Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Baroreflex failure and beat-to-beat blood pressure variation

Abstract

Hypertension has strong adverse effects on cardiovascular diseases, and increased blood pressure (BP) variability (BPV) is closely associated with the development of hypertensive organ injuries and the occurrence of cardiovascular diseases. Similar to other forms of BPV, short-term beat-to-beat BPV has also been established as a risk factor for cardiovascular diseases. Baroreflex failure is the major mechanism involved in the pathophysiology of short-term beat-to-beat BPV. Previous clinical and animal studies have demonstrated that baroreflex failure disrupted beat-to-beat BPV and hypertensive organ damage. Moreover, short-term beat-to-beat BPV was an independent determinant of vascular elasticity. Although, the clinical measurement tools and therapeutics for beat-to-beat BPV are not sufficient, we should consider that large beat-to-beat BPV is an important risk factor for cardiovascular diseases in patients with hypertension.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1

References

  1. Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyriw P, Battista F, Settimi L, Desamericq G, Dolbeau G, Faini A, Salvi P, Mannarino E, Parati G. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension findings from 2 large databases. Hypertension. 2012;60:369–77.

    Article  PubMed  CAS  Google Scholar 

  2. Gijón-Conde T, Graciani A, López-García E, Guallar-Castillón P, García-Esquinas E, Rodríguez-Artalejo F, Banegas JR. Short-term variability and nocturnal decline in ambulatory blood pressure in normotension, white-coat hypertension, masked hypertension and sustained hypertension: a population-based study of older individuals in Spain. Hypertens Res. 2017;40:613–9.

    Article  PubMed  Google Scholar 

  3. Isobe S, Ohashi N, Ishigaki S, Tsuji N, Tsuji T, Kato A, Yasuda H. Increased nocturnal blood pressure variability is associated with renal arteriolar hyalinosis in normotensive patients with IgA nephropathy. Hypertens Res. 2017;40:921–6.

    Article  PubMed  CAS  Google Scholar 

  4. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood pressure variability. Nat Rev Cardiol. 2013;10:143–55.

    Article  PubMed  Google Scholar 

  5. Asayama K, Wei FF, Liu YP, Hara A, Gu YM, Shutte R, Li Y, Thijs L, Staessen JA. Does blood pressure variability contribute to risk stratification? Methodological issues and a review of outcome studies based on home blood pressure. Hypertens Res. 2015;38:97–101.

    Article  PubMed  Google Scholar 

  6. Mena L, Pintons S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23:505–11.

    Article  PubMed  CAS  Google Scholar 

  7. Rothwell PM, Howard SC, Dolan W, O’Brien E, Dobson JE, Dahlof B, Poulter NR, Sever PS, ASCOT-BPLA and MRC Trial Investigators. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9:469–80.

    Article  PubMed  CAS  Google Scholar 

  8. Rothwell PM, Howard SC, Dolan W, O’Brien E, Dobson JE, Dahlof B, Sever PS, Poulter NR. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  9. Ishimitsu T. Beat-to-beat blood pressure variation and cardiovascular organ injuries in hypertension. Circ J. 2014;78:2162–3.

    Article  PubMed  Google Scholar 

  10. Kishi T. Regulation of sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res. 2013;36:845–51.

    Article  PubMed  CAS  Google Scholar 

  11. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.

    Article  PubMed  CAS  Google Scholar 

  12. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, Schilliaci G, De Caterina R. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2017;50:325–32.

    Article  CAS  Google Scholar 

  13. Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow up study. Circulation. 2000;102:1536–41.

    Article  PubMed  CAS  Google Scholar 

  14. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, Ferrario M, Mancia G. Blood pressure variability and organ damage in a general population: results from the PAMELA Study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension. 2002;39:710–4.

    Article  PubMed  CAS  Google Scholar 

  15. Wei FF, Liu Y, Zhang L, Xu TY, Ding FH, Wang JG, Staessen JA. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63:790–6.

    Article  PubMed  CAS  Google Scholar 

  16. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V. Arterial stiffness and SBP variability in children and adolescents. J Hypertens. 2015;33:88–95.

    Article  PubMed  CAS  Google Scholar 

  17. Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, Costa B, Scherz R, Bond G, Zanchetti A. ELSA Investigators. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens. 2001;19:1981–9.

    Article  PubMed  CAS  Google Scholar 

  18. Parati G, Pomidossi G, Albini FA, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.

    Article  PubMed  CAS  Google Scholar 

  19. Veerman DP, de Blok K, van Montfrans A. Relationship of steady state and ambulatory blood pressure variability to left ventricular mass and urinary albumin excretion in essential hypertension. Am J Hypertens. 1996;9:455–60.

    Article  PubMed  CAS  Google Scholar 

  20. Gómez-Angelats E, de La Sierra A, Sierra C, Parati G, Mancia G, Coca A. Blood pressure variability and silent cerebral damage in essential hypertension. Am J Hypertens. 2004;17:696–700.

    Article  PubMed  Google Scholar 

  21. Manios E, Michas F, Stamatelopoulos K, Barlas G, Koroboki E, Tsouma I, Vemmos K, Zakopoulos N. Short-term beat-to-beat but not ambulatory blood pressure variability is correlated to carotid intima-media thickness. Blood Press Monit. 2014;19:288–93.

    Article  PubMed  Google Scholar 

  22. Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF. Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke. 2000;31:463–8.

    Article  PubMed  CAS  Google Scholar 

  23. Madden JM, O’Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2016;39:171–7.

    Article  PubMed  Google Scholar 

  24. Pierdomenico SD, Lapenna D, Di Tommaso R, Di Carlo S, Esposito AL, Di Mascio R, Ballone E, Cuccirullo F, Mezzetti A. Blood pressure variability and cardiovascular risk in treated hypertensive patients. Am J Hypertens. 2006;19:991–7.

    Article  PubMed  Google Scholar 

  25. Hansen TW, Thijs L,Li Y, Boggia J, Kikuya M, Björklund-Bodegård K, Richart T, Ohkubo T, Jeppesen J, Torp-Pedersen C, Dolan E, Kuznetsova T, Stolarz-Skrzypek K, Tikhonoff V, Malyutina S, Casiglia E, Nikitin Y, Lind L, Sandoya E, Kawecka-Jaszcz K, Imai Y, Wang J, Ibsen H, O’Brien E, Staessen JA, International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes Investigators. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension. 2010;55:1049–57.

    Article  PubMed  CAS  Google Scholar 

  26. Schutte R, Thijs L, Liu YP, Asayama K, Jin Y, Odili A, Gu YM, Kuznetsova T, Jacobs L, Staessen JA. Within-subject blood pressure level–not variability–predicts fatal and nonfatal outcomes in a general population. Hypertension. 2012;60:1138–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Acharya DU, Heber ME, Dore CJ, Raftery EB. Ambulatory intraarterial blood pressure in essential hypertension. Effects of age, sex, race, and body mass—the Northwick Park Hospital Database Study. Am J Hypertens. 1996;9:943–52.

    Article  PubMed  CAS  Google Scholar 

  28. Khattar RS, Swales JD, Banfield A, Dore C, Senior R, Lahiri A. Prediction of coronary and cerebrovascular morbidity and mortality by direct continuous ambulatory blood pressure monitoring in essential hypertension. Circulation. 1999;100:1071–6.

    Article  PubMed  CAS  Google Scholar 

  29. Penaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res. 1992;41:5–10.

    PubMed  CAS  Google Scholar 

  30. Aoki Y, Kai H, Kajimoto H, Kudo H, Takayama N, Yasuoka S, Anegawa T, Iwamoto Y, Uchikawa H, Fukuda K, Kato S, Fukumoto Y, Imaizumi T. Large blood pressure variability aggravates arteriosclerosis and cortical sclerotic changes in the kidney in hypertensive rats. Circ J. 2014;78:2284–91.

    Article  PubMed  Google Scholar 

  31. Shan ZZ, Dai SM, Su DF. Arterial baroreflex deficit induced organ damage in sinoaortic denervated rats. J Cardiovasc Pharmacol. 2001;38:427–37.

    Article  PubMed  CAS  Google Scholar 

  32. Sakamoto K, Hosokawa K, Saku K, Sakamoto T, Tobushi T, Oga Y, Kishi T, Ide T, Sunagawa K. Baroreflex failure increases the risk of pulmonary edema in conscious rats with normal left ventricular function. Am J Physiol Heart Circ Physiol. 2016;310:H199–205.

    Article  PubMed  Google Scholar 

  33. Yasuoka S, Kai H, Kajimoto H, Kudo H, Takayama N, Anegawa T, Koga M, Miyamoto T, Mifune H, Kage M, Hirooka Y, Imaizumi T. Blood pressure variability activates cardiac mineralocorticoid receptor and induces cardiac remodeling in hypertensive rats. Circ J. 2013;77:1474–81.

    Article  PubMed  CAS  Google Scholar 

  34. Bertera FM, Del Mauro JS, Lovera V, Chiappetta D, Polizio AH, Taira CA, Hocht C. Acute effects of third generation β-blockers on shortterm and beat-to-beat blood pressure variability in sinoaortic-denervated rats. Hypertens Res. 2013;36:349–55.

    Article  PubMed  CAS  Google Scholar 

  35. Xia Y, Liu X, Wu D, Xiong H, Ren L, Xu L, Wu W, Zhang H. Influence of beat-to-beat blood pressure variability on vascular elasticity in hypertensive population. Sci Rep. 2017;7:8394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cowley AW Jr. Long-term control of arterial blood pressure. Physiol Rev. 1992;72:231–300.

    Article  PubMed  Google Scholar 

  37. Ikeda Y, Kawada T, Sugimachi M, Kawaguchi O, Shishido T, Sato T, Miyano H, Matsuura W, Alexander J Jr, Sunagawa K. Neural arc of baroreflex optimizes dynamic pressure regulation in achieving both stability and quickness. Am J Physiol Heart Circ Physiol. 1996;271:H882–90.

    Article  CAS  Google Scholar 

  38. Sato T, Kawada T, Inagaki M, Shishido T, Sugimachi M, Sunagawa K. Dynamics of sympathetic baroreflex control of arterial pressure in rats. Am J Physiol Regul Integr Comp Physiol. 2003;285:R262–70.

    Article  PubMed  CAS  Google Scholar 

  39. Kubota T, Alexander J Jr, Itaya R, Todaka K, Sugimachi M, Sunagawa K, Nose Y, Takeshita A. Dynamic effects of carotid sinus baroreflex on ventriculoarterial coupling studied in anesthetized dogs. Circ Res. 1992;70:1044–53.

    Article  PubMed  CAS  Google Scholar 

  40. Liu HK, Guild SJ, Ringwood JV, Barrett CJ, Leonard BL, Nguang SK, Navakatikyan MA, Malpas SC. Dynamic baroreflex control of blood pressure: influence of the heart vs. peripheral resistance. Am J Physiol Regul Integr Comp Physiol. 2002;283:R533–42.

    Article  PubMed  CAS  Google Scholar 

  41. Sarnoff SJ, Gilmore JP, Brockman SK, Mitchell JH, Linden RJ. Regulation of ventricular contraction by the carotid sinus. Its effect on atrial and ventricular dynamics. Circ Res. 1960;8:1123–36.

    Article  PubMed  CAS  Google Scholar 

  42. Shoukas AA, Brunner MC. Epinephrine and the carotid sinus baroreceptor reflex. Influence on capacitive and resistive properties of the total systemic vascular bed of the dog. Circ Res. 1980;47:249–57.

    Article  PubMed  CAS  Google Scholar 

  43. Suga H, Sagawa K, Kostiuk DP. Controls of ventricular contractility assessed by pressure-volume ration, Emax. Cardiovasc Res. 1976;10:582–92.

    Article  PubMed  CAS  Google Scholar 

  44. Vatner SF, Higgins CB, Franklin D, Braunwald E. Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J Clin Invest. 1972;51:995–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Funakoshi K, Hosokawa K, Kishi T, Ide T, Sunagawa K. Strikingly volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function. J Card Fail. 2014;20:53–9.

    Article  PubMed  Google Scholar 

  46. Banerjee P, Clark AL, Nikitin N, Cleland JG. Diastolic heart failure. Paroxysmal or chronic? Eur J Heart Fail. 2004;6:427–31.

    Article  PubMed  Google Scholar 

  47. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  PubMed  CAS  Google Scholar 

  48. Mostarda C, Moraes-Silva IC, Moreira ED, Medeiros A, Piratello AC, Comsolim-Colombo FM, Caldini EG, Brum PC, Krieger EM, Irigoyen MC. Baroreflex sensitivity impairment is associated with cardiac diastolic dysfunction in rats. J Card Fail. 2011;17:519–25.

    Article  PubMed  Google Scholar 

  49. Kaushal P, Taylor JA. Inter-relations among declines in arterial distensibility, baroreflex function and respiratory sinus arrhythmia. J Am Coll Cardiol. 2002;39:1524–30.

    Article  PubMed  Google Scholar 

  50. Protogerou AD, Stergiou GS, Lourida P, Achimastos A. Arterial stiffness and orthostatic blood pressure changes in untreated and treated hypertensive subjects. J Am Soc Hypertens. 2008;2:372–7.

    Article  PubMed  Google Scholar 

  51. Ueno LM, Miyachi M, Matsui T, Takahashi K, Yamazaki K, Hayashi K, Onodera S, Moritani T. Effect of aging on carotid artery stiffness and baroreflex sensitivity during head-out water immersion in man. Braz J Med Biol Res. 2005;38:629–37.

    Article  PubMed  CAS  Google Scholar 

  52. Kliger C, King DL, Maurer MS. A clinical algorithm to differentiate heart failure with a normal ejection fraction by pathophysiologic mechanism. Am J Geriat Cardiol. 2006;15:50–7.

    Article  Google Scholar 

  53. Gaasch WH, Zile MR. Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med. 2004;55:373–94.

    Article  PubMed  CAS  Google Scholar 

  54. Svitok P, Molcan L, Stebelova K, Vesela A, Sedlackova N, Ujhazy E, Mach M, Zeman M. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens Res. 2016;39:501–5.

    Article  PubMed  CAS  Google Scholar 

  55. Sakamoto T, Kakino T, Sakamoto K, Tobushi T, Tanaka A, Saku K, Hosokawa K, Onitsuka K, Murayama Y, Tsutsumi T, Ide T, Sunagawa K. Changes in vascular properties, not ventricular properties, predominantly contribute to baroreflex regulation of arterial pressure. Am J Physiol Heart Circ Physiol. 2015;308:H49–58.

    Article  PubMed  CAS  Google Scholar 

  56. Milovanovic B, Trifunovic D, Djuric D. Autonomic nervous system adjustment (ANSA) in patients with hypertension treated with enalapril. Acta Physiol Hung. 2011;98:71–84.

    Article  PubMed  CAS  Google Scholar 

  57. Mengal V, Silva PH, Tiradentes RV, Santuzzi CH, de Almeida SA, Sena GC, Bissoli NS, Abreu GR, Gouvea SA. Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats. Hypertens Res. 2016;39:769–76.

    Article  PubMed  CAS  Google Scholar 

  58. Yoshikawa T, Kishi T, Shinohara K, Takesue K, Shibata R, Sonoda N, Inoguchi T, Sunagawa K, Tsutsui H, Hirooka Y. Arterial pressure lability is improved by sodium-glucose co-transporter 2 inhibitor in streptozotocin-induced diabetic rats. Hypertens Res. 2017;40:646–51.

    Article  PubMed  CAS  Google Scholar 

  59. Saku K, Kishi T, Sakamoto K, Hosokawa K, Sakamoto T, Murayama Y, Kakino T, Ikeda M, Ide T, Sunagawa K. Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity. Physiol Rep. 2014;2:e12136.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Phillipp T, de Leeuw PW. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56:1254–8.

    Article  PubMed  Google Scholar 

  61. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, de Leeuw PW, Sica DA. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal trial. J Am Coll Cardiol. 2011;58:765–73.

    Article  PubMed  Google Scholar 

  62. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, Cates AW, Lovert EG, Haller H. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6:270–6.

    Article  PubMed  Google Scholar 

  63. De Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H,Kroon AA, on behalf of the DEBuT-HT and Rheos Trial Investigators. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69:836–43.

    Article  PubMed  CAS  Google Scholar 

  64. Hosokawa K, Ide T, Tobushi T, Sakamoto K, Onitsuka K, Sakamoto T, Fujino T, Saku K, Sunagawa K. Bionic baroreceptor corrects postural hypotension in rats with impaired baroreceptor. Circulation. 2012;126:1278–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to Kishi (C70423514) and partially by a Naito Foundation Research Grant. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Kishi.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kishi, T. Baroreflex failure and beat-to-beat blood pressure variation. Hypertens Res 41, 547–552 (2018). https://doi.org/10.1038/s41440-018-0056-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-018-0056-y

This article is cited by

Search

Quick links