Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings

Abstract

High blood pressure is the most significant risk factor of cardiovascular and cerebrovascular diseases worldwide. Blood pressure and its variability are recognized as risk factors. Thus, hypertension control should focus not only on maintaining optimal levels but also on achieving less variability in blood pressure. Psychosocial stress is known to contribute to the development and worsening of hypertension. Stress is perceived by the brain and induces neuroendocrine responses in either a rapid or long-term manner. Moreover, endothelial dysfunction and inflammation might be further involved in the modulation of blood pressure elevation associated with stress. White-coat hypertension, defined as high clinic blood pressure but normal out-of-office blood pressure, is the most popular stress-related blood pressure response. Careful follow-up is necessary for this type of hypertensive patients because some show organ damage or a worse prognosis. On the other hand, masked hypertension, defined as high out-of-office blood pressure but normal office blood pressure, has received considerable interest as a poor prognostic condition. The cause of masked hypertension is complex, but evidence suggests that chronic stress at the workplace or home could be involved. Chronic psychological stress could be associated with distorted lifestyle and mental distress as well as long-lasting allostatic load, contributing to the maintenance of blood pressure elevation. Stress issues are common in patients in modern society. Considering psychosocial stress as the pathogenesis of blood pressure elevation is useful for achieving an individual-focused approach and 24-h blood pressure control.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bromfield S, Muntner P. High blood pressure: the leading global burden of disease risk factor and the need for worldwide prevention programs. Curr Hypertens Rep. 2013;15:134–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, Alexander L, Estep K, Abate KH, Akinyemiju TF, Ali R, Alvis-Guzman N, Azzopardi P, Banerjee A, Baernighausen T, Basu A, Bekele T, Bennett DA, Biadgilign S, Catala-Lopez F, Feigin VL, Fernandes JC, Fischer F, Gebru AA, Gona P, Gupta R, Hankey GJ, Jonas JB, Judd SE, Khang Y-H, Khosravi A, Kim YJ, Kimokoti RW, Kokubo Y, Kolte D, Lopez A, Lotufo PA, Malekzadeh R, Melaku YA, Mensah GA, Misganaw A, Mokdad AH, Moran AE, Nawaz H, Neal B, Ngalesoni FN, Ohkubo T, Pourmalek F, Rafay A, Rai RK, Rojas-Rueda D, Sampson UK, Santos IS, Sawhney M, Schutte AE, Sepanlou SG, Shifa GT, Shiue I, Tedla BA, Thrift AG, Tonelli M, Truelsen T, Tsilimparis N, Ukwaja KN, Uthman OA, Vasankari T, Venketasubramanian N, Vlassov VV, Vos T, Westerman R, Yan LL, Yano Y, Yonemoto N, Zaki MES, Murray CJL. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990-2015. JAMA. 2017;317:165–82.

    Article  PubMed  Google Scholar 

  3. Mendis S, Davis S, Norrving B. Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke. 2015;46:e121–2.

    Article  PubMed  Google Scholar 

  4. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  5. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, Murata M, Kuroda T, Schwartz JE, Shimada K. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–6.

    Article  PubMed  Google Scholar 

  6. Ohkubo T, Kikuya M, Metoki H, Asayama K, Obara T, Hashimoto J, Totsune K, Hoshi H, Satoh H, Imai Y. Prognosis of “masked” hypertension and “white-coat” hypertension detected by 24-h ambulatory blood pressure monitoring 10-year follow-up from the Ohasama study. J Am Coll Cardiol. 2005;46:508–15.

    Article  PubMed  Google Scholar 

  7. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, Grassi G, Sega R. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49:1265–70.

    Article  CAS  PubMed  Google Scholar 

  8. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, Sever PS, Poulter NR. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  9. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, Inoue R, Hoshi H, Hashimoto J, Totsune K, Satoh H, Imai Y. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension. 2008;52:1045–50.

    Article  CAS  PubMed  Google Scholar 

  10. Singh M, Singh AK, Pandey P, Chandra S, Singh KA, Gambhir IS. Molecular genetics of essential hypertension. Clin Exp Hypertens. 2016;38:268–77.

    Article  CAS  PubMed  Google Scholar 

  11. Waken RJ, de Las Fuentes L, Rao DC. A review of the genetics of hypertension with a focus on gene-environment interactions. Curr Hypertens Rep. 2017;19:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–442.

    PubMed  Google Scholar 

  13. Brook RD. The environment and blood pressure. Cardiol Clin. 2017;35:213–21.

    Article  PubMed  Google Scholar 

  14. Miura K, Nagai M, Ohkubo T. Epidemiology of hypertension in Japan: where are we now? Circ J. 2013;77:2226–31.

    Article  PubMed  Google Scholar 

  15. Falaschetti E, Chaudhury M, Mindell J, Poulter N. Continued improvement in hypertension management in England: results from the Health Survey for England 2006. Hypertension. 2009;53:480–6.

    Article  CAS  PubMed  Google Scholar 

  16. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303:2043–50.

    Article  CAS  PubMed  Google Scholar 

  17. Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16:483.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang CJ, Webb HE, Zourdos MC, Acevedo EO. Cardiovascular reactivity, stress, and physical activity. Front Physiol. 2013;4:314.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ushakov AV, Ivanchenko VS, Gagarina AA. Psychological stress in pathogenesis of essential hypertension. Curr Hypertens Rev. 2016;12:203–14.

    Article  PubMed  Google Scholar 

  20. Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res. 2016;65:S309–342.

    CAS  PubMed  Google Scholar 

  21. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76:181–9.

    Article  PubMed  Google Scholar 

  22. Cheung BM, Ong KL, Tso AW, Leung RY, Xu A, Cherny SS, Sham PC, Lam TH, Lam KS. C-reactive protein as a predictor of hypertension in the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) cohort. J Hum Hypertens. 2012;26:108–16.

    Article  CAS  PubMed  Google Scholar 

  23. Michishita R, Ohta M, Ikeda M, Jiang Y, Yamato H. An exaggerated blood pressure response to exercise is associated with nitric oxide bioavailability and inflammatory markers in normotensive females. Hypertens Res. 2016;39:792–8.

    Article  CAS  PubMed  Google Scholar 

  24. Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ, Harrison DG. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry. 2012;71:774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lagraauw HM, Kuiper J, Bot I. Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun. 2015;50:18–30.

    Article  PubMed  Google Scholar 

  26. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr., Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr., Williamson JD, Wright JT Jr.. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2017;71:e13–115.

    Article  CAS  PubMed  Google Scholar 

  27. Nagele E, Jeitler K, Horvath K, Semlitsch T, Posch N, Herrmann KH, Grouven U, Hermanns T, Hemkens LG, Siebenhofer A. Clinical effectiveness of stress-reduction techniques in patients with hypertension: systematic review and meta-analysis. J Hypertens. 2014;32:1936–44.

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Li M, Song S, Shi A, Cheng S, Dang X, Chen H, Zhang H, Ziguli A, Cao L, Wang P, Luan H, Ma Y, Zhang S, Wang Z, Wang X, Gao R, Tian G. Effects of long-term psychological intervention on blood pressure and health-related quality of life in patients with hypertension among the Chinese working population. Hypertens Res. 2017;40:999–1007.

    Article  PubMed  Google Scholar 

  29. Ordaz S, Luna B. Sex differences in physiological reactivity to acute psychosocial stress in adolescence. Psychoneuroendocrinology. 2012;37:1135–57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dampney RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40:283–96.

    Article  PubMed  Google Scholar 

  31. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1:1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keller A, Litzelman K, Wisk LE, Maddox T, Cheng ER, Creswell PD, Witt WP. Does the perception that stress affects health matter? The association with health and mortality. Health Psychol. 2012;31:677–84.

    Article  PubMed  Google Scholar 

  33. McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:33–44.

    Article  CAS  PubMed  Google Scholar 

  34. Jennings JR, Kamarck TW, Everson-Rose SA, Kaplan GA, Manuck SB, Salonen JT. Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. Circulation. 2004;110:2198–203.

    Article  PubMed  Google Scholar 

  35. Matthews KA, Zhu S, Tucker DC, Whooley MA. Blood pressure reactivity to psychological stress and coronary calcification in the Coronary Artery Risk Development in Young Adults Study. Hypertension. 2006;47:391–5.

    Article  CAS  PubMed  Google Scholar 

  36. Cardillo C, Degen C, De Felice F, Folli G. Relationship of stress testing blood pressure with electrocardiographic and fundoscopy indices of hypertensive end-organ damage. Clin Exp Hypertens A. 1992;14:469–88.

    CAS  PubMed  Google Scholar 

  37. Lipman RD, Grossman P, Bridges SE, Hamner JW, Taylor JA. Mental stress response, arterial stiffness, and baroreflex sensitivity in healthy aging. J Gerontol A Biol Sci Med Sci. 2002;57:B279–84.

    Article  PubMed  Google Scholar 

  38. Harshfield GA, Dong Y, Kapuku GK, Zhu H, Hanevold CD. Stress-induced sodium retention and hypertension: a review and hypothesis. Curr Hypertens Rep. 2009;11:29–34.

    Article  CAS  PubMed  Google Scholar 

  39. Gerber M, Puhse U. Review article: do exercise and fitness protect against stress-induced health complaints? A review of the literature. Scand J Public Health. 2009;37:801–19.

    Article  PubMed  Google Scholar 

  40. Kidambi S, Kotchen JM, Krishnaswami S, Grim CE, Kotchen TA. Cardiovascular correlates of insulin resistance in normotensive and hypertensive African Americans. Metabolism. 2011;60:835–42.

    Article  CAS  PubMed  Google Scholar 

  41. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52:1–23.

    Article  PubMed  Google Scholar 

  42. Schiffrin EL. The endothelium and control of blood vessel function in health and disease. Clin Invest Med. 1994;17:602–20.

    CAS  PubMed  Google Scholar 

  43. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamer M. Psychosocial stress and cardiovascular disease risk: the role of physical activity. Psychosom Med. 2012;74:896–903.

    Article  PubMed  Google Scholar 

  45. Aro S, Hasan J. Occupational class, psychosocial stress and morbidity. Ann Clin Res. 1987;19:62–8.

    CAS  PubMed  Google Scholar 

  46. McQueen DV, Celentano DD. Social factors in the etiology of multiple outcomes: the case of blood pressure and alcohol consumption patterns. Soc Sci Med. 1982;16:397–418.

    Article  CAS  PubMed  Google Scholar 

  47. Artinian NT, Washington OG, Flack JM, Hockman EM, Jen KL. Depression, stress, and blood pressure in urban African-American women. Prog Cardiovasc Nurs. 2006;21:68–75.

    Article  PubMed  Google Scholar 

  48. Udupa K, Sathyaprabha TN, Thirthalli J, Kishore KR, Lavekar GS, Raju TR, Gangadhar BN. Alteration of cardiac autonomic functions in patients with major depression: a study using heart rate variability measures. J Affect Disord. 2007;100:137–41.

    Article  PubMed  Google Scholar 

  49. Malan L, Schutte CE, Alkerwi A, Stranges S, Malan NT. Hypothalamic-pituitary-adrenal-axis dysregulation and double product increases potentiate ischemic heart disease risk in a Black male cohort: the SABPA study. Hypertens Res. 2017;40:590–7.

    Article  CAS  PubMed  Google Scholar 

  50. Ulmer CS, Bosworth HB, Germain A, Lindquist J, Olsen M, Brancu M, VA Mid-Atlantic Mental Illness Research Education and Clinical Center Registry Workgroup, Beckham JC. Associations between sleep difficulties and risk factors for cardiovascular disease in veterans and active duty military personnel of the Iraq and Afghanistan conflicts. J Behav Med. 2015;38:544–55.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mancia G, Bertinieri G, Grassi G, Parati G, Pomidossi G, Ferrari A, Gregorini L, Zanchetti A. Effects of blood-pressure measurement by the doctor on patient’s blood pressure and heart rate. Lancet. 1983;2:695–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mancia G, Parati G, Pomidossi G, Grassi G, Casadei R, Zanchetti A. Alerting reaction and rise in blood pressure during measurement by physician and nurse. Hypertension. 1987;9:209–15.

    Article  CAS  PubMed  Google Scholar 

  53. Pickering TG, James GD, Boddie C, Harshfield GA, Blank S, Laragh JH. How common is white coat hypertension? JAMA. 1988;259:225–8.

    Article  CAS  PubMed  Google Scholar 

  54. Munakata M, Saito Y, Nunokawa T, Ito N, Fukudo S, Yoshinaga K. Clinical significance of blood pressure response triggered by a doctor’s visit in patients with essential hypertension. Hypertens Res. 2002;25:343–9.

    Article  PubMed  Google Scholar 

  55. Grassi G, Turri C, Vailati S, Dell’Oro R, Mancia G. Muscle and skin sympathetic nerve traffic during the “white-coat” effect. Circulation. 1999;100:222–5.

    Article  CAS  PubMed  Google Scholar 

  56. Adams DB, Baccelli G, Mancia G, Zanchetti A. Cardiovascular changes during preparation for fighting behaviour in the cat. Nature. 1968;220:1239–40.

    Article  CAS  PubMed  Google Scholar 

  57. Folkow B. Physiology of behaviour and blood pressure regulation in animals. In: Julius S, Bassett DR, editors. Handbook of hypertension: behavioral factors in hypertension. Amsterdam: Elsevier Science Publishers; 1987. p. 1–18.

  58. Parati G, Ulian L, Santucciu C, Omboni S, Mancia G. Difference between clinic and daytime blood pressure is not a measure of the white coat effect. Hypertension. 1998;31:1185–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lantelme P, Milon H, Vernet M, Gayet C. Difference between office and ambulatory blood pressure or real white coat effect: does it matter in terms of prognosis? J Hypertens. 2000;18:383–9.

    Article  CAS  PubMed  Google Scholar 

  60. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Porcellati C. Prognostic significance of the white coat effect. Hypertension. 1997;29:1218–24.

    Article  CAS  PubMed  Google Scholar 

  61. Conen D, Aeschbacher S, Thijs L, Li Y, Boggia J, Asayama K, Hansen TW, Kikuya M, Björklund-Bodegård K, Ohkubo T, Jeppesen J, Gu YM, Torp-Pedersen C, Dolan E, Kuznetsova T, Stolarz-Skrzypek K, Tikhonoff V, Schoen T, Malyutina S, Casiglia E, Nikitin Y, Lind L, Sandoya E, Kawecka-Jaszcz K, Mena L, Maestre GE, Filipovský J, Imai Y, O’Brien E, Wang JG, Risch L, Staessen JA. Age-specific differences between conventional and ambulatory daytime blood pressure values. Hypertension. 2014;64:1073–9.

    Article  CAS  PubMed  Google Scholar 

  62. Parati G, Ulian L, Sampieri L, Palatini P, Villani A, Vanasia A, Mancia G. Attenuation of the “white-coat effect” by antihypertensive treatment and regression of target organ damage. Hypertension. 2000;35:614–20.

    Article  CAS  PubMed  Google Scholar 

  63. Glen SK, Elliott HL, Curzio JL, Lees KR, Reid JL. White-coat hypertension as a cause of cardiovascular dysfunction. Lancet. 1996;348:654–7.

    Article  CAS  PubMed  Google Scholar 

  64. Muscholl MW, Hense HW, Brockel U, Doring A, Riegger GA, Schunkert H. Changes in left ventricular structure and function in patients with white coat hypertension: cross sectional survey. BMJ. 1998;317:565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hara A, Ohkubo T, Kikuya M, Shintani Y, Obara T, Metoki H, Inoue R, Asayama K, Hashimoto T, Harasawa T, Aono Y, Otani H, Tanaka K, Hashimoto J, Totsune K, Hoshi H, Satoh H, Imai Y. Detection of carotid atherosclerosis in individuals with masked hypertension and white-coat hypertension by self-measured blood pressure at home: the Ohasama study. J Hypertens. 2007;25:321–7.

    Article  CAS  PubMed  Google Scholar 

  66. Puato M, Palatini P, Zanardo M, Dorigatti F, Tirrito C, Rattazzi M, Pauletto P. Increase in carotid intima-media thickness in grade I hypertensive subjects: white-coat versus sustained hypertension. Hypertension. 2008;51:1300–5.

    Article  CAS  PubMed  Google Scholar 

  67. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G, Mancia G. White-coat hypertension, as defined by ambulatory blood pressure monitoring, and subclinical cardiac organ damage: a meta-analysis. J Hypertens. 2015;33:24–32.

    Article  CAS  PubMed  Google Scholar 

  68. Cuspidi C, Sala C, Tadic M, Rescaldani M, Grassi G, Mancia G. Is white-coat hypertension a risk factor for carotid atherosclerosis? A review and meta-analysis. Blood Press Monit. 2015;20:57–63.

    PubMed  Google Scholar 

  69. Khattar RS, Senior R, Lahiri A. Cardiovascular outcome in white-coat versus sustained mild hypertension: a 10-year follow-up study. Circulation. 1998;98:1892–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kario K, Shimada K, Schwartz JE, Matsuo T, Hoshide S, Pickering TG. Silent and clinically overt stroke in older Japanese subjects with white-coat and sustained hypertension. J Am Coll Cardiol. 2001;38:238–45.

    Article  CAS  PubMed  Google Scholar 

  71. Mancia G, Facchetti R, Grassi G, Bombelli M. Adverse prognostic value of persistent office blood pressure elevation in white coat hypertension. Hypertension. 2015;66:437–44.

    Article  CAS  PubMed  Google Scholar 

  72. Verdecchia P, Reboldi GP, Angeli F, Schillaci G, Schwartz JE, Pickering TG, Imai Y, Ohkubo T, Kario K. Short- and long-term incidence of stroke in white-coat hypertension. Hypertension. 2005;45:203–8.

    Article  CAS  PubMed  Google Scholar 

  73. Pierdomenico SD, Cuccurullo F. Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: an updated meta analysis. Am J Hypertens. 2011;24:52–8.

    Article  PubMed  Google Scholar 

  74. Franklin SS, Thijs L, Hansen TW, Li Y, Boggia J, Kikuya M, Björklund-Bodegård K, Ohkubo T, Jeppesen J, Torp-Pedersen C, Dolan E, Kuznetsova T, Stolarz-Skrzypek K, Tikhonoff V, Malyutina S, Casiglia E, Nikitin Y, Lind L, Sandoya E, Kawecka-Jaszcz K, Imai Y, Wang J, Ibsen H, O’Brien E, Staessen JA, International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes Investigators. Significance of white-coat hypertension in older persons with isolated systolic hypertension: a meta-analysis using the International Database on Ambulatory Blood Pressure Monitoring in Relation to Cardiovascular Outcomes population. Hypertension. 2012;59:564–71.

    Article  CAS  PubMed  Google Scholar 

  75. Ugajin T, Hozawa A, Ohkubo T, Asayama K, Kikuya M, Obara T, Metoki H, Hoshi H, Hashimoto J, Totsune K, Satoh H, Tsuji I, Imai Y. White-coat hypertension as a risk factor for the development of home hypertension: the Ohasama study. Arch Intern Med. 2005;165:1541–6.

    Article  PubMed  Google Scholar 

  76. Mancia G, Bombelli M, Facchetti R, Madotto F, Quarti-Trevano F, Polo Friz H, Grassi G, Sega R. Long-term risk of sustained hypertension in white-coat or masked hypertension. Hypertension. 2009;54:226–32.

    Article  CAS  PubMed  Google Scholar 

  77. Weber MA, Neutel JM, Smith DH, Graettinger WF. Diagnosis of mild hypertension by ambulatory blood pressure monitoring. Circulation. 1994;90:2291–8.

    Article  CAS  PubMed  Google Scholar 

  78. Kario K, Pickering TG. White-coat hypertension or white-coat hypertension syndrome: which is accompanied by target organ damage? Arch Intern Med. 2000;160:3497–8.

    Article  CAS  PubMed  Google Scholar 

  79. Mancia G, Bombelli M, Facchetti R, Madotto F, Quarti-Trevano F, Grassi G, Sega R. Increased long-term risk of new-onset diabetes mellitus in white-coat and masked hypertension. J Hypertens. 2009;27:1672–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bombelli M, Cuspidi C, Facchetti R, Sala C, Tadic M, Brambilla G, Re A, Villa P, Grassi G, Mancia G. New-onset left atrial enlargement in a general population. J Hypertens. 2016;34:1838–45.

    Article  CAS  PubMed  Google Scholar 

  81. Stergiou GS, Nasothimiou E, Giovas P, Kapoyiannis A, Vazeou A. Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring. J Hypertens. 2008;26:1556–62.

    Article  CAS  PubMed  Google Scholar 

  82. Bayo J, Cos FX, Roca C, Dalfo A, Martin-Baranera MM, Albert B. Home blood pressure self-monitoring: diagnostic performance in white-coat hypertension. Blood Press Monit. 2006;11:47–52.

    Article  PubMed  Google Scholar 

  83. Kang YY, Li Y, Huang QF, Song J, Shan XL, Dou Y, Xu XJ, Chen SH, Wang JG. Accuracy of home versus ambulatory blood pressure monitoring in the diagnosis of white-coat and masked hypertension. J Hypertens. 2015;33:1580–7.

    Article  CAS  PubMed  Google Scholar 

  84. Imai Y, Obara T, Asamaya K, Ohkubo T. The reason why home blood pressure measurements are preferred over clinic or ambulatory blood pressure in Japan. Hypertens Res. 2013;36:661–72.

    Article  PubMed  Google Scholar 

  85. Munakata M, Kimura G, Inoue N. Final report on “lifestyle-related disease research” (in Japanese). 3rd stage medical research on work-related disease. Japan Organization of Occupational Health and Safety; 2018. Tokyo: p. 50–5.

  86. Stergiou GS, Asayama K, Thijs L, Kollias A, Niiranen TJ, Hozawa A, Boggia J, Johansson JK, Ohkubo T, Tsuji I, Jula AM, Imai Y, Staessen JA, International Database on Home Blood Pressure in Relation to Cardiovascular Outcome (IDHOCO) Investigators. Prognosis of white-coat and masked hypertension: International Database of Home Blood Pressure in Relation to Cardiovascular Outcome. Hypertension. 2014;63:675–82.

    Article  CAS  PubMed  Google Scholar 

  87. Pickering TG. Reflections in hypertension: work and blood pressure. J Clin Hypertens. 2004;6:403–5.

    Article  Google Scholar 

  88. Pieper C, Warren K, Pickering TG. A comparison of ambulatory blood pressure and heart rate at home and work on work and non-work days. J Hypertens. 1993;11:177–83.

    Article  CAS  PubMed  Google Scholar 

  89. del Arco-Galan C, Suarez-Fernandez C, Gabriel-Sanchez R. What happens to blood pressure when on-call? Am J Hypertens. 1994;7:396–401.

    Article  PubMed  Google Scholar 

  90. Devereux RB, Pickering TG, Harshfield GA, Kleinert HD, Denby L, Clark L, Pregibon D, Jason M, Kleiner B, Borer JS, Laragh JH. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation. 1983;68:470–6.

    Article  CAS  PubMed  Google Scholar 

  91. Szerencsi K, van Amelsvoort LG, Viechtbauer W, Mohren DC, Prins MH, Kant I. The association between study characteristics and outcome in the relation between job stress and cardiovascular disease - a multilevel meta-regression analysis. Scand J Work Environ Health. 2012;38:489–502.

    Article  PubMed  Google Scholar 

  92. Torquati L, Mielke GI, Brown WJ, Kolbe-Alexander T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health. 2017;44:229–38.

    Article  PubMed  Google Scholar 

  93. Kivimaki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson EI, Alfredsson L, Bjorner JB, Borritz M, Burr H, Casini A, Clays E, De Bacquer D, Dragano N, Erbel R, Geuskens GA, Hamer M, Hooftman WE, Houtman IL, Jöckel KH, Kittel F, Knutsson A, Koskenvuo M, Lunau T, Madsen IE, Nielsen ML, Nordin M, Oksanen T, Pejtersen JH, Pentti J, Rugulies R, Salo P, Shipley MJ, Siegrist J, Steptoe A, Suominen SB, Theorell T, Vahtera J, Westerholm PJ, Westerlund H, O’Reilly D, Kumari M, Batty GD, Ferrie JE, Virtanen M, IPD-Work Consortium. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet. 2015;386:1739–46.

    Article  PubMed  Google Scholar 

  94. Schnall PL, Dobson M, Landsbergis P. Globalization, work, and cardiovascular disease. Int J Health Serv. 2016;46:656–92.

    Article  PubMed  Google Scholar 

  95. Karasek R, Baker D, Marxer F, Ahlbom A, Theorell T. Job decision latitude, job demands, and cardiovascular disease: a prospective study of Swedish men. Am J Public Health. 1981;71:694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siegrist J. Adverse health effects of high-effort/low-reward conditions. J Occup Health Psychol. 1996;1:27–41.

    Article  CAS  PubMed  Google Scholar 

  97. Johnson JV, Hall EM, Theorell T. Combined effects of job strain and social isolation on cardiovascular disease morbidity and mortality in a random sample of the Swedish male working population. Scand J Work Environ Health. 1989;15:271–9.

    Article  CAS  PubMed  Google Scholar 

  98. Siegrist J, Starke D, Chandola T, Godin I, Marmot M, Niedhammer I, Peter R. The measurement of effort-reward imbalance at work: European comparisons. Soc Sci Med. 2004;58:1483–99.

    Article  PubMed  Google Scholar 

  99. Gilbert-Ouimet M, Trudel X, Brisson C, Milot A, Vezina M. Adverse effects of psychosocial work factors on blood pressure: systematic review of studies on demand-control-support and effort-reward imbalance models. Scand J Work Environ Health. 2014;40:109–32.

    Article  PubMed  Google Scholar 

  100. Hattori T, Munakata M. Low job control is associated with higher diastolic blood pressure in men with mildly elevated blood pressure: the Rosai Karoshi study. Ind Health. 2015;53:480–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gilbert-Ouimet M, Brisson C, Vezina M, Milot A, Blanchette C. Repeated exposure to effort-reward imbalance, increased blood pressure, and hypertension incidence among white-collar workers: effort-reward imbalance and blood pressure. J Psychosom Res. 2012;72:26–32.

    Article  CAS  PubMed  Google Scholar 

  102. Trudel X, Brisson C, Milot A, Masse B, Vezina M. Adverse psychosocial work factors, blood pressure and hypertension incidence: repeated exposure in a 5-year prospective cohort study. J Epidemiol Community Health. 2016;70:402–8.

    Article  PubMed  Google Scholar 

  103. Trudel X, Milot A, Gilbert-Ouimet M, Duchaine C, Guénette L, Dalens V, Brisson C. Effort-reward imbalance at work and the prevalence of unsuccessfully treated hypertension among white-collar workers. Am J Epidemiol. 2017;186:456–62.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Boucher P, Gilbert-Ouimet M, Trudel X, Duchaine CS, Milot A, Brisson C. Masked hypertension and effort-reward imbalance at work among 2369 white-collar workers. J Hum Hypertens. 2017;31:620–6.

    Article  CAS  PubMed  Google Scholar 

  105. Willich SN, Lowel H, Lewis M, Hormann A, Arntz HR, Keil U. Weekly variation of acute myocardial infarction. Increased Monday risk in the working population. Circulation. 1994;90:87–93.

    Article  CAS  PubMed  Google Scholar 

  106. Witte DR, Grobbee DE, Bots ML, Hoes AW. Excess cardiac mortality on Monday: the importance of gender, age and hospitalisation. Eur J Epidemiol. 2005;20:395–9.

    Article  CAS  PubMed  Google Scholar 

  107. Murakami S, Otsuka K, Kubo Y, Shinagawa M, Yamanaka T, Ohkawa S, Kitaura Y. Repeated ambulatory monitoring reveals a Monday morning surge in blood pressure in a community-dwelling population. Am J Hypertens. 2004;17:1179–83.

    Article  PubMed  Google Scholar 

  108. Kimura G, Inoue N, Mizuno H, Izumi M, Nagatoya K, Ohtahara A, Munakata M. Workplace hypertension co-operative study by 29 Rosai hospitals belonging to the Japan Organization of Occupational Health and Safety. Increased double product on Monday morning during work. Hypertens Res. 2017;40:671–4.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Inoue N, Otsui K, Yoshioka T, Suzuki A, Ozawa T, Iwata S, Takei A. A simultaneous evaluation of occupational stress and depression in patients with lifestyle-related diseases. Intern Med. 2016;55:1071–5.

    Article  PubMed  Google Scholar 

  110. Konno S, Munakata M. Moderately increased albuminuria is an independent risk factor of cardiovascular events in the general Japanese population under 75 years of age: the Watari study. PLoS ONE. 2015;10:e0123893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iwasaki K, Takahashi M, Nakata A. Health problems due to long working hours in Japan: working hours, workers’ compensation (Karoshi), and preventive measures. Ind Health. 2006;44:537–40.

    Article  PubMed  Google Scholar 

  112. Ke DS. Overwork, stroke, and karoshi-death from overwork. Acta Neurol Taiwan. 2012;21:54–9.

    PubMed  Google Scholar 

  113. Hayashi T, Kobayashi Y, Yamaoka K, Yano E. Effect of overtime work on 24-hour ambulatory blood pressure. J Occup Environ Med. 1996;38:1007–11.

    Article  CAS  PubMed  Google Scholar 

  114. Iwasaki K, Sasaki T, Oka T, Hisanaga N. Effect of working hours on biological functions related to cardiovascular system among salesmen in a machinery manufacturing company. Ind Health. 1998;36:361–7.

    Article  CAS  PubMed  Google Scholar 

  115. Yang H, Schnall PL, Jauregui M, Su TC, Baker D. Work hours and self-reported hypertension among working people in California. Hypertension. 2006;48:744–50.

    Article  CAS  PubMed  Google Scholar 

  116. Artazcoz L, Cortes I, Borrell C, Escriba-Aguir V, Cascant L. Gender perspective in the analysis of the relationship between long workhours, health and health-related behavior. Scand J Work Environ Health. 2007;33:344–50.

    Article  PubMed  Google Scholar 

  117. Nakamura K, Sakurai M, Morikawa Y, Miura K, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nakagawa H. Overtime work and blood pressure in normotensive Japanese male workers. Am J Hypertens. 2012;25:979–85.

    Article  PubMed  Google Scholar 

  118. Yoo DH, Kang MY, Paek D, Min B, Cho SI. Effect of long working hours on self-reported hypertension among middle-aged and older wage workers. Ann Occup Environ Med. 2014;26:25.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nakanishi N, Yoshida H, Nagano K, Kawashimo H, Nakamura K, Tatara K. Long working hours and risk for hypertension in Japanese male white collar workers. J Epidemiol Community Health. 2001;55:316–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wada K, Katoh N, Aratake Y, Furukawa Y, Hayashi T, Satoh E, Tanaka K, Satoh T, Aizawa Y. Effects of overtime work on blood pressure and body mass index in Japanese male workers. Occup Med. 2006;56:578–80.

    Article  Google Scholar 

  121. Imai T, Kuwahara K, Nishihara A, Nakagawa T, Yamamoto S, Honda T, Miyamoto T, Kochi T, Eguchi M, Uehara A, Kuroda R, Omoto D, Nagata T, Pham NM, Kurotani K, Nanri A, Akter S, Kabe I, Mizoue T, Sone T, Dohi S, Japan Epidemiology Collaboration on Occupational Health Study Group. Association of overtime work and hypertension in a Japanese working population: a cross-sectional study. Chronobiol Int. 2014;31:1108–14.

    Article  PubMed  Google Scholar 

  122. Park J, Kim Y, Cho Y, Woo KH, Chung HK, Iwasaki K, Oka T, Sasaki T, Hisanaga N. Regular overtime and cardiovascular functions. Ind Health. 2001;39:244–9.

    Article  CAS  PubMed  Google Scholar 

  123. Pimenta AM, Beunza JJ, Bes-Rastrollo M, Alonso A, López CN, Velásquez-Meléndez G, Martínez-González MA. Work hours and incidence of hypertension among Spanish university graduates: the Seguimiento Universidad de Navarra prospective cohort. J Hypertens. 2009;27:34–40.

    Article  CAS  PubMed  Google Scholar 

  124. Boivin DB, Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol. 2014;62:292–301.

    Article  CAS  PubMed  Google Scholar 

  125. Reinberg A, Ashkenazi I. Internal desynchronization of circadian rhythms and tolerance to shift work. Chronobiol Int. 2008;25:625–43.

    Article  PubMed  Google Scholar 

  126. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106:4453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Puttonen S, Harma M, Hublin C. Shift work and cardiovascular disease - pathways from circadian stress to morbidity. Scand J Work Environ Health. 2010;36:96–108.

    Article  PubMed  Google Scholar 

  128. Sundberg S, Kohvakka A, Gordin A. Rapid reversal of circadian blood pressure rhythm in shift workers. J Hypertens. 1988;6:393–6.

    Article  CAS  PubMed  Google Scholar 

  129. Baumgart P, Walger P, Fuchs G, Dorst KG, Vetter H, Rahn KH. Twenty-four-hour blood pressure is not dependent on endogenous circadian rhythm. J Hypertens. 1989;7:331–4.

    Article  CAS  PubMed  Google Scholar 

  130. Goto T, Yokoyama K, Araki T, Miura T, Saitoh H, Saitoh M, Satoh S. Identical blood pressure levels and slower heart rates among nurses during night work and day work. J Hum Hypertens. 1994;8:11–4.

    CAS  PubMed  Google Scholar 

  131. Chau NP, Mallion JM, de Gaudemaris R, Ruche E, Siche JP, Pelen O, Mathern G. Twenty-four-hour ambulatory blood pressure in shift workers. Circulation 1989;80:341-7.

    Article  CAS  PubMed  Google Scholar 

  132. Ohira T, Tanigawa T, Iso H, Odagiri Y, Takamiya T, Shimomitsu T, Hayano J, Shimamoto T. Effects of shift work on 24-hour ambulatory blood pressure and its variability among Japanese workers. Scand J Work Environ Health. 2000;26:421–6.

    Article  CAS  PubMed  Google Scholar 

  133. Munakata M, Ichi S, Nunokawa T, Saito Y, Ito N, Fukudo S, Yoshinaga K. Influence of night shift work on psychologic state and cardiovascular and neuroendocrine responses in healthy nurses. Hypertens Res. 2001;24:25–31.

    Article  CAS  PubMed  Google Scholar 

  134. Kitamura T, Onishi K, Dohi K, Okinaka T, Ito M, Isaka N, Nakano T. Circadian rhythm of blood pressure is transformed from a dipper to a non-dipper pattern in shift workers with hypertension. J Hum Hypertens. 2002;16:193–7.

    Article  CAS  PubMed  Google Scholar 

  135. Su TC, Lin LY, Baker D, Schnall PL, Chen MF, Hwang WC, Chen CF, Wang JD. Elevated blood pressure, decreased heart rate variability and incomplete blood pressure recovery after a 12-hour night shift work. J Occup Health. 2008;50:380–6.

    Article  PubMed  Google Scholar 

  136. Lo SH, Liau CS, Hwang JS, Wang JD. Dynamic blood pressure changes and recovery under different work shifts in young women. Am J Hypertens. 2008;21:759–64.

    Article  PubMed  Google Scholar 

  137. Knutsson A, Akerstedt T, Jonsson BG. Prevalence of risk factors for coronary artery disease among day and shift workers. Scand J Work Environ Health. 1988;14:317–21.

    Article  CAS  PubMed  Google Scholar 

  138. Murata K, Yano E, Hashimoto H, Karita K, Dakeishi M. Effects of shift work on QTc interval and blood pressure in relation to heart rate variability. Int Arch Occup Environ Health. 2005;78:287–92.

    Article  PubMed  Google Scholar 

  139. Inoue M, Morita H, Inagaki J, Harada N. Influence of differences in their jobs on cardiovascular risk factors in male blue-collar shift workers in their fifties. Int J Occup Environ Health. 2004;10:313–8.

    Article  PubMed  Google Scholar 

  140. Sfreddo C, Fuchs SC, Merlo AR, Fuchs FD. Shift work is not associated with high blood pressure or prevalence of hypertension. PLoS ONE. 2010;5:e15250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. White WB. Ambulatory blood pressure monitoring: dippers compared with non-dippers. Blood Press Monit. 2000;5(Suppl 1):S17–23.

    Article  PubMed  Google Scholar 

  142. Sternberg H, Rosenthal T, Shamiss A, Green M. Altered circadian rhythm of blood pressure in shift workers. J Hum Hypertens. 1995;9:349–53.

    CAS  PubMed  Google Scholar 

  143. Yamasaki F, Schwartz JE, Gerber LM, Warren K, Pickering TG. Impact of shift work and race/ethnicity on the diurnal rhythm of blood pressure and catecholamines. Hypertension. 1998;32:417–23.

    Article  CAS  PubMed  Google Scholar 

  144. Kario K, Schwartz JE, Gerin W, Robayo N, Maceo E, Pickering TG. Psychological and physical stress-induced cardiovascular reactivity and diurnal blood pressure variation in women with different work shifts. Hypertens Res. 2002;25:543–51.

    Article  PubMed  Google Scholar 

  145. Morikawa Y, Nakagawa H, Miura K, Ishizaki M, Tabata M, Nishijo M, Higashiguchi K, Yoshita K, Sagara T, Kido T, Naruse Y, Nogawa K. Relationship between shift work and onset of hypertension in a cohort of manual workers. Scand J Work Environ Health. 1999;25:100–4.

    Article  CAS  PubMed  Google Scholar 

  146. Sakata K, Suwazono Y, Harada H, Okubo Y, Kobayashi E, Nogawa K. The relationship between shift work and the onset of hypertension in male Japanese workers. J Occup Environ Med. 2003;45:1002–6.

    Article  PubMed  Google Scholar 

  147. Oishi M, Suwazono Y, Sakata K, Okubo Y, Harada H, Kobayashi E, Uetani M, Nogawa K. A longitudinal study on the relationship between shift work and the progression of hypertension in male Japanese workers. J Hypertens. 2005;23:2173–8.

    Article  CAS  PubMed  Google Scholar 

  148. Suwazono Y, Dochi M, Sakata K, Okubo Y, Oishi M, Tanaka K, Kobayashi E, Nogawa K. Shift work is a risk factor for increased blood pressure in Japanese men: a 14-year historical cohort study. Hypertension. 2008;52:581–6.

    Article  CAS  PubMed  Google Scholar 

  149. Virkkunen H, Harma M, Kauppinen T, Tenkanen L. Shift work, occupational noise and physical workload with ensuing development of blood pressure and their joint effect on the risk of coronary heart disease. Scand J Work Environ Health. 2007;33:425–34.

    Article  PubMed  Google Scholar 

  150. Gholami Fesharaki M, Kazemnejad A, Zayeri F, Rowzati M, Akbari H. Historical cohort study of shift work and blood pressure. Occup Med. 2014;64:109–12.

    Article  CAS  Google Scholar 

  151. Kario K, James GD, Marion R, Ahmed M, Pickering TG. The influence of work- and home-related stress on the levels and diurnal variation of ambulatory blood pressure and neurohumoral factors in employed women. Hypertens Res. 2002;25:499–506.

    Article  CAS  PubMed  Google Scholar 

  152. He W, Goodkind D, Kowal P. An aging world: 2015. Washington: US Census Bureau; 2016.

    Google Scholar 

  153. Hashimoto S, Kawado M, Seko R, Murakami Y, Hayashi M, Kato M, Noda T, Ojima T, Nagai M, Tsuji I. Trends in disability-free life expectancy in Japan, 1995-2004. J Epidemiol. 2010;20:308–12.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tarlow B, Wisniewski S, Belle S, Rubert M, Ory M, Gallagher-Thompson D. Positive aspects of caregiving. Res Aging. 2004;26:429–53.

    Article  Google Scholar 

  155. Pinquart M, Sorensen S. Correlates of physical health of informal caregivers: a meta-analysis. J Gerontol B Psychol Sci Soc Sci. 2007;62:P126–37.

    Article  PubMed  Google Scholar 

  156. Schulz R, Beach SR. Caregiving as a risk factor for mortality: the caregiver health effects study. JAMA. 1999;282:2215–9.

    Article  CAS  PubMed  Google Scholar 

  157. Haley WE, Roth DL, Howard G, Safford MM. Caregiving strain and estimated risk for stroke and coronary heart disease among spouse caregivers: differential effects by race and sex. Stroke. 2010;41:331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  158. King AC, Oka RK, Young DR. Ambulatory blood pressure and heart rate responses to the stress of work and caregiving in older women. J Gerontol. 1994;49:M239–45.

    Article  CAS  PubMed  Google Scholar 

  159. von Kanel R, Mausbach BT, Patterson TL, Dimsdale JE, Aschbacher K, Mills PJ, Ziegler MG, Ancoli-Israel S, Grant I. Increased Framingham coronary heart disease risk score in dementia caregivers relative to non-caregiving controls. Gerontology. 2008;54:131–7.

    Article  Google Scholar 

  160. Torimoto-Sasai Y, Igarashi A, Wada T, Ogata Y, Yamamoto-Mitani N. Female family caregivers face a higher risk of hypertension and lowered estimated glomerular filtration rates: a cross-sectional, comparative study. BMC Public Health. 2015;15:177.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Shaw WS, Patterson TL, Semple SJ, Dimsdale JE, Ziegler MG, Grant I. Emotional expressiveness, hostility and blood pressure in a longitudinal cohort of Alzheimer caregivers. J Psychosom Res. 2003;54:293–302.

    Article  PubMed  Google Scholar 

  162. Capistrant BD, Moon JR, Glymour MM. Spousal caregiving and incident hypertension. Am J Hypertens. 2012;25:437–43.

  163. Butalid L, Verhaak PF, Boeije HR, Bensing JM. Patients’ views on changes in doctor-patient communication between 1982 and 2001: a mixed-methods study. BMC Fam Pract. 2012;13:80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants and aid from the Japan Organization of Occupational Health and Safety. We would like to express his gratitude to Dr. Genjiro Kimura, a past president of Asahi Rosai Hospital, for his great contribution to the research on workplace hypertension conducted by 29 Rosai hospital groups, which hold an important framework of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Munakata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Munakata, M. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings. Hypertens Res 41, 553–569 (2018). https://doi.org/10.1038/s41440-018-0053-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-018-0053-1

Further reading

Search

Quick links