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SHQ1-associated neurodevelopmental disorder: Report of the
first homozygous variant in unrelated patients and review of
the literature
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Compound heterozygous mutations in SHQ1 have been associated with a rare and severe neurological disorder characterized by
global developmental delay (GDD), cerebellar degeneration coupled with seizures, and early-onset dystonia. Currently, only five
affected individuals have been documented in the literature. Here, we report three children from two unrelated families harboring a
homozygous variant in the gene but with a milder phenotype than previously described. The patients had GDD and seizures.
Magnetic resonance imaging analyses revealed diffuse white matter hypomyelination. Sanger sequencing confirmed the whole-
exome sequencing results and revealed full segregation of the missense variant (SHQ1:c.833 T > C; p.I278T) in both families. We
performed a comprehensive in silico analysis using different prediction classifiers and structural modeling of the variant. Our
findings demonstrate that this novel homozygous variant in SHQ1 is likely to be pathogenic and leads to the clinical features
observed in our patients.

Human Genome Variation (2023) 10:1–5; https://doi.org/10.1038/s41439-023-00234-z

INTRODUCTION
Shq1 has been identified in yeast during the biogenesis of H/ACA
ribonucleoproteins (RNPs)1 and has been found to interact with
one of the catalytic subunits of the RNPs, dyskerin/NAP57. This
molecule is a critical assembly factor for H/ACA ribonucleoproteins
(RNPs)2. Therefore, it is involved in various important functions,
such as telomerase maintenance, ribosomal modifications, protein
translation, and pre-mRNA splicing2,3. In humans, SHQ1 has similar
functions and stabilizes the accumulation of H/ACA RNPs by
binding with NAP57 at an early stage, which promotes the
biogenesis of H/ACA RNPs4. Accordingly, loss of SHQ1 will lead to
degradation of the RNP assembly5. Mutations in genes encoding
components of the H/ACA RNP complex, such as DKC1, can lead
to significant effects on neurological development6. Recently, two
studies reported patients with pathogenic variants of SHQ1 with
neurological disorders; Bizarro and Meier7 reported singletons
with intrauterine growth retardation coupled with a severe-onset
neurological disease inclusive of cerebellar degeneration, whereas
Sleiman et al.6 studied two separate families harboring four
patients (two individuals in each family) with early-onset dystonia,
hypotonia, seizure disorder, and global developmental delay
(GDD)6. Interestingly, all reported variants in both studies were

compound heterozygous6,7. Here, we report three individuals from
two unrelated families with a novel homozygous variant in SHQ1
and show that the variant is likely to be pathogenic. Informed
consent was obtained from all subjects enrolled in the study. The
patients were recruited from the pediatric neuroscience clinic.
Peripheral blood samples were collected, and genomic DNA was
isolated from whole blood using the Gentra® Puregene® DNA
Purification Kit (Gentra Systems, Inc. Minneapolis, MN, US). Axiom-
based genotyping was conducted using Affymetrix axiom chips
followed by autozygome analysis. In addition, whole-exome
sequencing (WES) variant calls were performed by an Illumina
2500 platform using libraries that were prepared by a SureSelect
kit (Illumina Inc., San Diego, CA, US). WES data were filtered, and
low-frequency pathogenic variants were targeted according to
previously published protocols. Confirmatory sequencing and
segregation were performed by Sanger sequencing using an ABI
PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA,
USA). The structure of the C-terminal domain of SHQ1 was
modeled using Swiss-Model based on the 30% identical yeast
homolog (PDB ids 3zv0, 3zuz; QMEAN 0.41). The homology model
was corroborated by the AlphaFold2 model for this region (RMSD
1.12 Å; pLDDT > 90 for the core region).
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Family 1, Patient IV:1
Individual 1 (Fig. 1A, Family 1, Patient IV:1) is a 15-year-old
male, who was born after a full-term pregnancy by normal
spontaneous delivery, from a first-degree consanguineous
Saudi family. He was admitted after birth to the NICU due to
jaundice and low birth weight. Patient IV:1 was first diagnosed
at 5 years of age with global developmental delay (GDD), ataxia
and seizure disorder. Brain MRI showed severely delayed
myelination (Fig. 1B). His developmental delay involved motor,
cognition, and speech. By age 15, he was able to walk with
support and had very limited speech output. His seizures were
controlled by one medication. His examination was notable for
mild spasticity in the lower limbs and brisk deep tendon
reflexes.

Family 1, Patient IV:2
Individual 2 (Fig. 1A, Family 1, Patient IV:2) is the younger sister of
Patient IV:1. She was born after a full-term pregnancy by normal
spontaneous delivery and was admitted to the NICU due to
jaundice. She had a similar diagnosis as her brother with GDD and
seizure disorder. She also had generalized hypotonia and was
wheelchair-bound. Brain MRI showed diffuse white matter
hypomyelination. Patient IV:2 died at the age of 9 years due to
cardiac arrest. The patient’s father reported that Patient IV:2
deteriorated in her last days; she was in a vegetative state and had
severe malnutrition.
Individuals 1 and 2 (Fig. 1A, Family 1) had a positive family

history of similar illness with four parental cousins diagnosed with
GDD, all of whom had passed away.

Family 2, Patient II:1
Individual 3 (Fig. 1A, Family 2, Patient II:1) is a 7-year-old male of a
Saudi family who was delivered by C-section late preterm with low
birth weight and was admitted to the hospital after birth. He was
diagnosed with GDD, seizure disorder and ataxia in addition to
frontotemporal atrophy. At approximately 4 years old, the patient
developed neutropenia and thrombocytopenia.
WES filtering revealed that the patients in both family 1 and

family 2 had the same novel homozygous missense variant
(c.833 T > C; p.I278T) in SHQ1 (Fig. 1A). The homozygosity scan
using Affymetrix’s axiom SNP arrays showed that SHQ1 is shared in
the same runs of the homozygosity block on chromosome 3 (Fig. 1C,
D). The variant c.833 T > C has a low frequency (1000G= 0/
GnomAD= 0) with in silico pathogenicity classifiers, indicating that
the variant is likely highly pathogenic (SIFT= 0.001, damaging;
PolyPhen= 1, probably damaging; VEST= 0.933 and 0.925, deleter-
ious; PP2HVAR (PolyPhen 2)= 0.99, probably damaging; PP2HDIV=
1, probably damaging; MutationTaster= 1,1, disease causing;
MutationAssessor, 3.025 medium, predicted functional). The variant
is located in a highly conserved region of the C-terminal domain of
SHQ1 (Fig. 2A). The three-dimensional structure of this domain can
be inferred based on the known structures of the yeast homolog.
I278 is buried in the hydrophobic core of this domain (Fig. 2B). Its
substitution by a smaller and polar threonine will introduce a polar
moiety and a spatial gap in the protein core (Fig. 2C). Hence, the
p.I278T mutation will destabilize this domain and affect its function,
specifically, acting as an assembly chaperone that protects Cbf5
protein complexes from nonspecific RNA binding and aggregation
before assembly of H/ACA RNA8.

Fig. 1 Genetic analyses of the families. A Pedigrees present two unrelated families with carrier parents and three affected individuals in total,
in addition to a healthy carrier brother and two normal brothers in Family 1 and four affected deceased parental cousins. Brief chromatograms
of the variant are shown below each symbol representing the family members. NT= not tested. Half-filled symbols indicate the carrier status
of an individual, whereas completely filled symbols (in black color) refer to the affected individuals. The full chromatograms are presented in
Supplementary Fig. 1. The black arrow points to the index case for the study. B Brain MRI of a patient with the SHQ1 variant (Family 1, Patient
IV:1) showing severely delayed myelination generally in mildly prominent CSF spaces. C Autozygosity analysis using Agile multi-ideogram
revealed a single shared run of homozygosity between the affected individuals on chromosome 3. D The same analysis using AutoSNPa
confirmed the shared runs of homozygosity on chromosome 3.
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The first compound heterozygous variants (SHQ1: c.1003 C > T;
p.Arg335Cys/c.1277 C > T; p.Ala426Val) were reported in Bizarro
and Meier’s study in a male patient who was delivered by an
urgent cesarean section owing to intrauterine growth retardation
and sparse fetal movement. The patient was born at gestational
week 29 with a body weight of 1000 g7. Since birth, he had GDD in
all milestones in addition to enormous feeding difficulties. At early
ages, he developed cerebellar hypoplasia with clearly recogniz-
able atrophy and ventricular dilatation in addition to epileptic
seizures. On the last examination, he was in a vegetative condition
with cortical atrophy and spastic quadriplegia7.
The second report (Sleiman et al.)6 examined four patients in two

different families, apparently unrelated6. Although the compound
heterozygous variants (SHQ1: c.874 G >A; p.Glu292Lys/c.828_831del;
p.Asp277SerfsTer27, Family 1; c.523 G> T; p.Asp175Tyr/c.828_831del;
p.Asp277SerfsTer27, Family 2) were different in each family, one of the
alleles, a deletion (c.828_831del), was shared6. Interestingly, all the
variants were located within the SSD domain of SHQ1. Patients in
both families were born at term, and their blood work showed normal
biochemistry. In Family 1, both affected individuals had a similar onset
that started at birth and was characterized by developmental delay
and dystonia, whereas the affected individuals of Family 2 were only
described as having a movement disorder. Although the first MRI
scans of the patients in both families were normal, a second MRI was
performed on Patient IV:1 of Family 1 at the age of 4 years and
showed subtle atrophy of the cerebellum accompanied by widening
of the cerebellar folia. All patients in this report were treated with
levetiracetam in addition to levodopa replacement therapy, but
therapy was discontinued in Patient II:1 of Family 2 because it caused
dyskinesia in the patient6.

Similarly, our patients were born at term except for Patient II:1
of Family 2 (born late preterm) and had normal biochemistry and
low birth weight. However, unlike previously reported cases6,7, our
patients showed a homozygous allelic variant in SHQ1. All affected
individuals in our study as well as the previously reported cases6,7

were diagnosed with GDD, and most also had a seizure disorder.
One of our patients (Patient IV:2) and one patient of Sleiman et al.6

additionally had hypotonia. Table 1 summarizes the clinical
features of our patients and the previously reported cases of
SHQ1 mutations.
It is noteworthy to mention that our patients presented with a

milder phenotype than the patients reported by Sleiman et al.6

and Bizarro and Meier7. Our patients achieved the ability to walk
with ataxic gait, were able to produce single but few words and
used their hands to play with smartphones. Their understanding
was that of a 5- to 6-year-old when they were 14 years old. In
addition, they had milder spasticity more noticeable in the lower
limbs with brisk reflexes, and the proband with the longest follow-
up remained ambulant until the last visit at age 16. The spasticity
was very mild and never impaired ambulation. The patients also
had limb ataxia. Ataxia was the greatest contributor to recurrent
falls. These findings may be explained by the cerebellar atrophy
noted during autopsy studies and on MRI showing cerebellar and
supratentorial atrophy. Apart from that, there was no clear
degenerative course or decline in the proband’s abilities apart
from dysphagia. The seizures were easily controlled with a single
medication. The movement disorder was characterized by
hyperkinetic choreiform movements. Moreover, our patients did
not display florid dystonia or ballismus, as reported by Sleiman
et al6. Due to the atypical phenotype of our patients,

Fig. 2 Structural analysis of the human SHQ1 C-terminal domain. A Amino acid sequences of SHQ1 belonging to various species were
downloaded from Ensembl9 and aligned using Clustal Omega from EBI. B The modeled structure of SHQ1 residues 143 to 421 is shown as a
gray ribbon. I278 is shown in green. C Neighboring side chains are shown as stick models with carbon in gray, oxygen in red and nitrogen in
blue. I278 is shown in green, and the corresponding threonine is shown with carbons in yellow and oxygen in red. D Previously reported
variants and the novel homozygous p.Ile278Thr variant are presented on a schematic drawing of the gene and protein. Alternating boxes
(light green and blue color) represent exons (upper part of the panel). The lower part of the panel includes the protein domains of SHQ1
according to Ensembl9.
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comprehensive evaluation was otherwise unremarkable, including
plasma amino acids, renal profile, uric acid, lactate, ammonia,
transferrin isoelectric focusing, CK and liver function tests, tandem
MS, very long-chain fatty acids, urine organic acids, serum copper
and ceruloplasmin. Moreover, the leukodystrophy next-generation
sequencing panel and SNP array for cytogenetic analysis were
normal. In contrast, the patients reported by Sleiman et al.6 and
Bizarro and Meier7 were averbal with severe dystonia and
autonomic instability and were wheelchair bound with normal
MRI imaging. Hence, our cases represent a milder phenotype. We
suspect that such clinical differences may be due to phenotypic
variability.
In conclusion, our study reports the first SHQ1 homoallelic

variant in three patients from two separate unrelated families who
presented with global developmental delay, ataxia, and seizure
disorder.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at https://doi.org/10.6084/
m9.figshare.hgv.3279.
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