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Abstract

Hypertension has a close affinity to brain degeneration and cognitive decline during the aging process. The default mode
network (DMN) is usually affected in various diseases related to cognitive impairment (CI). The present research aimed to
explore the alterations in the DMN and its subcomponents in hypertensive patients with and without CI and to investigate the
associations between cognitive performance and network abnormalities. Resting-state functional magnetic resonance
imaging and neuropsychological tests were performed in 74 subjects, namely, 30 hypertensive patients with normal
cognition (HTN-NC), 25 hypertensive patients with CI (HTN-CI), and 19 healthy controls. Seed-based functional
connectivity (FC) analysis was performed to identify the DMN patterns. The group differences in the DMN were mainly
shown in brain regions related to the core subsystem and the dorsal medial subsystem of the DMN. Post hoc analysis
revealed a trend of dissociation among the DMN subsystems in the HTN-NC group. In contrast, the HTN-CI group
displayed extensively increased FC in both subsystems. Importantly, increased FC of the dorsal medial subsystem in the
HTN-CI patients was associated with poor cognitive performance, such as scores on Mini-Mental State Examination (p =
—0.438, P=0.029) and Montreal Cognitive Assessment (p = —0.449, P =0.025). The findings suggest that extensively
increased connectivities in the core subsystem and the dorsal media subsystem of the DMN may distinguish hypertension
with CI from hypertension with normal cognition. The characteristic change in the dorsal medial subsystem may become an
early imaging biomarker for the diagnosis and treatment of cognitive impairment associated with hypertension.
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Introduction

Supplementary information The online version of this article (https://
doi.org/10.1038/s41440-018-0176-4) contains supplementary
material, which is available to authorized users.

Hypertension remains a worldwide public health problem
due to its high prevalence. In China, hypertension accoun-
ted for nearly 1/3 of the total deaths and ~1/6 of the total
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baifing5l 5@126.com disability-adjusted life years in 2013, mainly because of its
5 Yun Xu contributions to cardio-cerebral vascular diseases [1]. Fur-

thermore, hypertension can act as an independent risk factor
in the development of cognitive decline, Alzheimer’s dis-
ease (AD), and vascular dementia [2—4].

White matter (WM) lesions are commonly observed in
hypertensive patients [5], and these lesions are supposed
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to disrupt the inner links of brain structures, leading to
cognitive impairment. Brain atrophy [6] and cerebral
amyloid p-protein deposition [7] are also associated with
hypertension. The imbalance of cerebral blood flow
perfusion in the frontal and parietal lobes [8—10] may
be another cause of hypertension-related cognitive
impairment. However, the mechanisms underlying the
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development of cognitive impairment in hypertension
remain relatively unclear, and predicting cognitive
impairment in hypertensive patients is still difficult.

A series of functional resting-state networks (RSNs)
have been identified based on the temporal correlations
between fluctuations in blood oxygen level-dependent
signals across brain regions, also known as functional
connectivity (FC) [11]. The default mode network
(DMN) is one of the most important and widely studied
networks. The DMN plays an active role in complicated
cognitive processing, and abnormal alterations of the
DMN have been shown in various neuropsychological
diseases related to cognitive impairment, such as AD
[12] or other types of dementia [13], depression [14], and
schizophrenia [15]. The DMN is commonly subdivided
into three subcomponents or subsystems, namely, the
core subsystem, the medial temporal subsystem, and the
dorsal medial subsystem [16]. Each subsystem has sev-
eral central hubs that are involved in complex cognitive
functions [17]. The three subsystems interact as a unit to
maintain normal cognition and self-generated experience
[18], and the subsystems are usually recruited during
unconstrained resting-state periods.

Both disruption in the equilibrium and disassociation of
the DMN subcomponents are observed in those with AD,
type 2 diabetes mellitus (T2DM), major depression, and
the apolipoprotein E (ApoE) type 4 allele [19-23].
However, the changing patterns of the DMN sub-
components and the associations of these changes with
cognitive impairment in hypertensive patients are still
unclear. There have even been a limited number of studies
on the alterations in RSNs in hypertensive patients; only
Li et al. [24] found that defective WM and impaired
functional connectivity of frontoparietal networks may
account for the underlying mechanisms of cognitive
impairment in hypertensive patients. Therefore, it is
necessary to explore the impaired characteristics of the
DMN in hypertensive patients.

In the present study, hypertensive patients with normal
cognition (HTN-NC), hypertensive patients with cogni-
tive impairment (HTN-CI) and healthy controls under-
went multimodal MRI scans and neuropsychological tests.
DMN patterns were identified in each group. The present
study aimed to explore the FC alterations in the DMN of
hypertensive patients with and those without cognitive
impairment and to determine probable imaging markers
for the prediction of cognitive impairment in hypertensive
patients. We hypothesized that a trend of disassociation of
the DMN subsystems would be observed in hypertensive
patients and that altered DMN patterns would be disparate
between hypertensive patients with and without cognitive
impairment.

Methods and materials
Participants

This study was approved by the Nanjing Drum Tower Hos-
pital Ethics Committee in January 2017. The subjects of this
research were recruited from among the outpatients and
inpatients in our department of neurology. All the participants
gave written informed consent prior to participation. All
subjects underwent neuropsychological tests, MRI scanning,
and computed tomography angiography (CTA) or B-mode
ultrasonography of the intracranial and carotid arteries.

All the patients in the hypertensive group were over 50
years old, were diagnosed by the same experienced physi-
cian and had a history of taking oral antihypertensive drugs
based on their medical records. Based on the standards
described in the guidelines [25], each hypertensive patient
was classified into different hypertension levels at the same
time. The control group included cognitively normal people
(age >50 years) without any history of high blood pressure.
The exclusion criteria of this research were as follows: (1)
dementia (e.g., AD, stroke-related dementia, and other types
of dementia), depression and other mental disorders; (2) a
long history of taking hypnotic sedative drugs and psy-
chotropic drugs; (3) acute or subacute ischemic stroke and
cerebral hemorrhage or a history of stroke (with a diameter
of infarction larger than 15 mm on MRI); (4) a history of
alcohol dependence, Parkinson’s disease, epilepsy, and
thyroid gland disease; (5) more than 5 cerebral microbleeds
(CMBs) or severe WM lesions (reaching the degree of
Fazekas Il according to the Fazekas scale [26]); (6) con-
traindications of MRI scanning or poor quality of the ima-
ges; and (7) severe intracranial artery or carotid artery
stenosis (larger than 50% stenosis or occlusion of the
responsible artery). To guarantee the congruity of the ima-
ges, all the images in this study were collected via the same
MRI machine.

Neuropsychological evaluation

A professional neuropsychologist performed the neu-
ropsychological tests before or on the day of the MRI
scanning. Physical examinations were also conducted to
determine positive neurological signs. The Chinese trans-
lation of the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) served as the
general cognitive tests. Subjects with cognitive impairment
were distinguished from subjects with normal cognition by
the MMSE and MoCA scores and their educational
experience. The cut-offs of cognitive impairment for the
MMSE were made based on the results of the Beijing study
(Table 1) [27]. Due to the low specificity of identifying
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Table 1 The evaluation criteria of general cognitive function

Cognitive test Education Borderlines of cognitive
(years) impairment (scores)
MMSE 0 <19
1-6 <22
>6 <26
MoCA 0 <13
1-6 <19
7-12 <24
>12 <25

The subjects with different educational experience who got scores
equal to or lower than the borderlines in MMSE or MoCA tests were
defined as cognitive impairment.

MMSE Mini-Mental State Examination, MoCA Montreal Cognitive
Assessment

cognitively normal people by using 25/26 as a cut-off for
individuals with 12 years or less of education, the normative
data for the MoCA were formulated according to several
studies in the population in China (Table 1) [28, 29]. The
subjects with scores lower than or equal to the cut-off points
of MMSE or MoCA were defined as cognitive impairment
(Table 1). According to the status of general cognitive
function, the hypertensive patients were divided into an
HTN-NC group (n =30) and an HTN-CI group (n =25).
Furthermore, 19 healthy subjects with normal cognition
served as a control group.

Memory was assessed using the visual reproduction
(VR)-long-delayed recall portion of the Wechsler Memory
Scale (WMS) and the Auditory Verbal Learning Test
(AVLT) delayed recall test. Language was assessed using
the category verbal fluency (VBF) test and the Boston
Naming Test (BNT). Processing speed was assessed using
the Trail Making Test A (TMT-A) and the Stroop-B test.
Executive function was evaluated using the Trail Making
Test B and the Stroop-C test. Visuospatial ability and
attention were evaluated using the visual reproduction—copy
(VR-copy) portion of the Wechsler Memory Scale and the
Clock Drawing Test (CDT).

MRI data acquisition

All subjects were scanned using a Philips Ingenia 3.0-T
scanner (Philips, Eindhoven, Netherlands) with a 32-channel
head coil. See Supplementary Information for details.
Image preprocessing

The imaging data were analyzed using the toolbox for Data
Processing & Analysis for Brain Imaging (DPABI) V2.3

(http://rfmri.org/dpabi). See Supplementary Information for
details.
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White matter hyperintensity segmentation and
quantification

For the analysis of the WM, gray matter (GM), and CSF
volumes, three-dimension fast field echo (3D FFE) images
were segmented using SPMS8 (statistical parametric map-
ping, http://www fil.ion.ucl.ac.uk/spm) and the VBMS&
toolbox. The Wisconsin White Matter Hyperintensities
Segmentation Toolbox (W2MHS) [30] was used to extract
and analyze the total white matter hyperintensity (WMH),
periventricular WMH, and deep WMH volumes. Taking
into account individual cerebral differences, the adjusted
WMH was computed with the proportion of the total WMH
accounting for the sum of the WM and GM.

Definition of the DMN

A 5-mm-radius sphere in the posterior cingulate cortex (PCC)
hub [Montreal Neurological Institute (MNI) space: —2, —45,
34] served as a seed region. The mean time series of the seed
region was calculated as the reference time course for each
participant. The correlation coefficient of each voxel was
computed by a Pearson cross-correlational analysis between
the seed time course and the time course of each voxel in the
whole brain. To obtain the eventual individual maps of the
DMN, Fisher’s z-transformation was applied in the calcula-
tion of the approximately normally distributed correlation
coefficients by the equation: z = 0.5 X In ﬁ Last, the indi-
vidual maps of each network were acquired. The one sample
t-test was used to identify the brain regions that positively
correlated with each seed. The thresholds were set at a cor-
rected P <0.001, determined by Monte Carlo simulations for
multiple comparisons (voxelwise P <0.001, FWHM = 6 mm,
cluster size >486 mm3).

Statistical analysis
Demographic, clinical, and neuropsychological data

SPSS 23.0 (statistical program for social sciences, SPSS
Inc. Chicago, IL) was used to perform all the statistical
procedures. Comparisons of age, gender, and some demo-
graphic and neuropsychological data were performed by
one-way analysis of variance (ANOVA) or the X* test.
Some categorical data, such as hypertension level and the
existence of lacunar infarctions (LIs) and CMBs, were also
compared by the chi-square test. The Kruskal-Wallis test
was applied in the comparisons of nonnormally distributed
demographic and neuropsychological data. Multiple linear
regression was also used, controlling for gender, years of
education, and age of all subjects. The results are presented
in Supplementary Table 1. The threshold for statistical
significance was set at P <0.05.


http://rfmri.org/dpabi
http://www.fil.ion.ucl.ac.uk/spm

Characteristic changes in the default mode network in hypertensive patients with cognitive impairment 533

FC analysis

All the functional MRI data were analyzed by REST (http://
restingfmri.sourceforge.net) and DPABI V2.3. To analyze the
DMN FC differences among the 3 groups, an ANCOVA was
performed on the individual normalized maps in a voxelwise
manner within a GM mask. Age, gender, years of education,
head motion parameters, and the modulated GM maps obtained
from the T1 segmentation were included as covariates in all the
functional data analyses. The threshold was set at a corrected P
<0.05, as determined by Monte Carlo simulations (AlphaSim
program in AFNI, http://afni.nih.gov/afni/docpdf/AlphaSim.
pdf), for multiple comparisons in the whole brain (voxelwise P
<0.01, FWHM = 6 mm, cluster size >999 mm3).

The average FC strength of each significant region of
interest (ROI) was extracted from each subgroup by REST
1.7 and was analyzed by SPSS 23.0 afterwards. Post hoc
tests (significance was set at <0.05) were performed to
explore the differences in FC among the subgroups.
Spearman correlational analyses were performed in a
ROIwise manner to explore the associations between the
DMN FC values and cognitive performance and WMH
volume in the hypertensive patients.

Results

Demographic and neuropsychological
characteristics

No significant differences in gender, education, WMH
volumes, hypertension duration, hypertension level, the
number of LIs, the number of CMBs, or the number of
subjects with T2DM (Table 2) were shown among the three
groups. However, the individuals in the control group were
significantly younger than those in hypertensive groups (P <
0.001, Table 2). The results of multiple linear regression
analysis controlling for age, gender, and education (Sup-
plementary Table 1) were in accordance with the results in
Table 2. Significant differences in the MoCA, Stroop-B, and
VR-delayed recall scores were shown among the three
groups (Table 2, Supplementary Table 1). Specifically, the
patients in the HTN-CI group had significantly lower scores
on the MoCA than those in the other two groups (P < 0.001).

DMN activity in hypertensive patients

A typical spatial pattern of the DMN similar to that
observed in a previous study with healthy normal subjects
[31] was presented in all groups and included the
anterior cingulate cortex, medial prefrontal cortex, lateral
prefrontal cortex, precuneus, PCC, and medial temporal
lobe (Fig. 1).

The comparison among the control, HTN-NC and HTN-
CI groups showed that the ROIs with significant differences
were mainly found in the frontal cortex, parietal cortex, and
cingulate cortex (Table 3 and Fig. 2). Importantly, based on
the division of the brain regions and their associated DMN
subsystems in previous studies [16, 32], these regions
mainly belonged to the core subsystem and the dorsal
medial subsystem (Table 3). Since the hypertensive subjects
were significantly older than control subjects, the effect of
age on the ROIs with significant differences was investi-
gated with and without age as a covariate, and the results
were approximately similar (see Supplementary Fig. 1).

Post hoc analysis: As shown in Fig. 3a, b, compared
with the control group, the HTN-NC group displayed a
trend of dissociation among the DMN subsystems, i.e.,
decreased FC in the dorsal medial subsystem (including
the left middle temporal gyrus, bilateral precentral gyrus,
and medial frontal gyrus) (Fig. 3a) and increased FC in the
core subsystem (including the right superior frontal gyrus,
right supramarginal gyrus, bilateral angular gyrus, and
dorsal anterior cingulate cortex) (Fig. 3b). In contrast, the
HTN-CI group displayed significantly increased FC in all
regions, with group differences compared to the control
group. Notably, although most of the FC intensity dif-
ferences between the HTN-NC group and the control
group were not significant, a tendency of disassociation
among the DMN subsystems was evident in the HTN-NC

group.

Brain-behavior association analysis in hypertensive
patients with cognitive impairment

No significant correlations between the WMH volumes and
the DMN FC values were observed in the HTN-CI group
(Supplementary Table 2). The FC strength of the dorsal
medial subsystem was significantly correlated with the
cognitive performance of the HTN-CI patients (Fig. 4).
Specifically, the FC values in left middle temporal gyrus
were negatively correlated with the MMSE scores in the
HTN-CI group (p = —0.438, P =0.029). Significant nega-
tive correlations were also observed between the MoCA
scores and the FC values in the left medial frontal gyrus (p
= —0.449, P =0.025), the BNT scores and FC values in the
right precentral gyrus (p =—0.419, P=0.037), and the
BNT scores and the FC values in the right medial frontal
gyrus (p = —0.415, P =0.039).

Discussion
The present study found a tendency of disassociation among
the DMN subsystems in HTN-NC patients and extensively

increased connectivities among the DMN subsystems in
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Table 2 Demographic, clinical and neuropsychological data

Control (n=19) HTN-NC (n =30) HTN-CI (n=25) P value/x*

Age, years 57.26 £7.08 65.93 +7.83% 65.32£7.63* <0.001"
Gender (male/female) 10/9 16/14 12/13 0.918
Education, years 12 (6.00) 12 (6.50) 12 (5.50) 0.424
Diabetes mellitus, n (%) 5 (26.32) 8 (26.67) 7 (28.00) 0.991
HTN duration, years — 10 (9.13) 6 (7.50) 0.295
HTN level HTN-1, n (%) — 10 (33.30) 8 (32.00) 0.719

HTN-2, n (%) — 10 (33.30) 11 (44.00)

HTN-3, n (%) — 10 (33.30) 6 (24.00)
WMH degree Fazakes I, n (%) 16 (84.20) 24 (80.00) 22 (88.00) 0.724

Fazakes II, n (%) 3 (15.80) 6 (20.00) 3 (12.00)
Lacunar infarction, n (%) 1 (5.26) 5 (16.67) 6 (24.00) 0.247
Cerebral microbleed, n (%) 1 (5.30) 7 (23.30) 5 (20.00) 0.247
Gray matter volume, cm3 545.54 £31.00 527.32+42.92 536.98 £54.42 0.240
White matter volume, cm3 486.61 £40.19 454.47+4391 472.99 +54.98 0.065
TWMH volume, mm3 547.23 (498.72) 1002.30 (1795.42) 956.41 (2316.82) 0.115
PVWMH volume, mm3 204.32 (463.06) 582.20 (1396.06) 786.85 (1396.5) 0.154
DWMH volume, mm3 76.22 (281.44) 138.97 (439.04) 189.62 (507.58) 0.378
WMH adjusted 5.41x 10 10.14 x 10 541x10* 0.122

(4.59x 10%) (18.10x 10%) (4.59x 10

MMSE 29 (2.00) 28.5 (2.00) 29 (2.00) 0.365
MoCA 27 (1.00) 26 (2.00) 23 (5.00)*° <0.001""
HAMD 4 (9.00) 3 (8.00) 3 (7.00) 0.900
Processing speed
TMT-A(s) 47 (29.00) 52 (15.75) 47 (26.00) 0.159
Stroop-B(s) 17 (9.00) 19 (5.25) 23 (6.00)° 0.023"
Executive function
TMTba(s) 37 (36.00) 31.5 (45.50) 51 (50.00) 0.193
Stroop CB(s) 6 (10.00) 10.5 (15.25) 10 (10.00) 0.416
Working memory
AVLT-long term delay recall 5.79+2.37 4.96 +2.01 4.80+2.93 0.796
(WMS)VR- delay recall 9.10+£2.88 6.68 £3.32 6.36 £4.37* 0.033"
Language
Boston naming test 52 (5.00) 53 (6.75) 49 (14.50) 0.549
Category verbal fluency 16.95+3.84 17.39 £ 3.66 16.20£2.87 0.35
Visual-spatial ability
(WMS)VR-copy 14 (0.00) 14 (0.00) 14 (0.00) 0.581
CDT 4 (0.00) 4 (0.00) 4 (1.00) 0.061

HTN-NC hypertensive patients with normal cognition, HTN-CI hypertensive patients with cognitive impairment, HTN hypertension, WMH white
matter hyperintensities, PVWMH periventricular white matter hyperintensities, DWMH deep white matter hyperintensities, MMSE Mini-mental
State Examination, MoCA Montreal Cognitive Assessment, HAMD Hamilton Depression Scale, TMT Trail Making Test, AVLT Auditory Verbal
Learning Test, WMS Wechsler Memory Scale, VR Visual Reproduction, CDT clock drawing test.

Data are represented as mean + SD, n (%) or median (IQR), *P < 0.05, differs from the control group; bp< 0.05, differs from the HTN-NC group,
#*P<0.05, P <0.001. One-way ANOVA was applied in the comparison of normal distributed data, )(2 test was applied in the ranked data. The
Kruskal-Wallis test was used for the comparisons of non-normal distributed data

HTN-CI patients. The increased connectivities in the dorsal
medial subsystem were associated with poor cognitive
performance in the HTN-CI patients. These findings could
contribute to the understanding of the mechanisms under-
lying cognitive impairment in hypertension and could pro-
vide potential imaging biomarkers for cognitive impairment
related to hypertension.

Although there were no significant differences between
the FC of the HTN-NC group and of the control group,
there still existed a disassociation trend among the DMN

SPRINGER NATURE

subsystems, i.e., decreased FC in the dorsal medial sub-
system and increased FC in the core subsystem. The dis-
ruption of the equilibrium among the DMN subcomponents
has also been observed in other diseases, such as AD [19],
major depression [20], and particularly T2DM [22]. The
DMN subsystems act as a whole and interact in a dynamic
equilibrium that is critical for the maintenance of normal
cognition [33]. The small-world properties are remarkably
impaired in AD patients [34], indicating disruption of brain
networks and the inability to integrate brain networks. The
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Fig. 1 The DMN were
constructed in the control group, .
HTN-NC group, HTN-CI group L // \
separately by the one sample #-
test. The thresholds were set at a
corrected P<0.001, determined
by Monte Carlo simulation for
multiple comparisons. DMN
default mode network, HTN-NC
hypertensive patients with
normal cognition, HTN-CI
hypertensive patients with
cognitive impairment

Control

Table 3 Brain regions with

significant differences in DMN Regions BA V01u3me Peak MNI coordinate Maximal
. . . (mm”) (mm) F-value

functional connectivity between

groups C

Dorsal medial subsystem

L Middle Temporal Gyrus 21 999 —57 0 —18 7.953
L Middle Temporal Gyrus 22 2403 —57 -39 3 8.740
R Precentral Gyrus 4 3051 42 —18 57 9.221
L Precentral Gyrus 6 1458 -30 -3 63 7.230
R Medial Frontal Gyrus/ R Superior 6 3402 18 -3 66 9.516
Frontal Gyrus

L Medial Frontal Gyrus 6 2376 —6 —12 60 6.829
Core subsystem

R Superior Frontal Gyrus 10 1296 21 57 12 9.030
R Angular Gyrus 39 1647 45 —69 30 8.580
R Supramarginal Gyrus 22 1242 63 —48 21 8.497
L Angular Gyrus 39 1323 —45 —66 30 6.832
Cingulate Gyrus 32 3645 6 18 42 7.862

(x, ¥, z) coordinates of primary peak locations in the MNI space.
DMN default mode network, L left, R right, BA Brodmann area, MNI Montreal Neurological Institute

SPRINGER NATURE
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Fig. 2 The DMN FC differences L
among the three groups.
According to the ANCOVA, the
11 brain regions with significant
differences were mainly located
in the frontal cortex, parietal
cortex, and cingulate cortex. The
thresholds were set at a
corrected P <0.05, determined
by Monte Carlo simulation for
multiple comparisons
(voxelwise P<0.01, FWHM =
6 mm, cluster size > 999 mm3).
L left, R right, DMN default
mode network, FC functional
connectivity, ANCOVA
analysis of covariance

L Medial Frontal Gyrus
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Fig. 3 DMN FC differences among the three groups in (a) the dorsal
medial subsystem and (b) the core subsystem. A tendency of dis-
sociation among the DMN subsystems was found in the HTN-NC
group, while an overall significant FC enhancement appeared in all the
brain regions in the HTN-CI group. The significant differences

present study is the first to show a tendency of dissociation
among the DMN subsystems in hypertensive patients,
suggesting that the internal balance and integrity of the
DMN subsystems is disrupted by hypertension. However,
the tendency of dissociation within the DMN was found
only in hypertensive patients with normal cognition. Thus,
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between each pair of groups in different brain regions according to the
post hoc analysis are marked (*P <0.05; **P <0.01; ***P <0.001). L
left, R right, DMN default mode network, FC functional connectivity,
HTN-NC hypertensive patients with normal cognition, HTN-CI
hypertensive patients with cognitive impairment

it is possible that merely the trend of dissociation among the
DMN subsystems would not confer to cognitive impairment
in hypertensive patients.

HTN-CI patients showed significant FC increases in both
the dorsal medial subsystem and core subsystem of DMN,
and previous studies have revealed a similar compensatory
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Fig. 4 Spearman correlation A 1.0- B 0.6-
analysis was performed to detect ) - p= -0.438, P=0.029 ” °
the relationship between DMN ; 0.84 ° =] 0 °
FC and cognitive performance in o - ° 5 0.4 °
anc cog P et ) p= -0.449, P=0.025
the HTN-CI group. Increased © 0.64 = e® °
functional brain activity was g~ 1 £ 0.21 S * &
associated with worse cognitive E 2 0.4 ue_ . {
performance. a The FC of the L ~a 1 = 0.0 by
middle temporal gyrus (BA22) % 0.2 5 °e
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0.0 Bl °

MMSE score. b The FC of the L = 4
medial frontal gyrus was - A
negatively correlated with -0.2 U — 1 0.4 T T 1
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phenomenon in MCI, AD [35-37], Parkinson’s disease
[38], and schizophrenia [39]. This compensation can be
seen as a process of brain reconstruction and brain func-
tional remodeling due to its plasticity after damage to ori-
ginal neural networks, especially in the early phase of CI
[36, 40]. It should be noted that the abnormally increased
FC appeared in the preliminary stage, presented a declining
trend with progression of the disease and vanished at the
terminal stage of the disease [41]. To compensate for
the cerebral damage concomitant with the cognitive decline,
the impaired region of brain could reallocate the cognitive
and neurological resources from the whole brain [35].
Therefore, the HTN-CI patients may have the chance to
inhibit the aggravation and prevent cognitive impairment
since they are still in the initial stage of CI. Recent neu-
roimaging studies have confirmed that DMN changes could
predict therapeutic effects in psychiatric disorders such as
schizophrenia [42]. Similarly, the compensatory phenom-
enon of the DMN in HTN-CI patients may also hold great
potential value for providing information about early pre-
diction of cognitive impairment prognosis and treatment in
hypertensive patients.

Interestingly, the changing patterns in the dorsal medial
subsystem were prominently different between the HTN-
NC patients and the HTN-CI patients, indicating that the
function of the dorsal medial subsystem plays a

predominant role in the cognitive impairment of these
hypertensive patients. Our investigations further found
significant negative relationships between the dorsal medial
subsystem and corresponding neuropsychological tests of
overall cognitive function and language ability, such as the
MMSE, MoCA, and BNT, in HTN-CI patients. These
findings were in line with those of previous studies that
found that the dorsal medial subsystem mainly participates
in semantic processing and comprehension of conceptual
knowledge components [17]. Thus, we postulated that the
increased FC in the dorsal medial subsystem and its inverse
correlations between the neuropsychological results is more
closely related to the cognitive compensation for the
damage to brain function and loss of manipulation in HTN-
CI patients.

WMH is common in hypertensive patients. The struc-
tural basis of brain function is the neuronal connections
among various regions via WM tracts [43]. However, the
present study found no association between the DMN FC
value and WMH grade or WMH volume in hypertensive
patients, a finding that did not coincide with the assumption
that WMH is the main factor that contributes to the FC
alterations related to hypertension. The following are pos-
sible reasons. The microstructural integrity of the WM in
particular regions could play a key role in specific cognitive
disturbances [44]; however, the present volumes of the
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WMH presented only as a macroscopic lesion of the white
matter tracts. It is clear that the occurrence of cognitive
decline is the result of the interaction between brain struc-
ture and function, and more detailed and precise studies of
the microstructure in WM tracts could lead to more reliable
conclusions.

Limitations and future work

Several limitations need to be addressed. First, the sample
size was relatively small for making the conclusions per-
suasive. Since the current study was a cross-sectional study,
it is uncertain that the obtained results were causes of
hypertension-induced cognitive impairment or the results of
hypertension-induced cognitive impairment. Thus, we
intend to enlarge the sample size and follow up subjects for
three or four years to investigate the association between
alterations of cognitive performances and those of brain
network activity. The continuous follow-up of blood pres-
sure fluctuations, cognition and DMN alterations of all
subjects is underway.

Additionally, the diversity of antihypertensive drugs,
hypoglycemic drugs, and lipid-lowering drugs were
not analyzed in the present study. An effective
blood pressure control can retard the speed of hyperten-
sion progression, and different drugs generate different
therapeutic effects. No studies have specifically explored
the effects of hypoglycemic drugs or lipid-lowering
drugs on brain networks. Even the effects of those
drugs on cognition are controversial. Both beneficial
effects (cognitive protection [45] and reducing the
risk of AD [46]) and neurotoxic effects (aggravating
the cognitive impairment [47, 48]) were found in previous
studies. The LIs and T2DM may have affected the
present findings, although these confounding factors
were comparable among the three groups. As it is
difficult to control the effects of different drugs and
other diseases, exclusion of those patients with LlIs,
T2DM, and hyperlipidemia in a future study would be a
wise choice to alleviate the effects of different con-
founding factors.

Last but not least, the diagnosis of hypertension was
based on medical records and history of taking oral anti-
hypertensive drugs. The assessment of previous BP control
is difficult in patients with long-term hypertension. Thus,
home BP monitoring (HBPM) plays an important role in
hypertension management and evaluation of BP control
[25]. HBPM is more closely related to hypertension-
induced organ damage than is clinical BP measurement
[25], and the variability of home BP has been associated
with cognitive decline in hypertensive patients [49, 50].
Since the variability could also be an important influencing

SPRINGER NATURE

factor of brain network activity and cognition, we would
like to calculate the variability of home BP through the
records of HBPM and 24-h ambulatory BP measurement in
future follow-up visits.

Conclusion

Different brain network alterations in the core subsystem
and the dorsal media subsystem of DMN may differentiate
hypertensive patients with cognitive impairment from those
with normal cognition. HTN-CI patients displayed exten-
sively increased connectivities in the DMN subsystems that
were associated with poor cognitive performance. The
characteristic changes in the dorsal medial subsystem may
become an early imaging biomarker for cognitive impair-
ment in hypertensive patients.
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