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Congenital tooth agenesis is a common anomaly in humans. We investigated the etiology of human tooth agenesis by exome
analysis in Japanese patients, and found a previously undescribed heterozygous deletion (NM_002448.3(MSX1_v001):c.433_449del)
in the first exon of the MSX1 gene. The deletion leads to a frameshift and generates a premature termination codon. The truncated
form of MSX1, namely, p.(Trp145Leufs*24) lacks the homeodomain, which is crucial for transcription factor function.
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Congenital tooth agenesis is a common human anomaly classified
into two subtypes based on the number of permanently missing
teeth, excluding the third molars. Hypodontia is a condition defined
as the absence of 1–5 permanent teeth (OMIM: #106600, #604625);
oligodontia is another type of tooth agenesis in which six or more
teeth are absent (OMIM: #167416). In most countries, ~5–10% of the
total population is affected by congenital tooth agenesis, excluding
the third molars1,2. Although oligodontia morbidity is more rarely
observed, i.e., in 0.08–0.16% of the population, it shows high
heritability3. A series of genetic studies have revealed the causative
genes of human tooth agenesis, which include muscle segment
homeobox1 (MSX1), paired box 9 (PAX9), ectodysplasin A (EDA),
ectodysplasin A receptor (EDAR), and EDAR-associated death
domain (EDARADD). In addition, several genes of the WNT/beta-
Catenin signaling cascade, such as wingless-type MMTV integration
site 10 A (WNT10A), low-density lipoprotein receptor-related protein
6 (LRP6), and axis inhibition protein 2 (AXIN2), are associated with
human tooth malformation. These proteins play pivotal roles during
early human development, including odontogenesis; thus, a
mutation in one of the genes may cause both nonsyndromic and
syndromic tooth agenesis4–9. MSX1 and PAX9 are homeoprotein
transcription factors expressed in the dental mesenchyme with
important roles in expression of mesenchymal bone morphogenetic
protein 4 (BMP4), which promotes dental development10,11.
Here, we analyze Japanese patients with oligodontia diagnosed

on the basis of clinical and radiographic examinations. Saliva
samples were obtained from patients after they provided
informed consent to participate in the study, which was approved
by the Institutional Review Board of Aichi-Gakuin University,
TOYOTA Memorial Hospital, and the Institute for Developmental
Research, Aichi Developmental Disability Center. In the studied

Fig. 1 Pedigree of the case patients and missing teeth patterns.
A The pedigree of the family with familial tooth agenesis. Squares
and circles indicate male and female family members, respectively.
Filled arrow indicates the proband. Black symbols indicate indivi-
duals who were clinically diagnosed with isolated tooth agenesis.
B Panoramic tomogram of the proband, patient II-1. C Missing tooth
pattern of the proband (II-1).
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family, the proband (II-1) and her father (I-1) showed symptoms,
i.e., loss of eight and six teeth, respectively (Fig. 1A–C). Never-
theless, we did not analyze the nucleotide sequence of the MSX1
gene of the father because of disagreement with informed
consent. Orofacial cleft, craniofacial abnormalities, or other health
problems, including those related to ectodermal organs, such as
the hair, nails, and sweat glands, were not noted in any of the
affected family members.
Genomic DNA was extracted from saliva using Oragene DNA

(OG-500; DNA Genotek, Ontario, Canada) according to the
manufacturer’s instructions. Briefly, each saliva sample was mixed
with prepIT L2P (PT-2LP; DNA Genotek), incubated on ice, and
centrifuged for 5 min at 15,000 × g. The supernatant was mixed
with EtOH to precipitate DNA. After centrifugation, the DNA pellet
was dissolved in elution buffer. Mutational analysis by whole-
exome sequencing was subsequently performed according to our
previously reported method12.
Whole-exome sequencing identified a novel, heterozygous, 17-

base pair (TGGATGCAGAGCCCCCG) deletion in the first exon of
the MSX1 gene (NM_002448.3(MSX1_v001):c.433_449del; c.1 is the
A of the ATG translation initiation codon of the MSX1 mRNA;

NM_002448.3 in the GenBank database; Fig. 2A). This mutation
was not present in the following online databases: dbSNP, 1000
Genomes, and NHLBI exome variant project (http://evs.gs.
washington.edu/EVS/). The deletion results in an amino acid
substitution of the 145th tryptophan (NP_002439.2) to leucine,
and the stop codon following an unrelated peptide sequence
consists of 23 amino acid residues (NM_002448.3(MSX1_i001):p.
(Trp145Leufs*24); Fig. 2B). Whole-exome sequencing data for the
DNA samples did not involve other known causative genes for
nonsyndromic tooth agenesis, e.g., PAX9, WNT10A, LRP6, EDA1,
PITX2, AXIN2, EDA1, EDAR, and EDARADD.
The 17-bp deletion generates an MSX1 protein with a C-

terminus lacking the homeodomain. It has previously been
demonstrated that the homeodomain (amino acids 175–229)
plays a pivotal role in molecular interactions with DNA13 and other
transcription factors related to tooth development, such as PAX9,
TATA-binding protein, and DLX family members14. The home-
odomain is also associated with nuclear transport15, which is
crucial for the biological function of transcription factors. We
expressed mutant MSX1 in HEK293 cells to confirm the nuclear
transport defect. Although immunoreactivity of wild-type MSX1

Fig. 2 Nucleotide substitution and immunolocalization of mutant MSX1. A Sequencing results for the MSX1 gene in the control (upper
panel). Heterologous peaks of the nucleotide sequence for tooth agenesis were detected in the patient’s MSX1 gene (lower panel).
B Schematic diagram of wild-type MSX1 and the mutant; p.(Trp145Leufs*24). The MSX1 mutant is a C-terminus-truncated form lacking the
homeodomain/MH4 and the PIAS-binding domain. PBD PIAS-binding domain (amino acids 265–297). C Nuclear localization of wild-type and
truncated MSX1 in HEK293 cells. FLAG-tagged wild-type MSX1 immunolocalized to the nucleus of transfected HEK293 cells, but
immunoreactivity of the mutant MSX1 was diffusely detected in the cytoplasm. MSX1 (FLAG, red); nuclei [4′,6-diamidino-2-phenylindole
(DAPI), blue]. Bar=10 µm.
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was detected in nuclei, as previously reported16, truncated MSX1
was mainly found in the cytoplasm (Fig. 2C).
In addition to its nonsyndromic form, haploinsufficiency of

MSX1 causes the syndromic form of tooth agenesis that includes
cleft lip and/or palate17,18. To date, 50 MSX1 gene mutations,
including four truncated variants, have been identified in
patients with syndromic and nonsyndromic tooth agenesis.
Although amino acid substitutions in patients with tooth
agenesis cluster in the homeodomain (70%), no variants
associated with cleft lip and/or palate without tooth malforma-
tion have been identified in it19. Previous biochemical analyses
have shown that some single-amino acid substitutions in the
homeodomain of MSX1 can affect the transcriptional suppres-
sion activity of the MyoD promoter, which is one of the targets of
MSX120. Because MSX1 strongly suppresses target gene expres-
sion and represses cell differentiation both in vitro and in vivo21,
it sustains cellular proliferation in the tooth germ during
odontogenesis for robust tooth development in terms of size,
number, and shape.
In summary, previous reports and the current results indicate

that the p.(Trp145Leufs*24) mutation impairs the molecular
function of MSX1; thus, the identified nucleotide deletion is the
cause of the tooth agenesis in the studied family. Because of the
pathogenic relationship between particular MSX1 mutations and
facial clefts, we believe that clarifying MSX1 gene variations will
help to improve the precision of genetic counseling to patients
with odontogenic malformations and/or facial clefts.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at https://doi.org/10.6084/m9.
figshare.hgv.3039
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