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A pediatric case of congenital stromal corneal dystrophy
caused by the novel variant c.953del of the DCN gene
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We report a 1-year-old girl with congenital stromal corneal dystrophy confirmed by genetic analysis. The ocular phenotype
included diffuse opacity over the corneal stroma bilaterally. We performed a genetic analysis to provide counseling to the parents
regarding the recurrence rate. Whole exome sequencing was performed on her and her parents, and a novel de novo variant,
NM_001920.5: c.953del, p.(Asn318Thrfs*10), in the DCN gene was identified in the patient.
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Congenital stromal corneal dystrophy (CSCD) is an exceedingly
rare disease1–3. It is an autosomal dominant trait4 and occurs
bilaterally5. The primary corneal alterations are not associated with
previous inflammation or secondary to a systemic disease1.
CSCD is caused by mutations in the decorin (DCN) gene on the

long arm of chromosome 123,5,6. Decorin is a member of the small
leucine-rich proteoglycan gene family with a variety of binding
properties with matrix structural components, including collagens
and growth factors6–9. Decorin is distributed throughout the body,
including the cornea, respiratory system, pancreas, muscle, skin,
and ovary. However, no reports have described systemic diseases
caused by DCN mutations. The only phenotype associated with a
mutation in the DCN gene is CSCD9.
Decorin has a role in the assembly of corneal collagen fibers and

supports corneal transparency3,10–12. In patients with CSCD with
DCN mutations, transmission electron microscopy has confirmed
disruption of collagen fibers, i.e., separation of the normal lamella
of the collagen fibrils by abnormal collagen filaments1,2,5,13.
Five families with CSCD have been reported2,5, and we recently

identified a Japanese child with CSCD as the sixth CSCD pedigree
in the world. We also identified a novel mutation in the DCN gene.
We present the detailed clinical profile of the case with CSCD
confirmed by genetic analysis.
The proband was a 1-year 7-month-old girl referred to the

Division of Ophthalmology, National Center for Child Health and
Development for further examinations and treatment for bilateral
corneal opacities. She had no medical history, and her parents
were not consanguineous.
At the first visit, she showed no nystagmus and maintained

orthophoria without limitations of extraocular movements. Fixation
and following behavior of each eye were observed; the visual
acuity (VA) using the Teller Acuity Cards II was 20/380 bilaterally.
Slit-lamp microscopy showed diffuse opacity bilaterally. The

anterior chamber depth was normal, and the corneal diameters
were equally normal in both eyes (10.5 mm vertically and 11.0 mm
horizontally). The central corneal thickness was 620 μm in the right
eye and 640 μm in the left eye (Fig. 1A). The respective intraocular
pressures (Eye Care Hand-held Tonometer; Icare TA01i, Helsinki,
Finland) were 18mmHg and 14mmHg. We conducted a detailed
ophthalmic examination with the child under general anesthesia;
swept-source optical coherence tomography (SS-OCT) (Topcon,
Tokyo, Japan) showed hyperreflective zones consistent with the
corneal opacity involving the entire stroma in both eyes (Fig. 1B).
Ophthalmoscopy showed no apparent abnormalities in either
fundus but poor translucency due to corneal opacity (Fig. 1C).
Electroretinography (ERG) (Neuropack, Nihon Koden, Tokyo, Japan)
based on the International Society for Clinical Electrophysiology of
Vision protocol14 showed normal responses (Fig. 1D).
We performed a systemic investigation to eliminate other

diseases that cause diffuse corneal opacity in infants, e.g.,
congenital metabolic disorders and congenital infection. Labora-
tory analyses of the serum antibodies, treponema pallidum, and
TORCH antibodies (IgG, IgM) were negative. No abnormal findings
were detected in a lysosomal enzyme activity assay or urinary
mucopolysaccharide analysis. Imaging, i.e., electrocardiography,
echocardiography, abdominal ultrasonography, and bone X-rays,
were negative. We clinically diagnosed congenital corneal
dystrophy, although the type was not determined.
Because the parents inquired about potential recurrence in a

second child, we performed a genetic analysis. Since our patient was
born to healthy parents, the inheritance was suspected to be
autosomal recessive or dominant inheritance of a de novo mutation.
To investigate the genetic background, we performed whole

exome sequencing (WES) in three family members and analyzed
them via autosomal recessive and dominant models. Genomic
DNA was extracted from peripheral blood using standard
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procedures. Exome data processing, variant calling, and variant
annotation were performed as previously described15 using human
GRCh38 as the reference genome. To identify disease-causing
variants, we focused on nonsynonymous variants and splice-site
variants, which were within 10 base pairs (bp) of the exon‒intron
boundaries (±10 bp), and excluded synonymous and noncoding
exonic variants from the analysis. We treated common genetic
variants (allele frequency >0.01 for recessive variants; >0.001 for
dominant variants) in any of the ethnic subgroups found in the
following single nucleotide polymorphism databases and in-house
exome data (n= 218) as putative nonpathogenic sequence
alterations using the Genome Aggregation Database (https://
gnomad.broadinstitute.org/) and Tohoku Medical Megabank Orga-
nization database (4.7KJPN, https://jmorp.megabank.tohoku.ac.jp/).
Potential pathogenic variants detected by WES were validated

using Sanger sequencing according to the standard protocol16.
Sanger sequencing segregation analyses were performed in three
family members to investigate cosegregation of the potentially
pathogenic variants. The following primer set for the DCN gene
was used: forward primer 5’-AAGGGCCTCAACATATTTAGAGAAT-3’
and reverse primer 5’-TGCAGTTAGGTTTCCAGTATCTAGC-3’.
Based on the WES data of the affected child (II-1) and parents (I-

1 and I-2), we identified a novel heterozygous variant in the
patient, NM_001920.5: c.953del, p.(Asn318Thrfs*10), in the DCN
gene that was de novo in origin.
Since DCN was reported as the causative gene for CSCD1–3,5,6,9, we

further validated the DCN variant by Sanger sequencing and
cosegregation (Fig. 2). Sanger sequencing indicated that the variant
was not in any database described in the methods, indicating that
the variant was extremely rare. As a result of the mutation, the
asparagine at position 318 becomes threonine. Subsequently, the
amino acid sequence changed, and the following 10th codon
became a termination codon. This suggests that p.(Asn318Thrfs*10)
is deleterious to the helical structure of the protein. This variant was
classified as pathogenic17 (Supplementary Table 1).
After the definitive diagnosis was made, we performed genetic

counseling for the parents. We explained that the recurrence rate

in a second child would be generally considered to be low
because we identified a de novo variant of the DCN gene.
However, this could vary depending on gonadal mosaicism and
postzygotic DNA18. Following genetic counseling, they gave birth
to their second child.
The patient was followed up to 3 years of age. The corneal

opacity remained unchanged, and the decimal VA was 0.03
bilaterally.
CSCD is a rare hereditary stromal corneal dystrophy caused by

DCN mutations1–3,5,6 that has been reported in only five
genetically confirmed pedigrees2,5. Detailed descriptions of
genetic mutations and clinical characteristics of previous patients
and the current patient are shown in Supplementary Table 2.
We documented a de novo novel mutation of the DCN gene,

NM_001920.5: c.953del, p.(Asn318Thrfs*10), in a Japanese child
with CSCD. Interestingly, in the previously reported families with
CSCD, the DCN mutations were located only in exon 8 of the
gene1–5, as in the current patient. The structural/functional effects
of the mutation on the DCN protein classify it as a truncation
mutation of the decorin protein, and the EAR repeat at the
C-terminus region was shortened2,12. This might affect the
collagen-decorin interaction. In a knockout mouse model of CSCD
at the C-terminus region, separation of collagen lamellae was
seen, and this was seen in CSCD patients9. In the model, the
truncated DCN possibly had a dominant negative effect on wild-
type decorin protein that interacted with keratocytes through the
signaling receptor on the surface, which resulted in the down-
regulation of endogenous decorin, biglycan, lumican, and
keratocan. Based on the American College of Medical Genetics
and Genomics guidelines, the current frameshift mutation was
considered pathogenic. This could be because the mutation was
located between those of the Norwegian and Belgian families1,4,
which induced truncation of decorin in the penultimate and
longest leucine-rich repeats, known as the EAR repeat region.
The corneal abnormality appeared in infancy, with diffuse

corneal opacity and corneal thickening. Although no nystagmus
was observed, the measurable VA was 0.03 bilaterally. In a

Fig. 1 Ophthalmic phenotype of the left eye of the patient. Both eyes had similar findings. A The anterior segment has diffuse corneal
opacity. B An OCT image shows hyperreflective zones consistent with corneal opacity involving the entire stroma in both eyes. C A fundus
photograph shows poor translucency due to corneal opacity, but no abnormalities are seen. D The full-field ERG in the left eye shows normal
responses of the combined rod-cone, rods, and cones. The calibrations are shown for each stimulation.
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Norwegian report, corneal changes were seen in affected
individuals during the first months after birth based on a family
interview. The corneal thickness increased, and the VA varied from
light perception to 0.6. In the Belgian families, diffuse corneal
opacity was observed during early childhood, and the corneal
thickness was normal13. Compared to that of the Norwegian and
Belgian families1,13, the age of onset of the current case was
comparable. As discussed previously, the current mutation was
localized between those of the Norwegian and Belgian cases in
the EAR region of decorin, and the phenotype of the current case
might be consistent with those cases.
Most previous patients underwent penetrating kerato-

plasty1–3,5,13 between 1 and 44 years of age. The postoperative
VA improved or was maintained in many cases, and a few required
regrafting because of keratitis, perforation, and corneal opacities.
Therefore, penetrating keratoplasty may also have provided good
postoperative VA in the current case.
We performed prompt genetic studies that were useful to

determine the diagnosis, causative gene, and hereditary form for
genetic counseling regarding the birth of a second child and may
contribute to treatment decisions.

HGV DATABASE
The relevant data from this Data Report are hosted at the
Human Genome Variation Database at https://doi.org/10.6084/
m9.figshare.hgv.3283
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