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Genome-wide association study identifies QTL for
eight fruit traits in cultivated tomato (Solanum
lycopersicum L.)
Minkyung Kim1, Thuy Tien Phan Nguyen1, Joon-Hyung Ahn2, Gi-Jun Kim2 and Sung-Chur Sim1,3✉

Abstract
Genome-wide association study (GWAS) is effective in identifying favorable alleles for traits of interest with high
mapping resolution in crop species. In this study, we conducted GWAS to explore quantitative trait loci (QTL) for eight
fruit traits using 162 tomato accessions with diverse genetic backgrounds. The eight traits included fruit weight, fruit
width, fruit height, fruit shape index, pericarp thickness, locule number, fruit firmness, and brix. Phenotypic variations of
these traits in the tomato collection were evaluated with three replicates in field trials over three years. We filtered
34,550 confident SNPs from the 51 K Axiom® tomato array based on < 10% of missing data and > 5% of minor allele
frequency for association analysis. The 162 tomato accessions were divided into seven clusters and their membership
coefficients were used to account for population structure along with a kinship matrix. To identify marker-trait
associations (MTAs), four phenotypic data sets representing each of three years and combined were independently
analyzed in the multilocus mixed model (MLMM). A total of 30 significant MTAs was detected over data sets for eight
fruit traits at P < 0.0005. The number of MTA per trait ranged from one (brix) to seven (fruit weight and fruit width).
Two SNP markers on chromosomes 1 and 2 were significantly associated with multiple traits, suggesting pleiotropic
effects of QTL. Furthermore, 16 of 30 MTAs suggest potential novel QTL for eight fruit traits. These results facilitate
genetic dissection of tomato fruit traits and provide a useful resource to develop molecular tools for improving fruit
traits via marker-assisted selection and genomic selection in tomato breeding programs.

Introduction
Tomato (Solanum lycopersicum L.) is an economically

important crop species in the Solanaceae family, which
includes potato, pepper, and eggplant. It is cultivated
worldwide and one of the most consumed vegetables. In
2018, the world production of tomato exceeded 182
million tons from 4.76 million ha1. With its economic
value, large efforts have been made to improve horti-
cultural traits and disease resistance in tomato breeding
programs. Tomato has diverse genetic variations in fruit
traits, such as shape, size, and weight. Therefore, QTL

mapping has been extensively conducted using bi-
parental populations for genetic dissection of fruit traits
and several major genes were identified2–7. QTL detection
in the structured populations derived from two parents
has the disadvantage of low mapping resolution due to
limited recombination events8,9.
As an effective mapping method for complex traits,

genome-wide association study (GWAS) allows to identify
the tight linkage between marker and QTL with dense
genome coverage in the unstructured populations, such as
collections of germplasm and breeding lines. These
GWAS panels have higher recombination rates to
increase mapping resolutions relative to bi-parental
populations10. In addition, diverse alleles for a trait of
interest can be explored in these populations11,12. The
discovery of genome-wide single nucleotide
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polymorphisms (SNPs) has facilitated GWAS in crop
species. As the most common type of sequence variation,
SNPs are suitable for high-throughput genotyping with
automation. Advances in next-generation sequencing
(NGS) technology have led to an accumulation of SNPs.
In tomato, a NGS-based transcriptome analysis of five
cultivated varieties and one wild species generated 17 Gb
of sequences and identified 62,576 non-redundant
SNPs13. Of these, 8784 SNPs were used to develop the
first high-throughput genotyping array14. Whole-genome
sequencing of diverse tomato accessions also identified a
large number of SNPs across 12 chromosomes15,16. Fur-
thermore, a total of 51,912 SNPs was detected by rese-
quencing 96 large-fruit commercial varieties with a mean
depth of 1.9x and these SNPs were used to develop the
Axiom tomato genotyping array17.
In addition to NGS-based SNP discovery, several sta-

tistical models have been developed to improve the
accuracy and efficiency of GWAS10,18,19. With these
advances, GWAS has been successfully conducted to
explore allele variations for fruit quality and morphology
in tomato. Several marker-trait associations (MTAs) were
detected for phenolic compounds, ascorbic acid,
β-carotene, trans-lycopene, and titratable acidity using the
worldwide collection of 96 accessions representing land-
races, vintage, and modern varieties20. GWAS in 163
tomato accessions identified a total of 44 candidate loci
for 19 fruit metabolites, including amino acids, sucrose,
malate, ascorbate, and citrate21. Two mapping popula-
tions were also used to investigate the genetic architecture
of tocochromanol content in tomato fruit22. Genetic dis-
section of tomato flavor was also conducted and a large
number of significant associations was found for flavor-
related traits23–25. For fruit morphological traits, a num-
ber of favorable alleles was detected by GWAS in the
tomato collections26,27. A recent study investigated
genetic variations for six fruit traits in 192 tomato
accessions and identified a total of 54 loci associated with
these traits28. In addition, a germplasm collection of 163
accessions representing S. lycopersicum and S. pimpi-
nellifolium was used to identify genomic regions asso-
ciated with fruit, flower, and vegetative traits via GWAS29.
This study revealed a total of 107 MTAs for eight quan-
titative traits, including fruit weight and locule number.
Although a number of loci associated with fruit traits

was found in the previous studies, these loci are respon-
sible for partial genetic variations of each trait in tomato.
Therefore, the present study was conducted to explore
novel QTL for eight fruit traits in a collection of 162
tomato accessions representing different genetic back-
grounds from the previous GWAS panels. The eight fruit
traits used in our study included fruit weight, fruit width,
fruit height, fruit shape index, pericarp thickness, locule
number, fruit firmness, and brix. GWAS with phenotypic

data from field trials over three years identified a number
of potential novel QTL along with previously known
genes. These results will be a useful resource to develop
breeder’s toolboxes for marker-assisted selection and
genomic selection in tomato breeding programs.

Results
Genome-wide SNP identification
The 51,214 SNPs of the Axiom® tomato array were

polymorphic in the 162 tomato accessions. Of these,
34,550 SNPs were filtered with missing data rate (< 10%)
and minor allele frequency (> 5%). These confident SNPs
were distributed over 12 chromosomes and covered a
total of 751.75Mb with a range of 45.52Mb on chro-
mosome 6–90.24Mb on chromosome 1 (Table 1). The
number of SNPs per chromosome ranged from 1292
(chromosome 7) to 5469 (chromosome 1). In addition, the
average of marker intervals across all 12 chromosomes
was 0.021Mb, ranging from 0.013Mb on chromosome 11
to 0.050Mb on chromosome 7 (Table 1). The largest gap
of 21.60Mb was found on chromosome 9, while the
maximum marker intervals were 1.05–15.71Mb on the
other chromosomes.

Phenotypic variations of fruit traits in the tomato
collection
The 162 tomato accessions showed wide ranges of

phenotypic variations for eight fruit traits, including fruit

Table 1 Distribution of 34,550 confident SNP markers on
12 tomato chromosomes

Chromosome No. of SNP

markers

Coverage

(Mb)a
Marker interval (Mb)

Maximum Average

1 5469 90.24 7.12 0.016

2 2211 49.37 1.58 0.022

3 2942 62.54 2.33 0.021

4 3665 63.87 15.71 0.017

5 2017 63.95 4.96 0.031

6 3435 45.52 2.54 0.013

7 1292 64.86 2.65 0.050

8 1491 62.82 2.22 0.042

9 3838 67.65 21.60 0.017

10 1453 64.81 2.89 0.044

11 3816 50.84 12.47 0.013

12 2921 65.28 1.05 0.022

Total 34,550 751.75 21.60 0.021

aCoverage was determined using the tomato genome assembly SL4.0
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weight, fruit width, fruit height, fruit shape index, pericarp
thickness, locule number, fruit firmness, and brix (Figs. 1
and S1). Fruit weight ranged from 9.66 to 315.80 g, and
the means of each year were 68.15 g in 2018, 74.00 g in
2019, and 96.27 g in 2020. The Pearson correlation coef-
ficients between the three years were 0.75–0.85 (Table 2).
We found phenotypic variations of 18.08–85.06 mm for
fruit width and 25.82–86.30 mm for fruit height. These
traits also showed high levels of correlation over three
years with coefficients of 0.78–0.86 for width and
0.78–0.83 for height. Fruit shape index showed the
highest correlation ranging of 0.93–0.95 in 2018–2020
with the phenotypic variations of 0.46–2.27 with means of
1.05–1.12 (Fig. 1 and Table 2). These results indicate that
the tomato collection represents diverse fruit sizes and
shapes.

For the other traits, substantial phenotypic variations
were observed for pericarp thickness and locule number
with the correlation coefficients of 0.76–0.85 and
0.83–0.88 over three years (Fig. 1 and Table 2). Fruit
firmness showed the means of 39.42 kgf/cm2 in 2018,
58.22 kgf/cm2 in 2019, and 62.05 kgf/cm2 in 2020. In
addition, the 2018 phenotypic data of this trait showed a
low correlation coefficient of 0.33 with each of the 2019
and 2020 data relative to the coefficient of 0.81 between
2019 and 2020 (Table 2). This is due to the difference
between destructive (2018) and non-destructive (2019 and
2020) methods. Brix ranged from 3.10 to 9.09% over three
years with the means of 5.18–5.51% and correlation
coefficients of 0.45–0.72 (Fig. 1 and Table 2). The phe-
notypic data of three years for eight fruit traits were used
for GWAS without normalization.
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Fig. 1 Phenotypic distribution of eight fruit traits in the 162 tomato accessions over three years. Max: maximum value, Min: minimum value,
and Avg: mean value in the tomato collection
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Identification of marker-trait associations for fruit traits
The 34,550 confident SNPs were used to infer a popu-

lation structure in the 162 tomato accessions representing
29 small fruit (round, cylinder, and oval), 119 medium
fruit (flat, cylinder, oval, and round), and 14 large fruit
(flat) germplasm. The delta K method30 suggested that the
best K (number of clusters) was seven in the model-based
clustering analysis and the number of tomato accessions
per cluster ranged from eight (cluster 7) to 46 (cluster 1)
(Fig. 2 and Table S1). Cluster 1, which is the largest,
consisted of 42 medium fruit accessions and four large
fruit accessions. Of these medium fruit accessions, the
oval shape was dominant (20 accessions) followed by 11
cylinder, seven flat, and four round accessions. Cluster 2
included 32 medium fruit accessions (18 flat, seven round,
five oval, and two cylinder accessions). Six large fruit
accessions were also found with these medium fruit
accessions in this cluster. The other 44 medium fruit

accessions were divided into clusters 3 (23 accessions), 4
(14 accessions), and 5 (seven accessions). In these clusters,
we also found two small fruit accessions (cluster 3), one
large fruit accession (cluster 4), and three large fruit
accessions (cluster 5). Cluster 6 consisted of only 20 small
fruit accessions (17 cylinder, two oval, and one round).
Similarly, the dominant accession in cluster 7 was small
fruit accessions (five round and two oval plum). This
cluster also included a medium flat fruit accession (Fig. 2
and Table S1). In addition, the hierarchical clustering
analysis based on Nei’s genetic distance also found that
most of the accessions were grouped as shown in the
seven clusters (Fig. S2). Considering geographic relations,
104 of 162 tomato accessions were collected from India
and distributed into six clusters excluding cluster 7 (Table
S1). Furthermore, we found no country-specific clusters
in the other 58 accessions. Semi-determinant and deter-
minant accessions were found together in the same
cluster. Therefore, the population structure in the tomato
collection is likely due to multiple factors, such as fruit
size and pedigree.
GWAS using the 34,550 confident SNPs identified a

total of 30 significant marker-trait associations (MTAs)
for eight fruit traits at P < 0.0005 (Table 3, Fig. 3, and S3).
These MTAs were repeatedly detected in at least two of
four phenotypic data sets (each of three years and com-
bined). Of these, we found that 16 MTAs were significant
at P < 0.00005 that was determined as a genome-wide
significance threshold based on 1677 SNPs, the effective
number of independent markers31. For fruit weight, seven
MTAs were found on chromosomes 1, 2, 4, 8, and 10 at
P < 0.0005, and five of these MTAs also showed sig-
nificance at P < 0.00005 (Table 3 and Fig. 3). The phe-
notypic variance explained (PVE) for two MTAs on
chromosomes 1 and 8 ranged from 11.98 to 28.95%, while
the PVE for other MTAs were < 10%. In addition, two
MTAs were detected within several Mb distances on both
chromosomes 1 (11.46Mb) and 2 (8.88Mb). We found

Table 2 Phenotypic correlation of eight fruit traits in the
162 tomato accessions over three years

Trait Pearson correlation coefficient

2018

vs. 2019

2018

vs. 2020

2019

vs. 2020

Fruit weight (g) 0.85 0.75 0.76

Fruit width (mm) 0.85 0.78 0.86

Fruit height (mm) 0.83 0.78 0.80

Fruit shape index 0.94 0.93 0.95

Pericarp

thickness (mm)

0.85 0.76 0.77

Locule number 0.83 0.84 0.88

Fruit firmness (kgf/cm2) 0.33 0.33 0.81

Brix (%) 0.72 0.45 0.52

Fig. 2 Inferred population structure in the 162 tomato accessions using the model-based program STRUCTURE v2.3.4. A single vertical line
indicates each accession’s genome, which is partitioned into colored segments in proportion to the estimated membership in the seven clusters
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Table 3 Significant associations for eight fruit traits identified repeatedly using the multilocus mixed model in the 162
tomato accessions

Trait SNPa Chr Positionb P value PVE (%)c

2018 2019 2020 Combinedd 2018 2019 2020 Combined

Fruit weight SLA773077 1 65.81 0.0000476 0.0179588 0.0006453 0.0002271 28.95 – 11.98

Fruit weight SLA802093 1 77.27 0.0003554 0.0283558 0.0053169 0.0004674 7.77 – – 3.07

Fruit weight SLA790460 2 35.19 0.0001787 0.0000011 0.1634972 0.0001411 1.79 2.44 – 2.91

Fruit weight SLA773357 2 44.07 0.0000108 0.0438821 0.0174063 0.0000190 5.82 – – 5.97

Fruit weight SLA796789 4 2.39 0.0050597 < 0.0000001 0.0190282 0.0000547 – 5.76 – 3.81

Fruit weight SLA769857 8 56.89 0.0036812 < 0.0000001 0.0031018 0.0001049 – 28.21 – 26.20

Fruit weight SLA770985 10 62.24 0.0040817 0.0015545 0.0002492 0.0001610 – – 27.45 7.00

Fruit width SLA773077 1 65.81 0.0023288 0.0003581 0.0000898 0.0000700 – 20.43 25.79 22.94

Fruit width SLA794277 2 34.84 0.0000387 0.0069278 0.2426664 0.0000234 19.93 – – 18.66

Fruit width SLA773357 2 44.07 0.0000003 0.0002005 0.0004138 0.0000022 9.26 7.28 2.08 7.87

Fruit width SLA805140 3 55.04 0.0002758 0.0512368 0.0033326 0.0004037 4.95 – – 4.12

Fruit width SLA807083 9 0.16 0.0041339 0.0001966 0.3589960 0.0001213 – 6.95 – 2.27

Fruit width SLA781898 12 1.84 0.0022950 0.0001561 0.0214374 0.0001196 – 0.74 – 0.24

Fruit width SLA802669 12 65.83 0.0027364 0.0003636 0.0009566 0.0000810 – 7.25 – 5.32

Fruit height SLA770301 4 1.21 0.0103264 0.0002059 0.0004259 0.0001397 – 11.44 6.45 6.39

Fruit height SLA798303 4 2.98 0.0005463 0.0002960 < 0.0000001 0.0000035 – 28.10 20.27 42.60

Fruit height SLA801003 8 47.36 0.0000002 0.0002787 0.0048167 0.0008780 15.44 9.82 – –

Fruit shape index SLA814454 2 47.19 0.0000670 0.0108237 0.9941488 < 0.0000001 25.86 – – 31.46

Fruit shape index SLA788494 3 0.85 0.1903665 0.0000626 0.5070271 0.0003350 – 12.41 – 4.05

Fruit shape index SLA813666 4 54.56 0.0000631 0.0021089 0.0248604 < 0.0000001 5.31 – – 3.19

Fruit shape index SLA814924 12 63.42 0.0000005 0.0169602 0.0110991 < 0.0000001 6.33 – – 5.90

Pericarp thickness SLA805176 2 35.89 0.0002759 0.0264039 0.0388244 0.0002181 1.94 – – 2.08

Pericarp thickness SLA775228 2 50.74 0.0013494 0.0004428 0.1007583 0.0002261 – 27.70 – 29.22

Pericarp thickness SLA769530 9 0.89 0.0000279 0.0032031 0.0032080 0.0002705 1.04 – – 0.38

Pericarp thickness SLA790046 12 62.59 0.0153631 0.0004161 0.0165053 0.0004021 – 3.69 – 2.66

Locule number SLA773357 2 44.07 < 0.0000001 0.0348780 0.2906442 0.0000009 12.05 – – 10.47

Locule number SLA811728 3 55.56 0.0003184 0.0007633 0.0035344 0.0000163 12.07 – – 15.38

Locule number SLA802459 6 36.01 0.0295386 0.0001617 0.0001102 0.0014632 – 1.55 5.22 –

Locule number SLA795305 10 59.32 0.0001917 0.0000065 0.0030642 0.0025213 0.87 2.23 – –

Fruit firmness SLA770638 2 36.56 0.8059914 0.0004831 0.0000046 0.0000502 – 1.86 16.35 9.22

Fruit firmness SLA794291 4 55.17 0.2954367 0.0001228 0.0034657 0.0000832 – 15.48 – 20.34

Fruit firmness SLA786548 8 48.40 0.9845478 0.0001178 0.0005731 0.0001857 – 23.73 – 14.94

Brix SLA812628 9 62.64 0.0000395 0.0148190 0.5575202 0.0000594 26.22 – – 28.73

aSNP markers associated with the traits at P < 0.00005 were italicized
bThe physical map positions of SNP markers were determined using the tomato genome assembly SL4.0
cThe phenotypic variation explained (PVE) by each marker
dThe phenotypic data of three years for seven traits were combined for GWAS. For fruit firmness, the 2019 and 2020 data were combined because the 2018 data were
collected using a different type of penetrometer
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significant MTAs for fruit shape-related traits, fruit width
(seven MTAs), fruit height (three MTAs), and fruit shape
index (four MTAs) at P < 0.0005 (Table 3 and Fig. 3). Two
MTAs for fruit width on chromosomes 1 and 2 explained
18.66–25.79% of phenotypic variance. Of these, the
SLA773077 marker on chromosome 1 showed significant
associations with both fruit weight and width. Further-
more, the 2nd MTA on chromosome 2 was found at
9.23Mb away from the 1st MTA and its marker
(SLA773357) was significantly associated with both the
fruit weight and width (Table 3 and Fig. 3). These MTAs
on chromosome 2 were also detected at P < 0.00005. For
fruit height, one of two MTAs on chromosome 4 showed
significance at P < 0.000005 and its PVE ranged from
20.27 to 42.60%. Another MTA was found on chromo-
some 8, explaining 15.44% (2018) and 9.82% (2019) of
phenotypic variance. Three of four MTAs for fruit shape
index were detected on chromosomes 2, 4, and 12 at P <
0.00005 (Table 3 and Fig. 3). The MTA on chromosome

2 showed large effects (up to 31.46% in the combined
data), while the other MTAs explained < 10% of pheno-
typic variance.
We detected four MTAs for pericarp thickness on chro-

mosomes 2, 9, and 12 at P < 0.0005 (Table 3 and Fig. 3). The
SLA769530 marker on chromosome 9 was also associated
with this trait at P < 0.00005 in the 2018 data. Two MTAs
on chromosome 2 were found at 35.89 and 50.74Mb,
respectively. The 1st MTA explained up to 29.22% of
phenotypic variance in the combined data. In contrast, the
other MTAs including the 2nd MTA on chromosome
2 showed small effects (< 5%). For locule number, four
MTAs were detected on chromosomes 2, 3, 6, and 10 at P <
0.0005, and three of these (excluding one on chromosome
6) also showed significance at P < 0.00005 (Table 3 and Fig.
3). Two of these MTAs on chromosomes 2 and 3 explained
from 10.47 to 15.38% of phenotypic variance, while the
other MTAs explained < 5%. In addition, the SLA773357
marker on chromosome 2 was significantly associated with
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Fig. 3 Physical map positions of the 30 marker-trait associations (MTAs) detected in this study and the previously known loci for eight
fruit traits. The MTAs are prsented on the right side of chromosomes using SLAxxxxxx_trait name (FW: fruit weight, FWt: fruit width, FH: fruit height,
FSI: fruit shape index, PT: pericarp thickness, LN: locule number, FF: fruit firmness, and brix). Two SNP markers (SLA773077 and SLA773357) associated
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not only locule number but also the fruit weight and width
(Table 3 and Fig. 3). Association analysis with fruit firmness
identified three MTAs on chromosomes 2, 4, and 8 at P <
0.0005 (Table 3 and Fig. 3). The PVE for two MTAs on
chromosome 4 and 8 ranged from 14.94 to 23.73%. The
MTA on chromosome 2 was significantly found at P <
0.000005 in the 2020 data and its PVE was 16.35%. For brix,
only one significant MTA was detected on chromosome 9
at P < 0.00005 (2018) and P < 0.0005 (combined), explaining
26.22 and 28.73% of phenotypic variance in these data
(Table 3 and Fig. 3).

Discussion
In this study, a collection of 162 tomato accessions was

used to identify favorable alleles associated with eight fruit
traits using genome-wide SNPs. Their phenotypic varia-
tions of the traits were evaluated in field trials over three
years. The observed large phenotypic variation of each
trait in every year suggests that the tomato accessions
originated from diverse genetic backgrounds. This genetic
diversity provided an opportunity to explore novel QTL
for improving the fruit traits in tomato breeding pro-
grams. Furthermore, six traits excluding fruit firmness
and brix revealed high correlation coefficients (0.75–0.95)
between the phenotypic data collected over three years.
For fruit firmness, the 2018 phenotypic data showed the
coefficient of 0.33 to each of the 2019 and 2020 data, while
the coefficient between 2019 and 2020 was 0.81. We used
a digital destructive penetrometer in 2018 and a non-
destructive penetrometer in 2019 and 2020. Although
both destructive and non-destructive penetrometers are
commonly used to measure fruit firmness in crop species,
our result demonstrates that these types of penetrometer
can generate inconsistent measurements in tomato. Brix
also showed relatively low correlation coefficients, espe-
cially when the phenotypic data in 2020 was compared
with each of the 2018 and 2019 data. It is likely due to
high precipitation and temperature in the 2020 growing
season. In addition, this result is supported by lower
heritability of brix (0.63) than other fruit traits, such as
fruit weight (0.83) and locule number (0.85) reported in a
previous study, indicating that this trait is more sensitive
to environmental variations7,36.
For GWAS, we used the multilocus mixed model

(MLMM) that effectively reduces false positives and false
negatives18. A total of 30 significant MTAs was found
with at least two phenotypic data sets for eight fruit traits
at P < 0.0005. In addition, candidate genes for 10 MTAs
were found using the tomato genome assembly SL4.0 and
ITAG 4.0 (Table S2). Of the 30 MTAs, 14 likely represent
previously known loci for fruit traits. There are three
major genes for tomato fruit development on chromo-
some 2, including fw2.2 for fruit weight at 50.29 Mb37,
ovate for fruit shape at 46.38 Mb38, and lc for locule

number at 45.19 Mb4. Two MTAs were detected in the
genomic regions of these major genes on chromosome 2.
One of these MTAs at 44.07Mb showed significant
associations with three traits (fruit weight, fruit width, and
locule number), while another MTA was significant for
the fruit shape index. We also found two additional MTAs
for the fruit weight (35.19Mb) and fruit width (34.84Mb)
in the known QTL region on chromosome 228. The other
three MTAs for fruit weight are likely to correspond to
the known QTL on chromosomes 1, 4, and 1028,33,39. For
the fruit shape index, two MTAs were found in the pre-
viously reported QTL regions on chromosomes 4 and
122,39. Furthermore, two MTAs for pericarp thickness
were found 0.45Mb and 0.70Mb away from the lc gene4

and known QTL28 for fruit weight on chromosome 2,
respectively. A QTL for this trait was previously reported
in the vicinity of our MTA on chromosome 122. For brix,
a single MTA was detected at 62.64Mb on chromosome
9, located 3.85Mb away from a known QTL7.
Interestingly, 16 MTAs were identified in genomic

regions without previously known loci for eight fruit
traits, suggesting discovery of novel QTL. For six of these
MTAs, we found candidate genes that are related to fruit
development. The GWAS panel used in this study con-
sisted of determinate and semi-determinate tomato
accessions that mostly originated from Southern and
Western Asian countries. Therefore, this collection is
more likely to represent different genetic backgrounds
relative to the mapping populations of previous stu-
dies2,7,27,28,32–35. For example, we found that the fruit
height ranged from 25.82 to 86.30 mm with a mean of
52.22 mm, while another population showed
17.46–111.47 mm with a mean of 44.69 mm28. Similarly,
different phenotypic variations between populations were
found for the fruit weight, fruit width, and pericarp
thickness. In addition, the fruit shape index used in this
study was measured differently from the fruit shape. The
first was determined based on the ratio of maximum
height and to maximum width using the Tomato Analyser
software, while the second was based on 1–9 scales28. This
distinction could lead to novel QTL identification for the
fruit traits in our study.
Two SNP markers showed significant associations with

multiple traits, suggesting that corresponding QTL have
pleiotropic effects. The SLA773077 marker on chromo-
some 1 was associated with both the fruit weight and fruit
width. The other marker (SLA773357) on chromosome
2 showed associations with the fruit weight, fruit width,
and locule number. Since phenotypic correlations
between the fruit traits of tomato have been reported in
the present and previous studies28,40,41, identification of
QTL with pleiotropic effects was expected. However, we
found no QTL associated with both fruit height and shape
index, even though the traits are correlated. In addition, a
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previous study found several QTL with pleiotropic effects
between the fruit weight and fruit height28. This result
may be due to a small number of MTAs for the fruit
height and fruit shape index in our study.
Detection of year or environment specific MTAs com-

monly occurred in the association mapping studies of
tomato fruit traits7,28,34. We also found that a few MTAs
were detected in all three years. In addition, 14 of 30
MTAs explained < 10% of phenotypic variations for eight
fruit traits. Therefore, these MTAs can represent small
effect QTL that are easily affected by environmental
variations. For marker-assisted selection, large effect QTL
has been commonly used in crop breeding programs
because this approach was cost-effective and rapid to
improve traits of interest. In contrast, MAS has been
unsuccessful for complex quantitative traits that are
controlled by small effect QTL42,43. Genomic selection
(GS) has emerged as an alternative to overcome the lim-
itations of MAS for these traits and predicts the breeding
values of individuals using a large number of genome-
wide markers43,44. Recently, it was reported that the use of
QTL-associated markers increased the prediction accu-
racy of GS in several crops45–47. In this aspect, the MTAs
from our study will be useful for GS in tomato breeding
programs.
In conclusion, we reported a total of 30 MTAs for eight

fruit traits in a collection of 162 tomato accessions. Of
these, 16 MTAs represent potential novel QTL for six
fruit traits and in silico analysis found candidate genes in
the genomic regions of six MTAs. The resulting SNP
markers and candidate genes for these MTAs are a useful
resource for further characterization of novel QTL via the
fine mapping and gene editing approaches. These MTAs
can also be used to investigate a GS method with greater
prediction accuracy for fruit traits in tomato. Therefore,
our results will benefit the tomato research community by
providing an additional tool to breeders for elite cultivar
development.

Materials and methods
Plant materials and genotyping
The 162 tomato accessions used in this study were

derived from a private breeding program and originated
from seven countries, including India, China, Turkey, and
Israel (Table S1). This collection consisted of determinate
and semi-determinate accessions with diverse morpho-
logical variations for fruit traits, representing 29 small
fruit (< 25 g), 119 medium fruit (25–130 g), and 14 large
fruit (> 130 g) tomatoes. For each accession, genomic
DNA was isolated using fresh and young leaf tissues from
4-week-old seedlings according to a modified cetyl tri-
methyl ammonium bromide (CTAB) method48. The iso-
lated DNA pellets were resuspended with T1/10E buffer
(10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). The quality

and quantity of DNA were measured using the Nano-
DropTM One spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). The final concentration of
DNA was adjusted to 50 ng/μL for SNP array-based
genotyping.
The collection of 162 tomato accessions was genotyped

using the 51 K Axiom® tomato array containing 51,912
SNPs17. For this genotyping, 200 ng of genomic DNA
from each sample was amplified and randomly frag-
mented into 25–125 bp using the Axiom® 2.0 reagent kit
(Thermo Fisher Scientific, Waltham, MA, USA). The
DNA fragments were hybridized to the array in the
Affymetrix® GeneTitan system according to the manu-
facturer’s instructions. The hybridization signals in the
form of CEL files were processed using the Affymetirx®

Power Tools software package v1.18 for SNP calling. The
high-quality SNPs were filtered based on < 10% of missing
data, > 5% of minor allele frequency. For the resulting
SNPs, missing data were imputed using BEAGLE v5 with
default parameter settings49.

Phenotypic evaluation
We evaluated phenotypic variations of fruit weight, fruit

width, fruit height, fruit shape index, pericarp thickness,
locule number, fruit firmness, and brix over three years
(2018–2020) of field trials in the 162 tomato accessions.
Plants were first grown in a greenhouse, and 6-7-week-old
seedlings were transplanted into plastic-covered fields
(high-tunnel) with 30 cm spacing between plants. The
field trials were conducted using a randomized complete
block design with three replications per genotype and
there were four plants per replication. For phenotypic
evaluation, fully ripe fruits were harvested from the 2nd to
4th flowering clusters, and 4–10 fruits per replicate for
each genotype were used. Image analysis was conducted
using the Tomato Analyzer (TA) v4.0 software50 for fruit
height, fruit width, fruit shape index, locule number, and
pericarp thickness. For this analysis, we used ten fruits for
small fruit accessions, six fruits for medium fruit acces-
sions, and four fruits for large fruit accessions. Fruits were
longitudinally and horizontally cut through the center,
placed cut-side down on a scanner, and digitalized
according to the user manual of TA37. For fruit weight, we
used average values of five fruits per replicate. Brix was
measured using a PAL-1 refractometer (ATAGO, WA,
USA). For fruit firmness, we used the Digital Fruit Firm-
ness Penetrometer (Agriculture Solutions, ME, USA) in
2018 and HPE II Fff (Bareiss, Oberdischingen, Germany)
in 2019–2020. The phenotypic data collected in
2018–2020 were independently used for association ana-
lysis. An additional data set was also generated by com-
bining those of all three years for seven traits excluding
fruit firmness. The combined data set for fruit firmness
was based on the two year data (2019 and 2020) due to the
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use of different penetrometer types. The outliers for the
combined data were removed using the IQR method51 in
R. This data set from multiple years was also used in
further association analysis to confirm the result.

Population structure and association analysis
Population structure in the tomato collection was

inferred using the STRUCTURE v.2.3.4 program52. The
STRUCTURE model used in this study allows for
admixture and correlated allele frequencies. To deter-
mine the best K (number of clusters), we performed 10
independent simulations for each 10 Ks (1–10) with a
burn-in period of 10,000 iterations and a Markov Chain
Monte Carlo (MCMC) run length of 10,000 iterations.
After the 1st round of analysis, six Ks (4–9) were selected
for further simulations with a burn-in period of 20,000
iterations and a MCMC run length of 100,000 iterations.
The resulting log-likelihood estimates for the Ks were
used to find the best K in the delta K method30. A
population structure matrix (Q matrix) was then gener-
ated using the membership coefficients of 162 tomato
accessions based on the best K. In addition, hierarchical
clustering was conducted using the R packages. The Nei’s
genetic distances53 were estimated between tomato
accessions using the poppr package54 and then hier-
archical clustering analysis was conducted with an
unweighted pair group method with arithmetic mean
(UPGMA).
To identify marker-trait associations (MTAs) for eight

fruit traits, we performed association analysis using the
multilocus mixed model (MLMM)18 implemented in
genomic association and prediction integrated tool
(GAPIT)55. Both Q and kinship matrices were used as
covariates to reduce false-positive associations due to
population structure and familial relatedness10. The kin-
ship matrix was generated using the VanRaden algo-
rithm56. Significant MTAs were first detected at P <
0.0005. We also used a genome-wide threshold (P <
0.00005) that was determined based on the effective
number of independent markers, Me

31. The Me was esti-
mated using the Genetic Type I Error Calculator (GEC)
software (http://pmglab.top/gec/#/) and a genome-wide
threshold was calculated with the equation, 0.05/Me. The
phenotypic variance explained (PVE) by a significant
marker was estimated using the equation in R:

PVE% ¼ SSsig:marker= SSall sig:marker þ e
� �� �

´ 100

where SS is the sum of square and e is the residuals from
the ANOVA fitted with a linear model incorporating the
phenotypic data and all significant markers57. Candidate
genes for MTAs detected in this study were investigated
using the tomato reference genome assembly SL4.0 and

the international tomato annotation group (ITAG) 4.0 at
the Sol Genomics Network (https://solgenomics.net).
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