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Abstract
Diamond-Blackfan anemia (DBA) is an inherited anemia with multiple congenital malformations, and mutations in
ribosomal protein genes have been identified as the underlying cause. We describe a female patient with mild DBA
due to 1p22 deletion, encompassing the gene encoding 60S ribosomal protein L5 (RPL5). Considering previously
reported cases together with our patient, we suggest that RPL5 haploinsufficiency might cause a less severe form of
DBA than loss-of-function mutations.

Diamond-Blackfan anemia (DBA) [MIM. 105650] is an
autosomal dominant disorder characterized by severe
normochromic and macrocytic anemia with normal leu-
kocytes and platelets, congenital malformations, and
growth retardation. The phenotype varies from mild to
severe fetal anemia1, and DBA is associated with an
increased risk of hematological malignancy1. Mutations in
19 genes encoding ribosomal proteins have been recog-
nized as causing DBA2. The mutations reported to date
include single-nucleotide variants and copy-number var-
iants, both of which result in loss-of-function or hap-
loinsufficiency of the causal genes2–6. Although mutations
in RPL5, encoding 60S ribosomal protein L5, account for
11% of the patients with DBA2,7, only three patients have
been reported to have a large deletion of RPL54,6,8,9. Here,
we report a female patient with DBA caused by 1p22
deletion, and we attempt to elucidate the clinical and
hematological features of this large deletion encompass-
ing RPL5.

The proposita was a 20-year-old woman. She was born
at 39-weeks gestation after an uneventful pregnancy. At
birth, her weight was 2055 g (−2.3 SD), and her length
was 48 cm (−0.2 SD); her occipitofrontal circumference
(OFC) was 32 cm (−0.6 SD). She underwent ligation of
the patent ductus arteriosus on day 27; total repair of her
atrial septal defect occurred at 1 year 9 months. At her
first visit to our genetics clinic at 3 years of age, her weight
and height were 11.1 kg (−1.2 SD) and 84.4 cm (−2.3 SD),
respectively, with an OFC of 52.4 cm (+ 2.5 SD). Her
facial appearance characteristics included typical down-
slanting palpebral fissures, deep-set eyes, a thin upper lip,
and macrocephaly. Hypoplastic finger-like thumbs with
nail hypoplasia were noted (Fig. 1a). Brain magnetic
resonance imaging revealed cortical atrophy and dilated
ventricles. Her developmental milestones were delayed,
with head control at 9 months, rolling over at 1 year, and
walking without support at 4 years. At the age of 6 years,
she was noted as having mild anemia: hemoglobin (Hb),
10.5 g/dL; mean corpuscular volume (MCV), 89 fL; mean
corpuscular hemoglobin (MCH), 30.2 pg; white blood cell
(WBC) count, 5500/cumm; and platelet count, 32.2 × 104.
At the age of 16 years, her anemia continued, with values
as follows: Hb, 8.8 g/dL; MCV, 92 fL; MCH, 31.8 pg; WBC
count, 3200/cumm (lymphocytes 48%, neutrophils 41%);
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and platelet count, 32.4 × 104. Her bone marrow had a
markedly hypocellular appearance, with a small number
of erythroid and myeloid cells and megakaryocytes. Nor-
mal values in cytogenetic stress testing were obtained for
mitomycin C, bleomycin, cyclophosphamide, diepox-
ybutane, and fludarabine. She also had primary amenor-
rhea and underwent vaginal fenestration for
hematometrocolpos due to vaginal atresia at 16 years. At
age 20, the following were recorded:Hb, 9.5 g/dL; MCV,
92.7 fL; MCH, 30.4 pg; WBC count, 3100/cumm; and
platelet count, 29.1 × 104. To date, she has not required
transfusion for her mild hypochromic anemia.
Written informed consent was obtained from the par-

ents of the patient, and this study was performed in

accordance with the Kanagawa Children’s Medical Center
Review Board and Ethics Committee. Array comparative
genomic hybridization (array CGH) using Agilent Sur-
ePrint G3 Human CGH Microarray Kit 8 × 60 K (Agilent
Technologies, Inc., Santa Clara, CA, USA) revealed a
7.9-Mb deletion (arr[GRCh37] 1p22.3p22.1(86369841_
94276387)x1) (Fig. 1b, c)10. No other genomic imbalances
were identified based on the array analysis. Fluorescence
in situ hybridization (FISH) analysis with relevant bac-
terial artificial chromosome (BAC) clones confirmed the
deletion (Fig. 1d). Both parents refused cytogenetic eva-
luation. Further retrospective evaluation of G-banded
metaphase chromosome 1 revealed a heterozygous dele-
tion of 1p22.1–p22.3 (Fig. 1e).
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Fig. 1 Clinical phenotype and molecular cytogenetic findings. a Hypoplastic thumb (triphalangeal thumb) was noted. b, c Array CGH analysis
showing the 7.9-Mb deleted region at 1p22.1–p22.3. d Partial image of metaphase fluorescence in situ hybridization (FISH) of lymphocytes using the
RP11–62M16 BAC clone (chr1: 92381303–92517650, NCBI35/hg17) as a specific probe for 1p22.1 (red). One signal was observed for the patient,
consistent with a deletion at 1p22.1–p22.3. The signal of RP11–62M16 was absent from derivative chromosome 1 (arrow). e Retrospective evaluation
of G-banded metaphase chromosome 1 revealed a heterozygous deletion of 1p22.1–p22.3 (arrows)
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The patient exhibited variable clinical manifestations,
such as multiple congenital anomalies, moderate to severe
developmental delay, and characteristic hematological
findings of mild normochromic anemia and neutropenia.
The clinical features overlapped with those of DBA and
Fanconi syndrome. However, hematological analysis
excluded the possibility of Fanconi anemia. The array
CGH analysis revealed a 7.9-Mb deletion of 1p22.1–p22.3
encompassing 40 OMIM genes, including RPL5. To our
knowledge, only three cases with large deletions of RPL5
associated with DBA have been reported4,6,8,9. In general,
most patients with DBA show a steroid-dependent or
transfusion-dependent clinical course. Although the
detailed clinical and hematological features of the three
patients with RPL5 haploinsufficiency are not available,
two patients were reported to be steroid responsive4,8.
Considering those cases together with our patient who
showed a mild form of DBA without hematological
treatments, we believe that RPL5 haploinsufficiency might
result in a less severe form of DBA than that caused by
loss-of-function mutations. Although the involvement of
neighboring genes could not be proven in the etiology of
the patient’s phenotype, our case provides crucial infor-
mation on the underlying mechanism for DBA (Fig. 2).
Further information on DBA associated with genetic
studies is required for a clearer understanding of the
genetic and molecular bases of DBA.

HGV database
The relevant data from this Data Report are hosted at the Human Genome
Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2594.
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Fig. 2 Schematic representation of the 1p21.3–p22.3 deletions in the present case, DECIPHER patient (2258241), and previously reported
cases encompassing RPL5 based on USCS Genome Browser 2009 (GRCh37/hg19) Assembly (http://www.genome.ucsc.edu)
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