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Abstract
High-salt intake is one of the major dietary determinants of increased blood pressure and cardiovascular disease. Thus, there
is scientific and medical interest in understanding the mechanistic abnormalities mediating the pressor effects of salt (salt
sensitivity). According to historical theory, salt sensitivity stems from an impairment in renal function (referred to as
“abnormal pressure natriuresis” or a “natriuretic handicap”), which causes salt-sensitive subjects to excrete a sodium load
more slowly, and retain more of it than salt-resistant normotensive controls. However, this historical view has come under
intense scrutiny because of growing awareness that in salt-sensitive subjects, acute salt loading does not usually induce
greater increases in sodium balance and cardiac output than those induced by salt loading in salt-resistant normotensive
controls. Here we highlight pioneering studies from Japan that challenge the historical thinking and provide insights into a
contemporary theory of salt sensitivity termed the “vasodysfunction theory.” According to this theory, initiation of salt-
induced hypertension usually involves abnormal vascular resistance responses to increased salt intake, not greater renal
retention of a salt load in salt-sensitive subjects than in normal subjects. By shifting the focus from the historical theory to a
contemporary final common pathway for the pathogenesis of salt sensitivity, research from Japan is building the scientific
foundation for more effective approaches to the prevention and treatment of salt-induced hypertension. Among the most
promising approaches are dietary strategies for reducing the risk for salt-induced hypertension that do not depend on
reducing salt consumption in the population.
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Introduction

Blood pressure salt sensitivity is a common disorder asso-
ciated with increased risk for hypertension [1]. Studies by

Morimoto et al. [2] from the National Cardiovascular Center
in Suita, Japan suggest that salt sensitivity may also be an
independent risk factor for elapsed time to a cardiovascular
event. Thus, in addition to increasing risk for hypertension,
salt sensitivity might signify an underlying disturbance in
vascular biology that influences risk for cardiovascular events
beyond its effects on blood pressure per se [2]. Of the many
different methods that have been explored for assessing salt
sensitivity, a carefully controlled dietary protocol similar to
that employed by Morimoto et al. [2], provides the highest
test–retest reliability for identifying salt-sensitive subjects [3].
While there is ongoing concern about the meaning and
practical utility of various methods of testing for salt sensi-
tivity [3–5], the mechanistic abnormalities mediating the
pressor effects of salt, and the role of dietary salt restriction in
the prevention and management of hypertension, are subjects
of major scientific and medical interest [1, 6–11].
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Disturbances in many molecular, biochemical, neural,
immunologic, and other mechanisms have been implicated
in the pathogenesis of salt sensitivity [12–45]. It has been
proposed that many, if not most, of these disturbances
usually mediate salt sensitivity and initiation of salt-induced
hypertension through a common physiologic abnormality
termed “vasodysfunction” [42, 46]. In the present review,
we discuss the vasodysfunction theory of salt sensitivity and
highlight pioneering studies from Japan that have been
instrumental in elucidating this final common pathway
through which a variety of biologic disturbances initiate
salt-induced hypertension.

The physiologic abnormality that usually
mediates salt sensitivity and initiation of
salt-induced hypertension: an abnormal
vascular resistance response to increased
salt intake

According to the vasodysfunction theory of salt sensitiv-
ity, initiation of salt-induced hypertension usually
involves subnormal decreases in systemic vascular resis-
tance (total peripheral resistance) in response to salt
loading, together with normal salt-induced increases in
sodium balance and cardiac output (Fig. 1) [42]. Thus, the
theory holds that “vasodysfunction,” defined as a sub-
normal decrease in systemic vascular resistance in
response to increases in salt intake, is the physiologic
abnormality that initiates most instances of salt-induced
hypertension. The abnormal systemic vascular resistance
response to salt loading is determined at least in part by an
abnormal renal vascular resistance response to salt load-
ing (Fig. 1) [46].

It is important to note that while salt-sensitive subjects
undergo increases in sodium balance and cardiac output in
response to acute salt loading, the vasodysfunction theory
holds that those increases are usually not abnormal [42].
That is, the vasodysfunction theory holds that in most salt-
sensitive subjects, increases in sodium balance and cardiac
output in response to acute salt loading are not greater than
those that occur with salt loading in normal controls (salt-
resistant subjects with normal blood pressure) (Fig. 1). The
theory holds that in contrast to salt-resistant normal con-
trols, most salt-sensitive subjects fail to robustly vasodilate
and normally reduce systemic vascular resistance in
response to acute salt loading (Fig. 1) [42]. This abnormal
vascular resistance response to salt loading causes systemic
vascular resistance to be greater in salt-sensitive subjects
than in salt-resistant normal controls. With salt loading, the
abnormally high (greater) levels of systemic vascular
resistance, together with normally increased levels of
sodium balance and cardiac output, cause greater increases
in blood pressure in salt-sensitive subjects than in salt-
resistant normal controls (Fig. 1) [42]. The vasodysfunction
theory can apply not only to common forms of salt sensi-
tivity, but also to salt sensitivity that may occur in rare
Mendelian forms of hypertension [47].

Questioning the historical view that
subnormal sodium excretion is usually
involved in the initiation of salt sensitivity
and salt-induced hypertension: pioneering
studies from Japan

In contrast to the contemporary vasodysfunction theory of salt
sensitivity, the historical and still prevailing theory of salt
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Fig. 1 The vasodysfunction theory for initiation of salt sensitivity and
salt-induced hypertension. This diagram shows the usual changes in
sodium balance, cardiac output, and vascular resistance that occur with
initiation of increased salt intake in salt-sensitive subjects, and in salt-
resistant subjects with normal blood pressure. Note that in salt-
sensitive subjects, the increases in sodium balance and cardiac output

that occur during initiation of salt loading are not abnormal, i.e., not
greater than those that occur with salt loading in salt-resistant controls
with normal blood pressure. In contrast, the salt-induced changes in
vascular resistance that occur in salt-sensitive subjects are distinctly
abnormal, i.e., distinctly different from those that occur in normoten-
sive, salt-resistant controls
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sensitivity championed by Guyton, Hall, and others [48–59]
incorporates the view that initiation of salt-induced hyper-
tension usually involves an impairment in renal function
(referred to as a “natriuretic handicap” or “abnormal pressure
natriuresis”) which causes salt-sensitive subjects to excrete a
sodium load more slowly, and retain more of it than salt-
resistant subjects with normal blood pressure. This historical
theory holds that in response to increased salt intake, the
natriuretic handicap causes salt-sensitive subjects to undergo
abnormally large increases in sodium balance, cardiac output,
and therefore blood pressure. However, in careful metabolic
studies conducted at Tokyo University more than 30 years
ago, Ishii et al. [60] found that in response to increases in salt
intake (from 100mmol/day to ~275mmol/day), salt-sensitive
subjects usually do not excrete sodium more slowly and
undergo greater increases in sodium balance than salt-resistant
normal controls (salt-resistant subjects with normal blood
pressure). This seminal observation from Japan was subse-
quently confirmed by investigators in other countries studying
humans and animal models [61–67] and provides the foun-
dation for a key tenet of the contemporary vasodysfunction
theory: initiation of salt sensitivity does not usually involve
subnormal sodium excretion and retention of greater amounts
of sodium in salt-sensitive subjects than in salt-resistant nor-
motensive controls.

Salt-sensitive Japanese and non-Japanese may often
excrete a sodium load more slowly, and retain more of it
when compared with salt-resistant hypertensive subjects
[68, 69], but not when compared with normal subjects (salt-
resistant subjects with normal blood pressure) [60–63].
Thus, contrary to historical theory, a natriuretic handicap
(subnormal sodium excretion in response to salt loading)
does not usually account for the initiation of most instances
of salt sensitivity and salt-induced hypertension. Note that
this view does not conflict with the popular teleologic
interpretation of salt sensitivity which holds that in salt-
sensitive subjects, increases in blood pressure in response to
salt loading are “required” to excrete the salt load
[1, 50, 55, 57]. The teleologic interpretation is a statement
of the supposed purpose of salt-induced hypertension. It is
not a statement about the mechanism of salt sensitivity, and
it does not address the abnormality that usually mediates
salt-induced increases in blood pressure in the first place.

The key role of the renal blood vessels in
mediating salt sensitivity and abnormal
vascular resistance responses to increases in
salt intake

According to the vasodysfunction theory, the abnormal vas-
cular resistance response to salt loading that usually initiates
salt-induced hypertension includes impaired renal vasodilation

and abnormally increased renal vascular resistance (greater
renal vascular resistance in salt-sensitive subjects than in salt-
loaded, salt-resistant subjects with normal blood pressure)
(Fig. 1) [46]. Investigators in Japan were among the first to
show that in salt-sensitive subjects, renal vascular resistance
increases within a week after switching from a low-salt diet to
a high-salt diet (Fig. 2) [68, 70, 71]. Salt-induced increases in
renal vascular resistance have been reported to occur in both
Japanese and non-Japanese subjects with salt sensitivity [68,
70–75]. These findings in humans are consistent with studies
from the Department of Pharmacology, Kagawa Medical
School by Tomohiro et al. [76] in conscious Dahl salt-
sensitive rats (Dahl S rats) showing that salt loading induces
large increases in renal vascular resistance.

To determine whether the salt-induced increases in renal
vascular resistance that occur in salt-sensitive subjects are
abnormal, it is necessary to have an accurate understanding
of the effects of salt loading on renal vascular resistance in
appropriate normal controls (salt-resistant subjects with
normal blood pressure). Figure 2 shows that in salt-resistant
subjects with normal blood pressure, but not in salt-
sensitive subjects, renal vascular resistance usually decrea-
ses within the first week of switching from a low-salt diet to
a high-salt diet [74, 77–79]. Thus, in salt-sensitive subjects,
the increases in renal vascular resistance that occur in
response to salt loading appear distinctly abnormal. Further,
in response to short-term salt loading, salt-induced increases
in renal vascular resistance are directly correlated with salt-
induced increases in blood pressure [74, 75].

As noted above, in response to salt loading, it is well
established that renal vascular resistance usually increases in
salt-sensitive subjects and decreases in salt-resistant normal
controls (salt-resistant subjects with normal blood pressure)
[46]. This raises the question: what is the usual effect of salt
loading on renal vascular resistance in salt-resistant subjects
with hypertension? Investigators in Japan and other countries
have found that in salt-resistant subjects with hypertension,
renal vascular resistance usually undergoes relatively little or
no change in response to short-term increases in salt intake
[68, 70–73]. Thus, within the first week of switching from a
low-salt diet to a high-salt diet, renal vascular resistance
increases in salt-sensitive subjects (with or without hyper-
tension), decreases in normal subjects (salt-resistant subjects
with normal blood pressure), and undergoes relatively little or
no change in salt-resistant subjects with hypertension.

The usual mechanism whereby salt-induced
increases in renal vascular resistance initiate
salt-induced hypertension

In salt-sensitive subjects, the abnormal renal vascular
resistance response to salt loading does not usually initiate
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hypertension by causing greater sodium retention than in
salt-loaded normal controls (salt-resistant subjects with
normal blood pressure). In salt-sensitive subjects, the
abnormal increase in renal vascular resistance with salt
loading may constrain salt-sensitive subjects from
excreting more of a sodium load than normal subjects
(salt-resistant subjects with normal blood pressure) [46].
However, it does not cause salt-sensitive subjects to
excrete the sodium load less rapidly and retain more of it
than salt-loaded normal subjects [46, 60–63]. As dis-
cussed earlier, in light of the pioneering work of Ishii and
colleagues, and of confirmatory studies by others, it is
apparent that salt-sensitive subjects usually do not retain

more of a salt load than normal subjects, acutely or
chronically [46, 60–63]. Accordingly, the vasodysfunc-
tion theory holds that in salt-sensitive subjects, the
abnormal renal vascular resistance response to salt load-
ing contributes to initiation of salt-induced hypertension
by promoting greater systemic vascular resistance in salt-
sensitive subjects than in salt-loaded normal subjects, not
by causing greater retention of sodium than in salt-loaded
normal controls (Fig. 1) [42, 46].

In salt-sensitive subjects, further research is required to
precisely establish the roles of various segments of the
renal circulation in determining the abnormal renal vas-
cular resistance responses to salt loading. It has been
suggested that in salt-sensitive subjects, increases in salt
intake induce increases in afferent and efferent arteriolar
resistance [72, 73, 75]. Salt-induced decreases in preglo-
merular resistance may largely account for the decreases
in renal vascular resistance that occur in response to salt
loading in salt-resistant normal controls [74, 79]. Fur-
thermore, studies by Fujita and colleagues, Takeshita
et al, and others suggest that in salt-sensitive subjects, salt
loading may also promote increases in arterial resistance
in non-renal vascular beds [28, 68, 80–84]. Thus, in salt-
sensitive subjects, abnormal vascular resistance responses
to salt loading appear to involve more than just the renal
circulation.

In salt-sensitive subjects, what mechanisms
mediate abnormal renal vascular resistance
responses to increases in salt intake?

According to the vasodysfunction theory of salt sensitivity,
the abnormal vascular resistance response to salt loading
that is usually involved in initiation of salt-induced hyper-
tension can be mediated by disturbances in a variety of
molecular, biochemical, neural, immunologic, and other
pathways [12–45, 85]. Figure 3 depicts this final common
pathway through which an assortment of mechanistic dis-
turbances may enable salt loading to initiate hypertension.
The underlying mechanistic disturbances involved in caus-
ing abnormal vascular resistance responses to salt loading
and salt sensitivity may vary according to genetic, envir-
onmental, and demographic factors. Such mechanistic dis-
turbances may cause abnormal vascular resistance
responses to salt loading by increasing activity of pathways
promoting vasoconstriction, impairing activity of pathways
promoting vasodilation, or both. While many mechanisms
can be involved in mediating abnormal vascular resistance
responses to increases in salt intake, here we highlight the
role of disturbances in the nitric oxide (NO) system in the
vasculature, and single out key studies from Japan per-
taining to this topic.
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Fig. 2 Changes in renal vascular resistance, sodium excretion, and
blood pressure that occur with initiation of increased salt intake in
humans. These results are based on salt-loading studies in salt-
sensitive subjects [63, 68, 70, 72–75] and in salt-resistant normal
controls (salt-resistant subjects with normal blood pressure)
[63, 74, 77–79]. The dotted lines indicate that with initiation of salt-
induced increases in blood pressure (within the first few days of salt
loading), the exact time courses for the salt-induced changes in renal
vascular resistance are unknown. Adapted from Kurtz et al. [46] with
permission
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Highlighting the role of disturbances in
nitric oxide activity in mediating the
vasodysfunction that initiates salt-induced
hypertension

With respect to the pathogenesis of salt sensitivity, we are
particularly interested in disturbances that impair activity of
vasodilation pathways involved in the flow-mediated
decreases in vascular resistance that normally occur in
response to increased salt intake. NO plays a major role in
flow-mediated vasodilation, and increased NO activity is an
important determinant of the reductions in renal and sys-
temic vascular resistance that normally occur in response to
a high-salt diet [79]. While other factors besides NO can be
involved in flow-induced dilation, Matic et al. [86] have
suggested that in the setting of a high-salt diet, the depen-
dence of flow-induced dilation on NO becomes particularly
prominent. In 1991, Chen and Sanders [29] proposed that
abnormalities in NO activity are involved in the pathogen-
esis of salt sensitivity and reported that in Dahl S rats,
subnormal NO responses to increased salt intake may
initiate disturbances in vascular resistance and hypertension.

Asymmetrical dimethylarginine as a
mechanism of salt-induced disturbances in
NO activity mediating renal vasodysfunction
and salt sensitivity

Shortly after the landmark study by Chen and Sanders [29],
investigators from Japan [40, 41, 70, 87–90] and elsewhere

[91–95] began to explore mechanisms mediating abnormal
NO responses to increased salt intake. Consistent with the
hypothesis proposed by Chen and Sanders, Tolins and
Shultz [94] found that inhibition of NO synthesis induces
salt sensitivity in Sprague Dawley rats that are otherwise
resistant to the pressor effects of a high-salt diet. Pioneering
work by Japanese investigators indicated that in salt-
sensitive subjects, impaired NO activity in response to a
high-salt diet may be mediated by endogenous inhibitors of
NO synthase and by various factors that impair NO bioa-
vailability. Specifically, Matsuoka et al. [40] from Kurume
University School of Medicine reported that the failure of
Dahl S rats to normally increase NO activity in response to
increases in salt intake is mediated by abnormally increased
levels of asymmetrical dimethylarginine (ADMA). ADMA
substantially inhibits NO activity by inhibiting NO synthase
activity and by increasing oxidative stress [96–99]. Oxida-
tive stress impairs NO bioavailability and also increases
ADMA levels, and has been proposed to be a key deter-
minant of salt sensitivity [43, 44, 99–101]. Suda et al. [97]
from the School of Medicine of the University of Occupa-
tional and Environmental Health in Kitakyushu reported
that in mice, ADMA can induce vascular oxidative stress
and vascular damage in the presence or absence of endo-
thelial nitric oxide synthase, possibly by increasing vascular
levels of angiotensin-converting enzyme and activity of the
vascular renin angiotensin system (RAS).

In agreement with the experimental findings in animal
models, studies in both Japanese and non-Japanese humans
have demonstrated that in salt-sensitive subjects, but not in
salt-resistant subjects [31, 41, 63, 102–104], increases in
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salt intake: (1) reduce vascular activity of the enzyme
dimethylarginine dimethylaminohydrolase (DDAH) that
degrades ADMA; (2) induce increases in plasma ADMA
and urinary excretion of ADMA; and (3) reduce biomarkers
of NO in plasma. In key studies in hypertensive and nor-
motensive Japanese, Fujiwara et al. [41] at Hirosaki Uni-
versity found that salt-induced changes in blood pressure
correlated inversely with salt-induced changes in plasma
nitrate/nitrite levels, which correlated inversely with salt-
induced changes in plasma levels of ADMA. Based on
these and other observations, the investigators concluded
that “Modulation of NO synthesis by salt intake may be
involved in a mechanism for salt sensitivity in human
hypertension, presumably via the change in ADMA” [41].
Figure 4 illustrates the proposed involvement of ADMA in
salt-induced disturbances in NO activity mediating vaso-
dysfunction in salt-sensitive subjects.

Consistent with the role for ADMA in salt sensitivity
proposed by Fujiwara et al. [41], Schmidlin et al. [63] found
that in salt-sensitive African Americans, increases in plasma
levels of ADMA occur within 24 h of initiating increased
salt intake. In normal, salt-resistant African-American
control subjects, the same salt loading does not increase
ADMA levels [63]. In salt-sensitive subjects, the early salt-
induced increases in ADMA levels precede the initiation of
salt-induced increases in blood pressure and are not simply
a consequence of salt-induced hypertension [63].

Although many mechanisms may mediate the dis-
turbances in renal vascular resistance involved in the
pathogenesis of salt sensitivity, the role of abnormal
ADMA activity is of particular interest because it is one
of the few mechanisms that might explain why the trait of
salt-sensitivity does not always “follow the kidney” in
transplantation studies [105]. As we have discussed

elsewhere [42], it is conceivable that non-renal produc-
tion of ADMA, or renal production of ADMA, or both
could bring about salt-sensitivity. Specifically, intrarenal
disturbances in NO activity in salt-sensitive animals
caused by salt-induced increases in circulating ADMA
from extra-renal sources could explain why transplanting
a kidney from a Dahl salt-resistant rat into a bilaterally
nephrectomized salt-sensitive recipient fails to correct
salt-sensitivity in the recipient [105]. In addition,
intrarenal disturbances in NO activity caused by salt-
induced increases in renal production of ADMA and
decreases in renal clearance of ADMA could account for
the observation that transplantation of a kidney from a
Dahl salt-sensitive donor into a bilaterally nephrecto-
mized salt-resistant recipient induces salt-sensitivity in
the recipient [105].

Additional mechanisms of salt-induced
disturbances in NO activity mediating renal
vasodysfunction and salt sensitivity

Many factors in addition to ADMA may be involved in
mediating salt-induced disturbances in oxidative stress and
NO activity that promote renal vasodysfunction and salt
sensitivity [30, 43, 45, 106, 107]. For example, Kobori et al.
[108, 109] reported that in Dahl S rats, increased salt intake
causes a paradoxical increase in intrarenal levels of angio-
tensinogen and fails to normally suppress angiotensin II in
the kidney. With salt loading, greater levels of angiotensin
II in renal tissue in salt-sensitive rats versus salt-resistant
rats could generate greater NADPH oxidase activity and
abnormally high levels of renal oxidative stress that can
interfere with NO bioactivity [44]. The observations of
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Fig. 4 Impaired NO
bioavailability mediated by
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to salt loading
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Kobori et al. in Dahl rats [108] are consistent with the
clinical studies of Konishi et al. [110] and others
[74, 111, 112], which suggest that abnormal responses of
the intrarenal RAS to salt loading may mediate salt-induced
disturbances in oxidative stress, renal vascular resistance,
and salt sensitivity in humans. Because the balance between
NO activity and angiotensin II activity is a key determinant
of vascular tone [101, 113, 114], interactions between the
NO system and the RAS should be considered when
assessing the mechanisms underlying renal vasodysfunction
and salt sensitivity. Figure 5 illustrates a role for the
intrarenal RAS in mediating impaired NO bioavailability,
abnormal renal vascular resistance, and increased blood
pressure in response to salt loading.

Based on the work of Oberleithner and others
[36, 39, 115–118], it has been proposed that impairment of
NO-mediated vasodilation in response to a high-salt diet
may also be caused by increases in endothelial cell stiffness
mediated by salt-induced increases in plasma sodium con-
centrations, together with aberrant increases in the activity
of epithelial-like sodium channels in endothelial cells
(termed “EnNaCs”) [118]. Increases in EnNaC activity
promote increased endothelial cell membrane stiffness by
promoting sodium influx, cell swelling, and membrane actin
polymerization [36, 116–118]. By reducing membrane
deformability, increased endothelial cell stiffness may
interfere with flow-mediated activation of mechan-
oreceptors and signaling pathways that promote increases in
NO activity and vasodilation in response to increases in salt
intake [36, 117, 118]. Figure 6 illustrates a role for increases
in EnNaC activity and endothelial stiffness in mediating
impaired NO bioavailability and abnormal vascular resis-
tance in response to salt loading. Because increases in
EnNaC activity may be caused by mineralocorticoid excess,

or by certain genetic mutations, this mechanism of salt-
induced vasodysfunction may be of particular importance in
patients with hyperaldosteronism, the syndrome of apparent
mineralocorticoid excess, Liddle syndrome, or some forms
of congenital adrenal hyperplasia [47, 116, 118].

Implications of the vasodysfunction theory
of salt sensitivity for prevention and
treatment of salt-induced hypertension

As we have emphasized, initiation of salt-induced hyper-
tension usually involves the combination of (1) abnormal
vascular resistance responses to acute salt loading that cause
renal vascular resistance to become greater in salt-sensitive
subjects than in salt-resistant normal controls and (2) nor-
mal increases in sodium retention in response to acute salt
loading that do not cause greater increases in sodium bal-
ance and cardiac output in salt-sensitive subjects than in
salt-resistant normal controls. Thus, in salt-sensitive sub-
jects, prevention of either the abnormal vascular resistance
responses to salt loading, or the normal increases in sodium
balance and cardiac output in response to salt loading, can
help prevent the initiation of salt-induced hypertension.

While restriction of dietary intake of salt is routinely
recommended for prevention or treatment of salt-induced
hypertension, many individuals may not wish, or be able, to
reduce their intake of salt to the levels recommended by
medical authorities in Japan (<6 g NaCl per day) [7] or to
even lower dietary targets recommended in other countries
such as the United States and Germany (<3.8 g NaCl
per day) [119, 120]. Thus, additional strategies are needed
for prevention and management of salt sensitivity and salt-
induced hypertension.

Ideally, interventions to prevent or treat salt-induced
hypertension should be primarily directed at the abnormal
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Fig. 5 Impaired NO bioavailability mediated by increased intrarenal
activity of the renin angiotensin system in response to salt loading
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physiologic mechanisms that usually mediate salt sensitiv-
ity, i.e., the abnormal vascular resistance responses to salt
loading, including those involving the renal vasculature. In
patients in whom the salt sensitivity is due to functional
disturbances in vascular resistance mediated by low NO
activity, excess activity of the RAS, or excess activity of
other vasoconstrictors, use of angiotensin receptor blockers
(ARBs), calcium channel blockers, or both may be suffi-
cient to treat salt sensitivity. For example, in cases of salt
sensitivity mediated by subnormal NO responses to
increases in salt intake, interventions aimed at improving
NO bioavailability in the renal vasculature would represent
a targeted approach to prevention and treatment of salt-
induced hypertension. However, in salt-sensitive subjects
with noncompliant blood vessels (e.g. advanced arteriolar
nephrosclerosis) in whom subnormal vasodilatory responses
to salt loading may be mediated by structural changes in the
vasculature, treatments aimed at promoting vasodilation
may have limited effectiveness in reducing vascular resis-
tance and attenuating salt-induced hypertension. Accord-
ingly, in those subjects, salt restriction and or diuretic
therapy will be required in the management of salt
sensitivity.

Pharmacologic approaches to preventing
salt sensitivity mediated by subnormal NO
responses to a high-salt diet

In subjects with salt sensitivity mediated by subnormal NO
responses to a high-salt diet, pharmacologic correction of
mechanistic abnormalities that cause oxidative stress and
impair NO bioactivity may attenuate salt sensitivity and
reduce the risk for salt-induced hypertension. Consistent
with this view, Imanishi et al. [111] proposed that in some
patient subgroups, treatment with ARBs to attenuate salt-
induced increases in renal oxidative stress and support NO
activity may protect against salt sensitivity. Specifically, the
investigators found that in diabetic patients with micro-
albuminuria, salt sensitivity is associated with reduced
urinary excretion of NO metabolites (nitrate and nitrite,
NOx) in response to salt loading [111]. Treatment with an
ARB reduced renal excretion of a marker of oxidative stress
(8-hydroxy-2′-deoxyguanosine), increased NOx excretion,
and reduced salt sensitivity (defined by the blood pressure
effects of switching NaCl intake from 60 mmol/day for one
week to 180 mmol/day for one week) [111]. As noted by
Imanishi et al. [111], these observations suggest that the
protective effect of ARB treatment on salt sensitivity may
be mediated through antioxidative mechanisms that restore
NO bioavailability in the kidney.

In studies in which blood pressure has been directly
measured through arterial catheters in unanesthetized

animals, blockade of the RAS has also been found to sig-
nificantly attenuate salt-induced hypertension in classic
animal models of salt sensitivity including in Dahl S rats
[121–123] and in rodents with reduced renal mass [67].
Recently, Hatanaka et al. [124], from Osaka University
Graduate School of Medicine, speculated that in partially
nephrectomized mice, the ARB azilsartan attenuates salt
sensitivity by inhibiting proximal tubule reabsorption of
sodium. However, in those studies, no measurements were
reported of the effects of azilsartan on the changes in
sodium balance induced by salt loading. Furthermore,
Kanagy and Fink [67] found that in partially nephrecto-
mized rats, the ARB losartan prevents salt-induced hyper-
tension without attenuating salt-induced increases in sodium
balance. The present discussion focuses on the possibility
that RAS inhibitors attenuate salt sensitivity by inhibiting
activity of the intrarenal RAS, reducing renal oxidative
stress, and maintaining NO bioavailability. However, it
should be noted that effects of RAS inhibitors on the central
nervous system and sympathoexcitation may also mediate
the capacity of these inhibitors to protect against abnormal
vascular resistance responses to salt loading that initiate
salt-induced hypertension [125, 126].

As previously discussed, some cases of salt sensitivity
involve impaired NO activity caused by increases in
endothelial cell stiffness mediated by mineralocorticoid
excess, or by other factors that stimulate activity of EnNaCs
[39, 118]. In those cases, pharmacologic treatment would
rationally include agents that attenuate EnNaC activity (e.g.,
mineralocorticoid receptor (MR) blockers or epithelial
sodium channel blockers) [127, 128]. Such agents might be
expected to protect against salt-induced increases in blood
pressure not only by ameliorating abnormal vascular resis-
tance responses to salt loading but also by attenuating salt-
induced increases in sodium balance. However, we are
unaware of any published studies which have compared the
effects of salt loading on sodium balance, cardiac output,
and vascular resistance in salt-sensitive subjects treated with
MR blockers or epithelial sodium channel blockers to those
in placebo-treated salt-sensitive controls. It should also be
noted that the capacity of MR blockers or epithelial sodium
channel blockers to affect vascular resistance responses to
salt loading and attenuate salt sensitivity may be related to
effects of these drugs on central nervous system activity
[129, 130].

Unfortunately, in clinical practice, we do not have effi-
cient tests for readily identifying patients with salt sensi-
tivity and we do not have effective tests for readily
determining the primary abnormalities causing salt sensi-
tivity in most affected individuals. Thus, from a practical
point of view, it is currently difficult to target pharmaco-
logic therapy to the primary mechanistic abnormalities
mediating salt sensitivity. As we continue to gain a better
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understanding of the mechanisms of salt sensitivity, it may
become possible to develop better tests for identifying salt-
sensitive patients and for guiding the choice of pharmaco-
logic therapy in the future.

Dietary approaches to augmenting NO
activity and preventing salt sensitivity

The use of dietary approaches to prevent salt sensitivity by
augmenting NO activity was originally tested in animals by
Chen and Sanders [29] more than 25 years ago. In studies
using Dahl S rats, the investigators found that increased
intake of the NO precursor L-arginine could prevent salt-
induced hypertension [29]. However, patients with endo-
thelial dysfunction have a reduced ability to convert L-
arginine to NO [131]. As an example, Higashi et al. [70], at
the Hiroshima University School of Medicine, found that in
Japanese in-patients with mild to moderate essential
hypertension and salt sensitivity, salt loading may impair
the ability of L-arginine to increase endothelial NO synth-
esis in the renal vasculature and decrease renal vascular
resistance. For these and other reasons, we have advocated
alternative dietary approaches to preventing salt-induced
hypertension based on increased intake of vegetables with a
high content of nitrate which can augment generation of NO
without the need to increase NO synthase activity [132].

In humans and in animals, NO can be generated by
reduction of nitrite derived from dietary or non-dietary
sources of nitrate [133]. In addition, supplemental adminis-
tration of nitrate or nitrite has been reported to reduce blood
pressure in humans and animals [133]. Gao et al. [134] have
suggested that the renal microvasculature is a primary target
for blood pressure regulation by nitrite and nitrate because
preglomerular resistance vessels are particularly sensitive to
the capacity of nitrite to promote vasodilation and to inhibit
vasoconstriction induced by angiotensin II. While angio-
tensin II is known to promote efferent arteriolar constriction,
it can also increase afferent arteriolar tone [110]. According
to Gao et al. [134], “nitrate and nitrite dilate renal afferent
arterioles and counteract angiotensin II-induced vasocon-
striction by generating NO-like bioactivity and reducing
NADPH oxidase activity”.

The high concentration of nitrate in leafy green vege-
tables is considered to be an important determinant of the
antihypertensive effect of traditional Japanese diets [135]
and of the Dietary Approaches to Stop Hypertension
(DASH) diet [136–140]. In normal subjects fed a diet
containing traditional Japanese vegetables with a high
nitrate content, Sobko et al. [135] from the Kyorin Uni-
versity School of Medicine in Tokyo found that plasma
levels of nitrate and nitrite were higher, and blood pressure
was lower than in subjects fed a control diet lacking those

vegetables. Blood pressure of Japanese vegetarians is also
lower than that of non-vegetarians [141]. Furthermore,
Japanese longevity is among the highest in the world
[142, 143], which might be explained, in part, by high
consumption of a diet rich in green leafy vegetables asso-
ciated with reduced risk of cardiovascular diseases
[135, 144].

In unilaterally nephrectomized rats, supplemental dietary
nitrate has been reported to attenuate salt-induced hyperten-
sion [145], and in normotensive or hypertensive humans, the
DASH diet has also been found to attenuate salt-induced
increases in blood pressure [146]. Vegetable-rich diets such as
the DASH diet and the DASH-Japan Ube Modified diet
Program (DASH-JUMP) not only can contain large amounts
of nitrate, they can also contain substantial amounts of
potassium, both of which could contribute to protection from
salt-induced increases in blood pressure [146, 147]. In fact,
potassium is a nutrient recognized by the Japanese govern-
ment in the evaluation of foods with functional claims for
maintaining healthy blood pressure. Although potassium may
reduce blood pressure partly by increasing urinary excretion
of sodium, the antihypertensive effects of potassium also
appear to involve effects on the NO system [103, 148]. For
example, studies in normotensive salt-sensitive humans by
Fang et al. [103] indicate that the capacity of supplemental
potassium to protect against salt-induced increases in blood
pressure is related, at least in part, to its capacity to prevent
salt-induced increases in plasma levels of ADMA and
decreases in plasma levels of nitrate and nitrite. The beneficial
effects of nitrate and potassium on NO activity and blood
pressure provide scientific support for efforts by Japanese and
other governmental agencies to encourage greater consump-
tion of vegetables in the general population.

Summary

According to the vasodysfunction theory of salt sensitivity,
the initiation of salt-induced hypertension usually involves
abnormal renal vascular resistance responses to increases in
salt intake, not greater renal retention of a salt load in salt-
sensitive subjects than in salt-resistant normal controls. The
scientific foundation of this theory is based heavily on
pioneering studies from Japan that have provided critical
insights into the mechanisms that normally mediate resis-
tance to the pressor effects of a high-salt diet, and the
abnormalities commonly involved in the pathogenesis of
salt-induced hypertension. In addition to shifting the focus
away from historical theories of salt sensitivity, research
from Japan has pointed to new dietary strategies for redu-
cing the risk for salt-induced hypertension that are based on
enhancing NO activity and that do not depend on reducing
salt consumption in the population.
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