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Characteristic craniofacial defects associated with a novel
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Germline loss-of-function mutations in USP9X have been reported to cause a wide spectrum of congenital anomalies. Here, we
report a Japanese girl with a novel heterozygous nonsense mutation in USP9X who exhibited intellectual disability with
characteristic craniofacial abnormalities, including hypotelorism, brachycephaly, hypodontia, micrognathia, severe dental crowding,
and an isolated submucous cleft palate. Our findings provide further evidence that disruptions in USP9X contribute to a broad
range of congenital craniofacial abnormalities.
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Ubiquitin signaling plays a wide variety of roles in both embryonic
development and general cellular activities; thus, its disruption
can result in a wide range of cellular and tissue defects. This
signaling pathway is governed by multiple classes of proteins, one
of which is deubiquitylases (DUBs), including ubiquitin-specific
peptidase 9 X-linked (USP9X)1. Germline loss-of-function mutation
of USP9X has been shown to cause intellectual disability as well as
other congenital anomalies. Multiple reports have documented
the features of developmental delay resulting from USP9X
mutations, which is characterized by retardation of neurogenesis,
while the etiology of other characteristic features, such as
craniofacial anomalies including intraoral features, has not been
reported in detail2.
The current patient, a 7-year-old Japanese girl, was referred to

the Department of Orthodontics at Osaka University Dental
Hospital for the correction of malocclusion. She was born at 40
weeks and 6 days gestation, with a weight of 2768 g, and is the
second child of healthy, nonconsanguineous parents. Antenatal
ultrasound examinations during pregnancy revealed an umbilical
artery. Postnatally, she experienced peripheral circulatory failure
due to polycythemia. MRI revealed Dandy–Walker syndrome. She
exhibited developmental delays, such as poor weight gain, and
underwent intubation feeding at 4 months of age. She also
exhibited intellectual disability and required assistance for some
subjects at school. Her facial features included hypotelorism, a
short columella with a wide nasal base, midfacial deficiency with a
thin upper lip (Fig. 1a), low-set ears, and micrognathia (Fig. 1b).
Intraoral features included a high-arched palate and malocclusion,
such as severe crowding on the lower jaw and an underbite (Fig.

1c–e). Clinical manifestations included hypernasality caused by a
submucous cleft palate. In addition, an irregular pigment pattern
was detected bilaterally on the upper arms (Fig. 1f). Cephalometric
analysis revealed a short anteroposterior maxillary diameter and a
retruded mandible (Fig. 2a). Hypodontia (involving the upper right
first premolar and bilateral upper second premolars) was evident
on panoramic radiography (Fig. 2b). A CT scan of the head
revealed plagiocephaly without clear evidence of craniosynostosis
and an ectopically positioned upper left canine (Fig. 2c).
After comprehensive counseling, explaining the risks and

benefits of genetic testing, and obtaining informed consent,
whole-exome sequencing was performed using genomic DNA
extracted from peripheral lymphocytes of the patient and her
parents using the Sure Select Human All Exon Kit V6 (Agilent
Technologies, Santa Clara, CA, USA). Sequencing was conducted
on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) to
elucidate the causative genes for the patient’s phenotypes. A de
novo heterozygous nonsense mutation in USP9X (NM_001039590,
hg19: c.4942 C > T: p.Q1648*), which creates a premature stop
codon in the middle of the ubiquitin carboxyl-terminal hydrolase
(UCH) domain, was identified (Fig. 1g); this mutation has not been
documented in previous studies. As a result of this mutation,
USP9X is truncated to 1647 amino acids. The USP domain required
for the deubiquitination activity of USP9X has a length of 1557 to
1956 amino acids (Fig. 1g). The mutant form of the USP9X protein
lacks two crucial amino acid residues within the catalytic triad,
strongly suggesting a deficiency in enzymatic activity (Fig. 1h, i)3.
These results indicate that the loss of function of USP9X during

embryonic development could result in multiple craniofacial
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anomalies. However, the mechanism underlying these craniofacial
defects is largely unknown. Embryonic craniofacial development
relies on coordinated cellular activities, the failure of which could
result in a wide variety of morphological and functional defects.
Cranial neural crest cells are among the most important cell
populations involved in normal craniofacial development. Multiple
genetic mutations associated with the developmental process of
cranial neural crest cells result in a wide variety of craniofacial
defects, including a characteristic facial appearance and orofacial
cleft4. Pigment cells are also known to be derived from neural

crest cells; therefore, defects in neural crest cells could result in
pigment cell defects, as observed in the present case, indicating
that neural crest cell defects result from the mutation of USP9X.
Mutations in USP9X in humans have been demonstrated to

induce intellectual disability by influencing neurogenesis through
the ubiquitin signaling pathway1,5. Interestingly, fibroblasts from
patients with USP9Xmutations have been demonstrated to exhibit
a diminished biological response to the TGFβ signaling pathway,
as evidenced by reduced signaling in reporter assays and
inhibited cell migration6. In addition, the TGFβ signaling pathway

Fig. 1 Clinical features of the present patient with a pathogenic mutation in USP9X. Frontal (a) and lateral (b) views of the facial profile.
Intraoral photos of the upper (c) and lower (d) jaws. e Underbite was observed in the occlusion. f Abnormal pigment pattern on the arm. g De
novo nonsense mutation in the middle of the ubiquitin carboxyl-terminal hydrolase domain of USP9X. h The cryo-EM structure of USP9X (PDB
ID: 7YXX). The ubiquitin carboxyl-terminal hydrolase domain is shown in cyan. The faded color indicates the truncated area in the mutated
protein. i The crystal structure of the ubiquitin carboxyl-terminal hydrolase domain (PDB ID: 5WCH) is shown in magenta. His1879 and
Asp1901 are missing in the mutated USP9X protein.
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has been shown to phosphorylate USP9X, stabilizing ankyrin-G
through deubiquitination in dendritic spine development7,8. TGFβ
signaling has also been shown to be critically involved in
craniofacial development at various levels. For example, reducing
TGFβ signaling in cranial neural crest cells has been demonstrated
to increase cell death, subsequently resulting in partial loss of
cranial bone9. TGFβ signaling plays critical roles in palatogenesis;
loss of function results in cleft palate in both mice and
humans10,11. In addition, USP9X has been shown to deubiquitylate
DVL2, another key protein regulating the Wnt signaling pathway,
altering its activity in the cell12. Canonical Wnt signaling is another
central pathway involved in normal craniofacial development.
Eliminating beta-catenin, a mediator of canonical Wnt signaling,
from neural crest cells causes severe craniofacial development in

mice13. Interestingly, polymorphisms in Dvl2 have been associated
with susceptibility to orofacial clefts in the Polish population14.
Canonical Wnt signaling is also known to regulate the develop-
ment of dentition, and gene mutations in this pathway could
cause the loss of permanent teeth, as in the present case15.
Moreover, it has been demonstrated that USP9X is involved in
ciliogenesis through the regulation of ubiquitination of key
ciliogenic proteins16. Primary cilia serve as sensors for cells,
transducing multiple signaling pathways that include critical
molecules for embryonic craniofacial development17. The disease
spectrum resulting from defects in primary cilia is called ciliopathy,
which is associated with a wide variety of congenital defects.
Notably, up to 30% of ciliopathies can be primarily defined by
craniofacial phenotypes, clearly indicating a biological connection

Fig. 2 Craniofacial findings from radiographic records. a Lateral cephalogram. b Orthopantomogram showing congenital missing teeth
(yellow asterisk). CT of the head showed plagiocephaly (c) and an ectopically positioned left upper canine (d, red arrow).
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between ciliogenesis and craniofacial development. Craniofacial
manifestations of ciliopathy include several phenotypes exhibited
in the present case, such as orofacial cleft, facial midline defects
such as hypotelorism, micrognathia, and Dandy–Walker malfor-
mation, which together are found in the majority of ciliopathy
patients18. Considering that the present patient exhibited poly-
dactyly and intellectual disability, which are among the core
phenotypic features of ciliopathy, the loss of function of USP9X
may be mechanistically related to abnormal ciliogenesis, but
further studies are needed to confirm this supposition.
Pathogenic mutations in USP9X are known to exhibit a wide

variety of phenotypes. Although no clear genotype‒phenotype
correlation has been reported, nonsense-mediated mRNA decay
and differential X-chromosome inactivation (XCI) are potential
mechanisms that could affect the pathogenesis and phenotypic
diversity. Notably, USP9X has been shown to escape XCI, which
could influence the phenotype of females19. Studies have high-
lighted the differences between sexes, with females often
exhibiting strong loss-of-function mutations such as premature
termination codons, while males tend to have milder forms, such
as missense mutations5,6.

HGV DATABASE
The relevant data from this Data Report are hosted at the
Human Genome Variation Database at https://doi.org/10.6084/
m9.figshare.hgv.3402.
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