et al. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics. 2015;15:2369–81. https://doi.org/10.1002/pmic.201400364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blagoev B, Ong S-E, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol. 2004;22:1139–45. https://doi.org/10.1038/nbt1005

    Article  CAS  PubMed  Google Scholar 

  10. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015;16. https://doi.org/10.1186/s12859-015-0611-3

  11. Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26:303–4. https://doi.org/10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  12. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44:D336–342. https://doi.org/10.1093/nar/gkv1194

    Article  CAS  PubMed  Google Scholar 

  13. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. (e-pub ahead of print 3 May 2016; https://doi.org/10.1093/nar/gkw377).

  14. Bonnet A, Lagarrigue S, Liaubet L, Robert-Granié C, SanCristobal M, Tosser-Klopp G. Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares. BMC Proc. 2009;3:S11 https://doi.org/10.1186/1753-6561-3-S4-S11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuryev A, Kotelnikova E, Daraselia N. Ariadne’s ChemEffect and Pathway Studio knowledge base. Expert Opin Drug Discov. 2009;4:1307–18. https://doi.org/10.1517/17460440903413488

    Article  CAS  PubMed  Google Scholar 

  16. Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinforma Oxf Engl. 2014;30:523–30. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  Google Scholar 

  17. Aragonès G, Auguet T, Guiu-Jurado E, Berlanga A, Curriu M, Martinez S, et al. Proteomic profile of unstable atheroma plaque: increased neutrophil defensin 1, clusterin, and apolipoprotein E levels in carotid secretome. J Proteome Res. 2016;15:933–44. https://doi.org/10.1021/acs.jproteome.5b00936

    Article  CAS  PubMed  Google Scholar 

  18. Hao P, Ren Y, Pasterkamp G, Moll FL, de Kleijn DPV, Sze SK. Deep proteomic profiling of human carotid atherosclerotic plaques using multidimensional LC-MS/MS. Proteom Clin Appl. 2014;8:631–5. https://doi.org/10.1002/prca.201400007

    Article  CAS  Google Scholar 

  19. Herrington DM, Mao C, Parker SJ, Fu Z, Yu G, Chen L, et al. Proteomic architecture of human coronary and aortic atherosclerosis. Circulation. 2018;137:2741–56. https://doi.org/10.1161/CIRCULATIONAHA.118.034365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bricca G, Legedz L, Nehme A, Ayari H, ne Paultre C, Hodroj W, et al. Local angiotensin pathways in human carotid atheroma: towards a systems biology approach, local angiotensin pathways in human carotid atheroma: towards a systems biology approach. Conf Pap Sci Conf Pap Sci. 2015;2015:e593086. https://doi.org/10.1155/2015/593086

  21. Cagnin S, Biscuola M, Patuzzo C, Trabetti E, Pasquali A, Laveder P, et al. Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genom. 2009;10:13 https://doi.org/10.1186/1471-2164-10-13

    Article  CAS  Google Scholar 

  22. Rocchiccioli S, Pelosi G, Rosini S, Marconi M, Viglione F, Citti L, et al. Secreted proteins from carotid endarterectomy: an untargeted approach to disclose molecular clues of plaque progression. J Transl Med. 2013;11:260 https://doi.org/10.1186/1479-5876-11-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camoretti-Mercado B, Dulin NO, Solway J. SRF function in vascular smooth muscle when less is more? Circ Res. 2005;97:409–10. https://doi.org/10.1161/01.RES.0000181546.77857.7f

    Article  CAS  PubMed  Google Scholar 

  24. Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25:1831–6. https://doi.org/10.1161/01.ATV.0000175749.41799.9b

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol. 2005;25:1119–27. https://doi.org/10.1161/01.ATV.0000164311.48592.da

    Article  CAS  PubMed  Google Scholar 

  26. Langley SR, Willeit K, Didangelos A, Matic LP, Skroblin P, Barallobre-Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546–60. https://doi.org/10.1172/JCI86924

    Article  PubMed  PubMed Central  Google Scholar 

  27. Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40:1101–10. https://doi.org/10.1016/j.biocel.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  28. Luo C, Chen M, Madden A, Xu H. Expression of complement components and regulators by different subtypes of bone marrow-derived macrophages. Inflammation. 2012;35:1448–61. https://doi.org/10.1007/s10753-012-9458-1

    Article  CAS  PubMed  Google Scholar 

  29. A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta. 2011;1812:982–94. https://doi.org/10.1016/j.bbadis.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  30. Hamada M, Nakamura M, Tran MTN, Moriguchi T, Hong C, Ohsumi T, et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat Commun. 2014;5:3147 https://doi.org/10.1038/ncomms4147

    Article  CAS  PubMed  Google Scholar 

  31. Claudel T, Leibowitz MD, Fiévet C, Tailleux A, Wagner B, Repa JJ, et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci USA. 2001;98:2610–5. https://doi.org/10.1073/pnas.041609298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lalloyer F, Fiévet C, Lestavel S, Torpier G, van der Veen J, Touche V, et al. The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia. Arterioscler Thromb Vasc Biol. 2006;26:2731–7. https://doi.org/10.1161/01.ATV.0000248101.93488.84

    Article  CAS  PubMed  Google Scholar 

  33. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest. 2007;117:2337–46. https://doi.org/10.1172/JCI31909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mercer J, Bennett M. The role of p53 in atherosclerosis. Cell Cycle Georget Tex. 2006;5:1907–9. https://doi.org/10.4161/cc.5.17.3166

    Article  CAS  Google Scholar 

  35. Guevara NV, Kim HS, Antonova EI, Chan L. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med. 1999;5:335–9. https://doi.org/10.1038/6585

    Article  CAS  PubMed  Google Scholar 

  36. Merched AJ, Williams E, Chan L. Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling. Arterioscler Thromb Vasc Biol. 2003;23:1608–14. https://doi.org/10.1161/01.ATV.0000084825.88022.53

    Article  CAS  PubMed  Google Scholar 

  37. George SJ, Angelini GD, Capogrossi MC, Baker AH. Wild-type p53 gene transfer inhibits neointima formation in human saphenous vein by modulation of smooth muscle cell migration and induction of apoptosis. Gene Ther. 2001;8:668–76. https://doi.org/10.1038/sj.gt.3301431

    Article  CAS  PubMed  Google Scholar 

  38. Bennett MR, Littlewood TD, Schwartz SM, Weissberg PL. Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaques to p53-mediated apoptosis. Circ Res. 1997;81:591–9.

    Article  CAS  PubMed  Google Scholar 

  39. von der Thüsen JH, van Vlijmen BJM, Hoeben RC, Kockx MM, Havekes LM, van Berkel TJC, et al. Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53. Circulation. 2002;105:2064–70.

    Article  PubMed  Google Scholar 

  40. Mercer J, Figg N, Stoneman V, Braganza D, Bennett MR. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ Res. 2005;96:667–74. https://doi.org/10.1161/01.RES.0000161069.15577.ca

    Article  CAS  PubMed  Google Scholar 

  41. Abboud ER, Coffelt SB, Figueroa YG, Zwezdaryk KJ, Nelson AB, Sullivan DE, et al. Integrin-linked kinase: a hypoxia-induced anti-apoptotic factor exploited by cancer cells. Int J Oncol. 2007;30:113–22.

    CAS  PubMed  Google Scholar 

  42. Herranz B, Marquez S, Guijarro B, Aracil E, Aicart-Ramos C, Rodriguez-Crespo I, et al. Integrin-linked kinase regulates vasomotor function by preventing endothelial nitric oxide synthase uncoupling: role in atherosclerosis. Circ Res. 2012;110:439–49. https://doi.org/10.1161/CIRCRESAHA.111.253948

    Article  CAS  PubMed  Google Scholar 

  43. Ho B, Bendeck MP. Integrin linked kinase (ILK) expression and function in vascular smooth muscle cells. Cell Adhes Migr. 2009;3:174–6.

    Article  Google Scholar 

  44. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA. 2009;106:3207–12. https://doi.org/10.1073/pnas.0808042106

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Nigris F, Youssef T, Ciafré S, Franconi F, Anania V, Condorelli G, et al. Evidence for oxidative activation of c-Myc-dependent nuclear signaling in human coronary smooth muscle cells and in early lesions of Watanabe heritable hyperlipidemic rabbits: protective effects of vitamin E. Circulation. 2000;102:2111–7.

    Article  PubMed  Google Scholar 

  46. Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J Biol Chem. 2003;278:32994–9. https://doi.org/10.1074/jbc.M304799200

    Article  CAS  PubMed  Google Scholar 

  47. Toutouzas K, Messaris E, Konstadoulakis M, Chatzigianni E, Karayannis M, Davaris P, et al. Expression of c-myc and H-ras and Absence of Expression of p53 and bcl-2 Genes in Atherosclerotic Human Carotid Arteries - 1297.pdf. J Clin Basic Cardiol. 2002;5:253–6.

    CAS  Google Scholar 

  48. Marin ML, Gordon RE, Veith FJ, Tulchin N, Panetta TF. Distribution of c-myc oncoprotein in healthy and atherosclerotic human carotid arteries. J Vasc Surg. 1993;18:170–6. discussion176-177

    Article  CAS  PubMed  Google Scholar 

  49. Díez J, Panizo A, Hernández M, Galindo MF, Cenarruzabeitia E, Pardo Mindán FJ. Quinapril inhibits c-Myc expression and normalizes smooth muscle cell proliferation in spontaneously hypertensive rats. Am J Hypertens. 1997;10:1147–52.

    Article  PubMed  Google Scholar 

  50. Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood. 2012;119:411–21. https://doi.org/10.1182/blood-2011-02-339911

    Article  CAS  PubMed  Google Scholar 

  51. Grainger DJ. Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol. 2004;24:399–404. https://doi.org/10.1161/01.ATV.0000114567.76772.33

    Article  CAS  PubMed  Google Scholar 

  52. Goodall AH, Burns P, Salles I, Macaulay IC, Jones CI, Ardissino D. et al.Bloodomics Consortium Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood. 2010;116:4646–56. https://doi.org/10.1182/blood-2010-04-280925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Choe N, Kwon J-S, Kim J-R, Eom GH, Kim Y, Nam K-I, et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348–55. https://doi.org/10.1016/j.atherosclerosis.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  54. Wei J, Gorman TE, Liu X, Ith B, Tseng A, Chen Z, et al. Increased neointima formation in cysteine-rich protein 2-deficient mice in response to vascular injury. Circ Res. 2005;97:1323–31. https://doi.org/10.1161/01.RES.0000194331.76925.5c

    Article  CAS  PubMed  Google Scholar 

  55. Durante A, Peretto G, Laricchia A, Ancona F, Spartera M, Mangieri A, et al. Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Curr Pharm Des. 2012;18:981–1004.

    Article  CAS  PubMed  Google Scholar 

  56. Bricca G, Legedz L, Nehme A, Ayari H, Paultre C, Hodroj W, et al. Local angiotensin pathways in human carotid atheroma: towards a systems biology approach. Conf Pap Sci. 2015;2015. https://doi.org/10.1155/2015/593086

  57. Westerterp M, Berbée JFP, Pires NMM, van Mierlo GJD, Kleemann R, Romijn JA. et al. Apolipoprotein C-Iis crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. Circulation. 2007;116:2173–81. https://doi.org/10.1161/CIRCULATIONAHA.107.693382.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

A.N. was awarded a scholarship from “La Nouvelle Société Francophone d’Athérosclérose” (NSFA). This work was supported by a Campus France grant from “Coopération pour l’Évaluation et le Développement de la Recherche” (CEDRE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yehia Mechref or Kazem Zibara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nehme, A., Kobeissy, F., Zhao, J. et al. Functional pathways associated with human carotid atheroma: a proteomics analysis. Hypertens Res 42, 362–373 (2019). https://doi.org/10.1038/s41440-018-0192-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-018-0192-4

Keywords

  • Atherosclerosis
  • Carotid artery
  • Proteome
  • Transcriptome
  • Transcription regulators

This article is cited by

Search

Quick links