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In the field of genomic medical research, the amount of large-scale information continues to increase due to advances in
measurement technologies, such as high-performance sequencing and spatial omics, as well as the progress made in genomic
cohort studies involving more than one million individuals. Therefore, researchers require more computational resources to analyze
this information. Here, we introduce a hybrid cloud system consisting of an on-premise supercomputer, science cloud, and public
cloud at the Kyoto University Center for Genomic Medicine in Japan as a solution. This system can flexibly handle various
heterogeneous computational resource-demanding bioinformatics tools while scaling the computational capacity. In the hybrid
cloud system, we demonstrate the way to properly perform joint genotyping of whole-genome sequencing data for a large
population of 11,238, which can be a bottleneck in sequencing data analysis. This system can be one of the reference
implementations when dealing with large amounts of genomic medical data in research centers and organizations.
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INTRODUCTION
In recent years, whole-genome sequencing analysis has become
increasingly commoditized, and a single organization or labora-
tory handles large amounts of sequencing information daily.
In addition, large-scale data are registered in public databases,

enabling researchers in genomic medicine to access and utilize
this information. For example, the UK Biobank1, a prospective
genomic cohort study, provides more than 400,000 exome and
50,000 pieces of whole-genome sequencing data on a public
cloud, Amazon Web Services (AWS: https://www.ukbiobank.ac.uk/
enable-your-research/research-analysis-platform). The National
Center for Biotechnology Information (NCBI) is a publicly available
repository of high-throughput sequencing data2 with more than
36 petabytes through public clouds, such as the Google Cloud
Platform (GCP) and AWS (https://www.ncbi.nlm.nih.gov/sra/docs/
sra-cloud/). One solution is to set up sufficient computing
resources on-premise (in-house) within a laboratory or organiza-
tion. However, if the computational resources increase, achieving
both setup and/or maintenance costs is usually difficult. In
contrast, low-computing resources make it difficult to handle
large-scale data analyses within a research period. Furthermore,
various data analysis steps require different memories and CPUs;
thus, the total number of computing resources and components
change daily. Recently, in the United States, the AnVIL (the
National Institutes of Health National Human Genome Research

Institute (NHGRI) Genomic Data Science Analysis, Virtualization,
and Informatics Lab-space) has been promoting a cloud platform
running on the GCP designed to manage and store large-scale
genomics to enable population-scale analysis (https://
anvilproject.org/). As an international collaborative effort,
researchers at the International Cancer Genome Consortium
developed a unified interface for searching and accessing data
to authorized users from a commercial cloud, AWS, and an
academic cloud, the Cancer Genome Collaboratory (https://
dcc.icgc.org/icgc-in-the-cloud).
As one of the solutions, we describe the design and

implementation of a hybrid cloud system consisting of an on-
premise supercomputer, science cloud, and public cloud at our
center, the Kyoto University Center for Genomic Medicine, in
Japan. It can flexibly handle various heterogeneous computational
resource-demanding bioinformatics tools while scaling the
computational capacity. Our center handles a prospective
genomic cohort study of 10,000 participants in Japan3 and
organizes a Japanese government-authorized registry of rare
disease repositories in Japan (RADDAR-J: http://raddarj.org/en/)4.
Whole-genome data analyses of thousands of individuals are
becoming common in human genome analysis in one laboratory
or organization. Our center has also been storing and analyzing
whole-genome sequences of more than 10,000 samples, including
the above cohort participants and rare diseases.
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For the whole-genome sequencing analysis of each individual,
bioinformatics tools with a CPU5,6, graphics processing unit
(https://www.parabricks.com/), field-programmable gate array
(FPGA) technology7, and cloud-based solutions8,9 exist10. How-
ever, a particular bottleneck usually occurs after an individual data
analysis, joint-genotyping analysis, in which genotype information
from all samples (e.g., 1000 or 10,000 individuals) is simultaneously
accessed and analyzed to improve the accuracy and recall of
individual genotyping results. If new samples are analyzed in the
former individual data analysis step, the joint-genotyping opera-
tion needs to be reanalyzed from scratch.
For the 2535 samples from low-coverage WGS sequencing data

in the 1000 Genomes project, Real-Time Genomics population
callers were used to manage the joint-genotyping analysis on
AWS11. For the 5297 samples from low-coverage WGS sequencing
data (6X to 10X coverage) in the Cohorts for Heart and Aging
Research in Genomic Epidemiology WGS freeze3 dataset, four
joint-genotyping analyses, SNPTools, GATK-HaplotypeCaller Ver. 3,
GATK-UnifiedGenotyper Ver. 3 and GotCloud12, were performed
on their hybrid cloud system13. In the United States, the NHLBI
Trans-Omics for the Precision Medicine (TOPMed) Program
recently released 53,831 population panels from high-coverage
WGS sequencing data using GotCloud (https://
genome.sph.umich.edu/wiki/GotCloud)14. In the UK, the largest
population panel is the 150,119 samples from high-coverage WGS
sequencing data in the UK Biobank using GraphTyper Ver. 215,16.
Based on this progress, to demonstrate the effectiveness of the

hybrid cloud system, we describe the joint-genotyping operation
of 11,238 WGS using GATK Ver. 4 on our system, addressing the
different features and computational performance of each
subsystem. The relationship between sample size and processing
time of joint-genotyping operations is also discussed per the
measured results on real datasets from 149 to 11,238 samples.
Finally, the execution times for larger WGS datasets of 20,000,
30,000, 40,000, and 50,000 samples are estimated.

Depending on the institution and country, on-premise comput-
ing resources, supercomputing systems, public clouds, network
environments, and ethical constraints must be considered in
system design and implementation. Nevertheless, our hybrid
cloud system provides a good starting point for reference.

MATERIALS AND METHODS
Hybrid cloud system
Overview of subsystems and network. The overall structure and specifica-
tions of the hybrid cloud system at the Kyoto University Center for
Genomic Medicine are shown in Fig. 1 and Table 1, respectively. The
computer resources and storage consisted of on-premise (System A), a
supercomputer system at Kyoto University (System B: https://
www.iimc.kyoto-u.ac.jp/en/services/comp/supercomputer/), a supercom-
puter system at the University of Tokyo (System C: https://www.cc.u-
tokyo.ac.jp/en/guide/hpc/obcx/), an academic cloud mdx (System D:
https://mdx.jp/en/)17, and a public cloud, Amazon Web Services (AWS), in
the region of Japan (System E). Systems A to E are connected via the
Japanese academic network called the science information network (SINET:
https://www.sinet.ad.jp/en)18. As an intranet system of our organization,
System E is directly connected only to system A using SINET L2VPN with
10-GB bandwidth. From Apr/2022, SINET has been updated from version 5
(100 Gbps bandwidth connection) to version 6 (toward 400 Gbps). High-
performance data transfer between subsystems is an essential factor in
hybrid cloud systems. Our center prepares a high-speed data transfer tool,
the HCP tool, between subsystems. The HCP tools are designed and
implemented based on a high-performance and flexible protocol, HpFP,
which is a packet-loss tolerance and thus has outstanding performances of
data transfer on LFNs (long-fat networks)19, mobile networks20, and
satellite communication networks21.
System P is hosted in AWS as an independent network from other

systems for public services, such as web and database services.

Storage. System A provides both online and offline storage solutions as a
centralized information hub. As an online solution, System A consists of
high latency and low-latency storage, a high-speed distributed parallel file
system (General Parallel File System (GPFS), a total of 2.1 petabytes), and a

Fig. 1 Overall structure of the hybrid cloud system. The double-headed arrows indicate different types of network connections. a Private
system. Subsystems A–E are connected by the SINET network at 100–400 Gbps. b Public system in a public cloud. The network is independent
of (a).
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network-attached system (NAS, a total of 3.6 petabytes). High-latency
storage stores and operates information frequently accessed from on-
premise computing nodes and transferred from/to other systems. Low-
latency storage stores information that is accessed infrequently by users.
For example, once a month, long periods of direct access are required by
computational resources, for raw sequence data (fastq file: http://

samtools.github.io/hts-specs/SAMv1.pdf). As an offline solution that stores
information to archive for long periods (e.g., store data analysis pipelines
and results used for a publication to ensure the reproducibility of a
publication), general hard disk drives (HDDs) are used by temporally
attaching them to a compute node in System A. These offline archived
HDDs are maintained in a secure area with the power turned off.

Table 1. Specifications of the hybrid cloud system at the Center for Genomic Medicine, Kyoto University, Japan.

Subsystem Name Specification Size

System A File System GPFS ESS JBOD (5U84) 2.1 PB

File System NAS 3.6 PB

Compute Nodes Intel Xeon Haswell E7-8890 v3 (Haswell, 18 cores 2.5 GHz × 4)/512 GiB Three nodes

Compute Nodes Intel Xeon Ivy Bridge E7-4880 v2 (Ivy Bridge, 15 cores 2.5 GHz × 4)/512 GiB One node

Compute Nodes Intel Xeon E5-2698 v4 (Broadwell, 20 cores 2.2 GHz × 2)/8× Tesla P100 GPU/512GiB One node

Job Schedular Slurm

Container Singularity v3

Location Center for Genomic Medicine, Kyoto University, Japan

System B System name Laurel 2

File System Lustre ExaScaler (SFA14K) 0.71(24) PB

Compute Nodes Intel Xeon E5-2694 v4 (Broadwell, 18 cores 2.1 GHz × 2)/128 GiB 17 (850) nodes

Network Between network gateways and SINET (100 Gbps)
Between file systems and compute nodes (100 Gbps)

Job Schedular PBS

Container Singularity v3

Location Academic Center for Computing and Media Studies, Kyoto University, Japan

System C System name Oakbridge-CX (OBCX)

File System Lustre ExaScaler (ES18KE × 2) 0.7 (12.4) PB

Compute Nodes Intel Xeon Platinum 8280 (CascadeLake, 28 cores 2.7 GHz × 2)/192 GiB 256 (1368)
nodes

Network Between the private network gateway and SINET (10 Gbps)
Between public network gateways to SINET (40 Gbps × 2)
Between file systems and compute nodes (100 Gbps)

Job Schedular Fujitsu Technical Computing Suite-

Container Singularity v3

Location Information Technology Center, the University of Tokyo, Japan

System D System name mdx

File System Lustre File Sytem (NVMe) 0.15 (1) PB

File System Lustre File Sytem (HDD) 0.3 (16.3) PB

Compute Nodes Virtualization environment with 608 cores and 1024 GiB in total. 76 cores (152 vCPUs) and
128 GiB are assigned to each compute node. The physical CPU is Intel Xeon Platinum 8368
(IceLake, 38 cores 2.4 GHz × 2).

8 (368)
nodes

Network Between compute nodes and SINET (25 Gbps)

Job Schedular Slurm

Container Singularity v3

Location Information Technology Center, the University of Tokyo, Japan

System E/P File System FSx for Lustre On-demand

File System EBS On-demand

File System S3 On-demand

Network Between System A to AWS (AWS Direct Connect via SINET (10 Gbps))

Compute Nodes AWS assigns requested instance if compute nodes are physically available. For our GATK
joint-genotyping in System E, spot instance of r5.large (2 × vCPU (Intel Xeon Platinum 8000
3.1 GHz)/16 GiB)) was used (max 320 nodes).
Available max resources as spot instance of vCPU and memory in AWS region in Japan are
hpc6a.48xlarge (AMD EPYC Milan) with 192 vCPUs and x2iedn.32xlarge (Intel Xeon IceLake)
4096 GiB at 1/Jul/2022, respectively.

Spot

Location AWS region in Japan (Systems E and P are in different virtual private cloud)

PB petabyte, GiB gibibyte.
The value outside the brackets indicates the value currently being rented, and the value inside the brackets indicates the total system.
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Systems B, C, and D install a Lustre-based file system, a high-speed
distributed parallel file system (https://www.lustre.org/). Of the 24, 12.4,
and 17.3 petabytes in Systems B, C, and D, our center rented a total of 0.71,
0.7, and 0.45 petabytes, respectively. Storage in these regions is used for
fast read/write access from their local compute nodes and as backups for
critical partial data for disaster recovery.
Systems E and P are flexibly chosen from the high-speed storage, FSx

Lustre, general storage, EBS, or near-line storage, S3, for each bioinfor-
matics tool, depending on the latency needed. Most tools are processed by
temporally attaching an encrypted EBS or S3 to compute nodes.

Container and workflow. A hybrid cloud system assumes that analysis
pipelines should be distributed and processed among multiple sites, that
is, Systems A to E. Therefore, creating an environment where the analysis
pipelines among multiple sites can be unified as much as possible is
essential; otherwise, reproducibility will be lost, as well as a different
software version at another site and the cost of rewriting analysis pipelines
to run on different sites. Therefore, our current hybrid cloud system uses
the following solutions. All the computation nodes in Systems A–F use one
of the containers, Singularity version 3 (https://sylabs.io/docs/). In advance,
frequently used bioinformatics tools, such as bwa22, bcftools23, and
samtools23, are downloaded from public image repositories or compiled
and created in Singularity version 3 image format (SIF). The SIF image files
were placed in the predefined directory path at multiple sites. This allowed
us to reproduce and minimize the rewriting cost of pipelines at different
sites. Most bioinformatic tools have been implemented and tested on
Intel-based CPU architectures. Furthermore, some tools cannot even be
compiled on other CPU architectures, such as, for example, using Intel-
based CPU extension instructions in the tool to boost the calculation
speed. Thus, our singularity images are compiled for the Intel architecture
and do not work on other architectures, such as Fujitsu A64FX and AWS
Graviton 2; in other words, our hybrid cloud system cannot use the EC2
instance Gravition2 in Systems E and F. As batch job systems, Slurm has
been installed for Systems A, D, E, and P, which can be controlled as the
administrator by our technical staff. Almost identical analysis pipelines can
be executed among these systems. Slurm is an open-source, fault-tolerant
job scheduling system and a highly scalable cluster management system
for small to large Linux clusters (https://www.schedmd.com/). For Systems
B and C, different batch job systems are preinstalled and serviced to users
without administrative privileges, including researchers in our center.
Therefore, the analysis pipelines still need to be manually rewritten for
these batch job systems. AWS provides an AWS batch and a proprietary
batch system. However, System E uses Slurm to avoid vendor locks (to
ensure portability to other systems). For more information on the
advanced use of containers and workflow description languages, for
example, WDL (https://openwdl.org/) and CWL (https://
www.commonwl.org/v1.2/), workflow engines, such as Nextflow24 and
Cromwell (https://github.com/broadinstitute/cromwell), refer to the Prac-
tical Guide to Managing Large-Scale Human Genome Data Analysis10 or
elsewhere.

Computational resources. In bioinformatics analysis, some tools require a
long processing time, for example, more than one week, and large
memory, such as 512 gibibytes (GiB). Therefore, to take advantage of a
hybrid cloud system, it is practical to select appropriate computing
resources by analyzing the resources required from each tool.
For System A, which our center manages, the maximum execution time

of each process (Slurm batch job) is not set except for the scheduled
maintenance. For System D, the virtualization system allows administrative
privileges for the launched virtual compute nodes, and the maximum
execution time of each process is not set. These settings allow us to
evaluate and analyze the required computational resources of each
bioinformatics tool by using a partial real dataset before large-scale data
analysis in other systems. However, the maximum job running times in
Systems B and C are limited to one week and two days, respectively.
System E has no upper limit, mainly when an on-demand instance is
selected in the AWS. Therefore, jobs that require a long running time can
be performed on Systems A, D, and E. Systems A and D are the first
choices, whereas if a strict deadline exists and only Systems A and D can
process partial jobs until the deadline, then System E also processes the
job. Additionally, jobs will also be processed on System E.
The available memory size of each computing node is 128, 192, 512, and

4096 GiB for Systems B/D, C, A, and E, respectively (ordered by memory
size). Most bioinformatics analysis tools can process within the memory
sizes provided by Systems B/D and C. The remaining analyses, which

require more substantial memory, are performed on System A as the first
choice. When that is still insufficient, the analyses are performed on System
E. This strategy almost eliminates the problem of running out of memory
for bioinformatics tools.

RESULTS
Use case of analyzing 11,238 whole genomes on the hybrid
cloud system
Overview of the whole-genome sequence data analysis. Figure 2
shows a schematic diagram of our whole-genome sequence
(WGS) pipeline from Step 1 to Step 5. Whole-genome analysis
generally starts from an individual variant detection step (Step 1),
in which the sequenced data, e.g., fastq, from each individual is
aligned to an international reference assembly, e.g., GRCh37,
GRCh38, or CHMv225 (in our analysis, the same reference
assembly, GRCH38DH, in the 1000 genomes project was used
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
GRCh38_reference_genome/)), and generates genotyping infor-
mation, e.g., variant call format (VCF) or general VCF (gVCF)26, of
the different bases and the same bases in gVCF from the used
reference assembly with statistics for each base, e.g., strand bias
and phasing information estimated from the sequenced reads. If a
population-based analysis is not needed, Steps 2 to 4 can be
skipped, and the VCF in Step 1 is directly used in Step 5.
In the next steps (Step 2 and Step 3), a joint-genotyping

operation is usually applied to improve the precision and accuracy
of variant detection and allow each statistical indicator of the
genotyping information from different individuals to be easily
compared. The operation takes many individuals’ information
(gVCF files from 100 or 10,000 in the former step) as input, merges
information, and generates files with genotyping information of
multiple individuals (usually gVCF files with multiple
individual data).
The last step of genotyping (Step 5) is to use a machine learning

model, e.g., a Gaussian mixture model, by using the training set of
high-confidence variants, e.g., known SNPs in public databases,
assign a reliable score to each variant and generate VCF files.
Step 5 then applies biological annotations to VCFs in Step 1 or

Step 4 to ease the interpretation of biological impacts of each
variant for researchers, e.g., a loss-of-function variant or/and a
reported variant in the GWAS catalog database27.

Step 1: Individual whole-genome alignment and genotyping. Our
center stores the fastq files of whole-genome sequencing data
from various sources: sequence data generated from in-house
sequencers, obtained through outsourcing to sequencing compa-
nies, and shared through data sharing processes from public
databases, e.g., sequence read archive (SRA)2 or NBDC Human
databases (https://humandbs.biosciencedbc.jp/en/).
The data analysis in Step 1 for individual sequence data, fastq,

is independent of other individual sequencing data. Therefore,
the individual sequence data analysis in Step 1 can be performed
immediately once the sequencing is complete (Input, Step 1-1
and Step 1-2 in Fig. 2). For the current fastq files in our center,
each job in Step 1 can be completed within two days of all
compute nodes with less than 128 GiB memory. Therefore, Step 1
can be performed in any System A to E. Normally, the analysis is
performed on Systems A, B, or C using CPU-based software (Steps
1-1 and 1-2 in Table 2). The mean and median job processing
times in Systems A, B, and C were not too different. Our center
has allocated System A primarily because of its fixed annual cost.
If the computational capacity in System A was occupied by
including other users’ jobs, then the fastqs were transferred to
Systems C and B and analyzed on these systems. When it is
necessary to complete the analysis within a certain period, it can
also be carried out by temporally allocating computing resources
to System E.

M. Nagasaki et al.

4

Human Genome Variation (2023) 10:1 – 9

https://www.lustre.org/
https://sylabs.io/docs/
https://www.schedmd.com/
https://openwdl.org/
https://www.commonwl.org/v1.2/
https://www.commonwl.org/v1.2/
https://github.com/broadinstitute/cromwell
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
https://humandbs.biosciencedbc.jp/en/


As an independent high-speed data processing solution in Step
1, the FPGA genotyping system DRAGEN™28, is installed in System
A. The FPGA system allows the processing of an individual fastq
with 40x coverage of the human reference assembly within
30 min. When a very fast Step 1 analysis is required for a small
dataset as a quality control purpose in our center, e.g., one to
100 samples, it is sometimes operated on the FPGA system as an
independent dataflow from the former primary CPU-based
solution. In AWS, the same FPGA genotyping system is already
serviced in several regions in the United States, Germany,
Australia, and Ireland. However, it is still not installed in any
other region, including Japan, as of July 2022. The implementa-
tion of alignment and variant calls in DRAGEN™ is different from
the former primary CPU-based solution. Thus, if the cram and
gVCF are created from the fastq of a sample by DRAGEN™, the
fastq of the sample is always reanalyzed by the CPU-based
solution. After processing 11,238 samples, the total sizes of the
cram and gVCF were 123.5 TB and 186.8 TB, respectively (Step 1-1
and Step 1-2 in Table 3).

Step 2: Variant database construction. For the population joint-
calling tools, the commands GenomicDBImport and Genoty-
peGVCF of the Genome Analysis Tool Kit (GATK)5 from the Broad
Institute or the command GLnexus from DNANexus29 are usually
used. In our center, to conduct whole-genome analyses of 11,238
individuals, we used the former tool according to the best practice
of GATK version 4.
The GenomicDBImport operation in Step 2 constructs databases

in GenomicDB format, such as a specialized TileDB (https://
tiledb.com/) for genomics applications, e.g., VCF parsing and INFO
field annotation calculation. TileDB is a database format for
efficiently representing sparse data, such as genotype data from
individuals, because most positions are the same as reference
bases to the international reference assembly. In the GenomicD-
BImport operation, chromosomes are divided into regions, and
the GenomicDB database (interval database) is constructed for
each region.

In our center, chromosomes 1–22, X, Y, and M are divided into
3169 regions and processed (Fig. 2 in Step 2). In particular, the
processes can be performed independently for each divided
region, and the GenomicDBImport operation for each region can
be performed in parallel (Fig. 2 in Step 3) between Systems A to E.
As the construction of an interval database requires the gVCFs of
all target individuals, i.e., 11,238 files, our center uses System A,
which collects all gVCF files in advance to the master data
repository after the Step 1 process is completed (Step 2 in Table
2). When creating one interval database, 4506 to 9314 files were
created per region (the mean and median total sizes of one region
were 60.4 and 67.7 GB, respectively). A total of 11,238 samples
were processed to build 3169 gdb, totaling 28,269,278 files of
186.8 TB (Step 2 in Table 3).

Step 3: Population joint-genotyping analysis. The next Genoty-
peGVCF operation takes an interval database and generates the
genotype information of all 11,238 samples in the chromosomal
interval as a gVCF file. In total, 3169 regions must be processed
(Step 3 in Fig. 2). These processes can also be performed
independently for each interval database; thus, ideally, the
GenotypeGVCF operation can be performed in any of Systems
A–E.
Unfortunately, a practical problem still occurs when the interval

database files accessed by each process are different. Suppose all
processes are operated on one distributed file system, as in the
worst-case scenario; approximately 30 million files would be
accessed simultaneously from 3169 processes. Therefore, even in
high-performance parallel distributed file systems (Lustre file
systems and GPFS), these processes affect the processing
performance. In our case, with the Lustre file system, System B
was constrained by the administrator to limit the number of
concurrent file access operations to less than 50,000 per second
(before the limitation, the access of parallel jobs reached more
than 200,000 per second). Subsequently, all processes in System B
were suspended and rescheduled to other systems. Therefore, we
limited the maximum number of concurrent jobs in Systems A and

Fig. 2 Schematic diagram of our WGS population panel construction pipeline. The diagram depicts the data processing flows of whole
genome sequencing data. The orange arrow indicates the incoming sequencing data from various sources, and the blue arrow indicates the
computational steps from Step 1 to Step 5.
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D. In System E, by considering the above features of the joint-
genotyping operation, we attempted to minimize the bottleneck
and scale for concurrent processes by implementing the following
solutions. While the concurrent jobs in Systems A and D were
limited, the computational times in System A (the mean and
median are 18,445.8 and 19,352.0 min) and System D (5709.9 and
5834.1 min) were clearly slower than in System E (1154.7 and
1377.2 min), as seen in Step 3 in Table 2. The breakdown of the
detailed usage of each subsystem for the total 3169 joint-
genotyping processes is summarized in Supplementary Table 1a.
For the analysis in System E, in advance, a single compressed

file (in tgz format) is created for each interval database in System
A, and the compressed file is transferred from System A to the
compute node in System E, i.e., the EC2 instance. This eliminated
one possible bottleneck problem caused by transferring many
files. Each computing node directly expands 4506 to 9314 files
into the attached local file system, in this case EBS, to the
computing node. By assigning each local file system that differs
from the other computing nodes, we attempt to minimize the
network dependencies among the compute nodes. This elimi-
nated the other possible bottleneck problem caused by accessing
a large number of files from many computing nodes.
Furthermore, to minimize the cost of computing nodes, we

used the instances of the spot plan in the AWS. Compared to the
on-demand plan, the computing node has one disadvantage: the
node might be terminated by requests from other cloud users,
mainly from the on-demand plan. Therefore, if the job of a spot
instance is forced to terminate before completing the job, our
custom script resumes restarting from the joint-genotyping
operation by skipping the joint-genotyping regions already
processed in the former job. For 2371 regions processed in
System E, 0 (no resume), 1, 2, 3, 4, and 5 were 1403, 720, 212, 23,
12, and 1, respectively (Supplementary Table 1b). The maximum
resume count was five, and 3637 jobs were required for 2371
regions in System E. To process 11,238 samples, r5.large virtual
computing nodes (two vCPUs from Intel Xeon Platinum 8000
3.1 GHz and 16 GB memory; $0.0366/h per node) were selected as
the Slurm client nodes. The selection of instances would be
changed according to the total number of joint-genotyping
samples. After processing 3169 regions, the total size of vcf was
5.8 TB (Step 3 in Table 3).

Step 4: Calculate and assign variant quality scores. For the
downstream analysis of Step 3, the new variant quality score
called the VQSLOD (for variant quality score log-odds) is calculated
with the VariantRecalibrator operation. The score is usually used as
an essential measure to distinguish reliable variants from
unreliable variants for the downstream ApplyVQSR operation. To
calculate VQSLOD, all VCF files in Step 3 are needed. In our center,
the calculated VCFs and gVCFs at other systems are always
gathered in the master storage of System A. In addition, the
ApplyVQSR operation cannot be split into independent processes.
Thus, both the VariantRecalibrator and ApplyVQSR operations are
processed in System A. After processing 26 regions, the total size
of vcf was 10 TB (Step 4 in Table 3).

Step 5: Biological annotation. As the basic annotations, the major
annotation tools, VEP30 and SnpEff31, are used in our center on
System A with the role of the master dataset (Step 5 in Fig. 2). Four
annotation tasks took more than two days for the 11,286
population panel by still splitting jobs by each chromosome
region. After processing, the total annotation file size was 0.1 TB
(Step 5 in Table 3).

DISCUSSION
We introduced the hybrid cloud system at our center as a
reference implementation for adaptively handling the increasingTa
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large-scale information in genomic medical research. In the hybrid
cloud system, we demonstrated the workflow of the whole-
genome analyses of 11,238 individuals. Apart from this whole-
genome analysis, adding more GPU-based nodes to the current
hybrid cloud system can also be applied to deep learning tools
that are necessary for genomic medical research, e.g., spatial-
omics images or pathological diagnostics. One advantage of the
hybrid cloud system to one sole system (e.g., one supercomputer
system) is the flexibility to change the computing resource
proportion of each subsystem (i.e., Systems A to E and P in our
center) on a daily basis, considering the system requirements of
mainly processing bioinformatics tools, the data needed to
process, and the technical progress of each subsystem (e.g.,
usually a supercomputer system is replaced every five to six years
in Japan). Especially in our case, System C allows large
computational resource assignments in Step 1. In Step 3, System
E resolves the I/O bottleneck problem, which was faced in Systems
A, B, and D. Additionally, System A allows the role to gather and
store all individual sample data in Step 1 and store population
data in Steps 4 and 5 as the master dataset. System B serves as the
backup storage for System A. To estimate the relationship
between the sample size and execution time of the joint-calling
operation in Step 3, among chromosomal 3169 regions, we
selected the chromosomal region with the median gdb size in
Step 3 (chr6: 74, 371, 373–75, 371, 372) and measured the
execution time for the sample size, 149, 878, 2847, 5809 and
11,238 with 6431, 12,571, 20,259, 29,729, and 41,279 variants on
System D without running multiple jobs in the same computa-
tional node (to avoid I/O bottleneck). Figure 3 displays the plot of
the relationship between running time and (a) sample size, (b)

total variants in the chromosomal region, and (c) multiples of (a)
and (b). The result implies that the computational time has a linear
relationship with the sample size of the chromosomal region. The
estimate also allows us to calculate the required computational
time for the same chromosomal region with 20,000, 30,000,
40,000, and 50,000 total samples at ~0.8, 1.2, 1.6, and 2.0 million
seconds on System D, respectively (Fig. 3d and Supplementary
Table 2).
In general, the size of the storage requirements inevitably

increases yearly due to the increase in the amount to be analyzed,
e.g., sequencing information, and the demand to keep the results
of analyses obtained in research activities for reproducibility.
Currently, the public cloud is advantageous as it bursts computing
resources for temporally needed jobs in the case of the joint-
genotyping operation in Step 3 and for database and web services
that require full-time services. For example, Systems A to D have
scheduled maintenance, e.g., once a month in System C, and
System B needs to stop for three months to migrate the contents
to the new supercomputer system in the current Lustre file
system. However, our center considers that it is not yet cost-
effective to migrate our storage systems to public clouds, mainly
provided on the premises and supercomputing systems. If the
cost issue is improved in the future, we may increase the weight to
shift our storage system to public clouds with disaster recovery
and encryption capabilities.
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