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Metabolite profiling and transcriptome analyses
reveal novel regulatory mechanisms of melatonin
biosynthesis in hickory
Wenchao Chen1, Jiaqi Zhang1, Shan Zheng1, Zhanqi Wang2, Chuanmei Xu1, Qixiang Zhang1, Jiasheng Wu 1 and
Heqiang Lou 1✉

Abstract
Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of
plant hormones. In contrast, the effects of these different plant hormones on the biosynthesis and metabolism of
melatonin and their underlying molecular mechanisms are still unclear. In this study, the melatonin biosynthesis
pathway was proposed from constructed metabolomic and transcriptomic libraries from hickory (Carya cathayensis
Sarg.) nuts. The candidate pathway genes were further identified by phylogenetic analysis, amino-acid sequence
alignment, and subcellular localization. Notably, most of the transcription factor-related genes coexpressed with
melatonin pathway genes were hormone-responsive genes. Furthermore, dual-luciferase and yeast one‐hybrid assays
revealed that CcEIN3 (response to ethylene) and CcAZF2 (response to abscisic acid) could activate melatonin
biosynthesis pathway genes, a tryptophan decarboxylase coding gene (CcTDC1) and an N-acetylserotonin
methyltransferase coding gene (CcASMT1), by directly binding to their promoters, respectively. Our results provide a
molecular basis for the characterization of novel melatonin biosynthesis regulatory mechanisms and demonstrate for
the first time that abscisic acid and ethylene can regulate melatonin biosynthesis.

Introduction
As an important neurohormone for mammals, melato-

nin is involved in many biological processes in animals1.
Melatonin was first found in the pineal gland of cows in
19582. In 1995, melatonin was initially identified in
plants3. Since then, the biological functions of melatonin
have attracted extensive attention from plant scientists.
As a biostimulator in plants, melatonin has also been
considered to promote the growth and development of
plants, including coleoptile growth, root growth, leaf
morphology, flowering time, and fruit ripening4,5. Fur-
thermore, melatonin also acts as a signaling molecule,
mediating the plant defense response to pathogen attacks

through the mitogen-activated protein kinase (MAPK)
pathway6–8. Large numbers of experiments have con-
firmed that melatonin also plays vital roles in resisting
various abiotic stresses, including oxidative9, heavy
metal10, high temperature11, cold12, senescence13,
drought14, aluminum15, and salt stresses16. Notably,
melatonin can improve sleep quality and has been utilized
by humans to overcome jetlag17. Moreover, melatonin has
also been utilized by humans as a dietary supplement due
to its perceived antioxidant activity18. These essential
characteristics have prompted scientists to continue to
study the biological functions, biosynthetic pathways, and
regulation of melatonin in plants.
There are four enzymatic reactions in melatonin bio-

synthesis from tryptophan. At present, at least six
enzymes are known to be involved in this process, so
there are at least four biosynthetic pathways for melato-
nin19. The order of enzyme reactions in the melatonin
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biosynthetic pathway not only changes the type and
synthesis sites of intermediates but also affects the for-
mation of melatonin. The first step of melatonin synthesis
is the catalysis of tryptophan to form tryptamine by
tryptophan decarboxylase (TDC) in the cytoplasm, fol-
lowing which tryptamine is converted to serotonin by
tryptamine 5-hydroxylase (T5H) in the endoplasmic
reticulum (ER). However, there is also a reverse step
where hydroxylation occurs first in the cytoplasm,
although putative tryptophan hydroxylase (TPH) has not
been identified in plants19,20, and 5-hydroxytryptophan is
decarboxylated to serotonin by TDC in the cytoplasm21,22.
Serotonin can be catalyzed by serotonin N-acetyl-
transferase (SNAT) to produce N-acetylserotonin in
chloroplasts and then by N-acetylserotonin methyl-
transferase (ASMT)/caffeic acid O-methyltransferase
(COMT) to produce melatonin in the cytoplasm. An
alternative pathway for melatonin biosynthesis is also
present, in which serotonin could be methylated into
5-methoxytryptamine by ASMT (or together with
COMT) in the cytoplasm, and then 5-methoxytryptamine
can be acetylated by SNAT to produce melatonin in the
chloroplast.
It has been proven that melatonin affects the bio-

synthesis and catabolism of auxin, gibberellin, cytokinin,
abscisic acid (ABA), ethylene, jasmonic acid, salicylic acid,
and brassinosteroids by regulating the expression of
pathway-related enzymes, receptors, and transcription
factors23. The application of exogenous melatonin
increased IAA contents by upregulating the expression of
IAA19, IAA24, and PIN in tomato seedlings24 and the
expression of IAA-amino synthase genes and YUCCAs in
Arabidopsis seedlings and roots25,26. Similar findings were
also confirmed in other species, such as Brassica juncea27.
In addition, melatonin can also affect the synthesis and
metabolism of GAs through increased expression of
GA20ox and GA3ox in cucumber seedlings under saline
conditions28,29. Moreover, under salt and drought stress,
melatonin upregulated the expression of ABA catabolism
genes (CYP707A1 and CYP707A2) and downregulated the
expression of a key enzyme (NCED) of ABA biosynthesis,
thus decreasing the content of ABA28,30. In addition,
melatonin pretreatment of watermelon plants at cold
temperatures can also downregulate the expression of the
ABA receptor gene PYL831. Zhang et al. found that two
cytokinin biosynthesis genes, IPT2 and OG1, were upre-
gulated by melatonin under stress conditions, which
resulted in an increase in cytokinin32. In addition, mela-
tonin also affects the biosynthesis of ethylene and bras-
sinosteroids by regulating ethylene pathway genes and
brassinosteroid regulators, respectively25,33–35. This evi-
dence suggests that exogenous melatonin can change
endogenous plant hormone contents by changing the
expression of the corresponding synthesis genes,

receptors, and transcription factors. However, it has not
been proven that these different plant hormones can
affect the melatonin levels of plants.
In addition, the regulators of melatonin synthesis

pathway genes remain obscure. Recently, two transcrip-
tion factors, MeRAV1 and MeRAV2, were shown to reg-
ulate MeTDC2, MeT5H, and MeASMT1 directly and to
indirectly regulate other melatonin biosynthesis genes
(MeTDC1, MeASMT2, MeASMT3, and MeSNAT) in
cassava36. Wei et al. reported that two transcription fac-
tors, MeWRKY79 and MeHsf20, could activate the tran-
scription of MeASMT2 and melatonin biosynthesis in
cassava37. Hsf1a can bind to the promoter of COMT1,
leading to its upregulation and melatonin accumulation38.
In cassava, MeWRKY20/75, as the common interacting
proteins of MeTDC2, MeASMT2, and MeASMT3, can
positively regulate melatonin accumulation39.
Hickory (Carya cathayensis Sarg.) belongs to the walnut

family Juglandaceae and is native to eastern China, where
it has been cultivated for consumption for more than 500
years since the Ming Dynasty. It is mainly distributed in
the Tianmu Mountain area in southern Anhui Province
and northeast Zhejiang Province. The kernel of hickory is
a good tonic and has been claimed to have multiple bio-
logical functions, such as reducing the incidence of can-
cer, atherosclerosis and cardiovascular disease, and
benefits for consenescence and sex capacity, but there is
no epidemiological evidence of the latter claims. As
mentioned above, melatonin is a bioactive component
with a variety of biological functions. However, the con-
tent of melatonin and its biosynthesis pathway as well as
the underlying molecular regulatory mechanisms of
melatonin accumulation in hickory are still unclear.
Therefore, we employed transcriptome and metabolome

profiling of embryos at different developmental stages to
identify the biosynthetic pathways of melatonin. We fur-
ther identified candidate genes that are potentially
involved in the biosynthesis of melatonin in hickory based
on phylogenetic and amino-acid sequence alignment
analyses. Moreover, we identified the subcellular localiza-
tion of melatonin biosynthetic pathway enzymes to clarify
where they function. Pearson correlation analysis was
performed to identify transcription factors coexpressed
with melatonin pathway genes. Surprisingly, we found that
most of the identified transcription factors are hormone-
responsive genes. The results of a dual-luciferase assay
showed that EIN3 and AZF2 could upregulate the
expression of CcTDC1 and ASMT1, respectively, sug-
gesting that these transcription factors are involved in the
regulation of melatonin biosynthesis. Overall, our study
identified the melatonin biosynthesis pathway and candi-
date genes encoding enzymes involved in the biosynthesis
of melatonin and proved that other plant hormones may
regulate melatonin biosynthesis in hickory.
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Materials and methods
Plant materials
During the ripening stage from mid-August to mid-

September, hickory fruits were collected from the orchard
of Zhejiang A&F University in Hangzhou, China. After
collection, the pericarp and testa of fruits were removed
immediately, and the remaining embryos were quickly
frozen in liquid nitrogen and then stored at −80 °C. From
the collected samples, we selected nine embryos with
different degrees of maturity for further analysis (named
CTB1, CTB2, CTB3, CTC1, CTC2, CTC3, CTD1, CTD2,
and CTD3). The embryos of the CTB, CTC, and CTD
groups were collected on August 15, August 30, and
September 15, 2018, respectively. Each embryo was
ground to a powder in liquid nitrogen and divided into
two parts: one was used for RNA extraction, and the other
was used for liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis.

Metabolite analysis by LC-MS/MS
Extraction and analysis of metabolites were carried out

by Metware Biotechnology Co. Ltd. (Wuhan, China). The
freeze-dried embryos were ground to a power and
extracted by 70% aqueous methanol. After centrifugation
at 10,000 × g for 10 min, all supernatants were combined
and filtered through a 0.22 mm pore size membrane and
then analyzed by an LC-ESI-MS/MS system (UPLC,
Shim-pack UFLC SHIMADZU CBM30A system, www.
shimadzu.com.cn/; MS/MS, Applied Biosystems 6500 Q
TRAP, www.appliedbiosystems.com.cn/). The effluent
was alternatively connected to an ESI-triple quadrupole-
linear ion trap (Q TRAP)-MS. Linear ion trap (LIT) and
triple quadrupole (QQQ) scans were acquired on a triple
quadrupole-linear ion trap mass spectrometer equipped
with an ESI Turbo Ion-Spray interface, operating in
positive ion mode and controlled by Analyst 1.6.3 soft-
ware (AB Sciex). A scheduled multiple reaction mon-
itoring method was used to quantify metabolites. To
generate the maximal signal, the collision energy and
declustering potential were optimized for each precursor-
product ion (Q1-Q3) transition40. The melatonin content
was calculated from the quantitative data of melatonin
obtained above and the standard curves acquired from an
authentic melatonin standard.

RNA extraction and RNA-Seq
Total RNA of the samples was extracted with an

RNAprep Pure Plant kit (DP441, Tiangen, China). Illu-
mina RNA-Seq was performed by Metware Biotechnology
Co. Ltd. (Wuhan, China). The RNA quality was detected
by a NanoPhotometer spectrophotometer (IMPLEN, CA,
USA), Qubit 2.0 Fluorometer (Life Technologies, CA,
USA), and Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). The poly(A) mRNA was

enriched by magnetic beads with oligo (dT). The mRNA
was randomly fragmented. First-strand cDNA was syn-
thesized using the M-MuLV reverse transcriptase system.
The RNA strand was then degraded by RNase H, and
second-strand cDNA was synthesized using DNA poly-
merase. The double-stranded cDNAs were ligated to
sequencing adapters. The cDNAs (~200 bp) were
screened using AMPure XP beads. After amplification and
purification, cDNA libraries were obtained and sequenced
using the Illumina HiSeqTM 2000 system.

Sequence data processing
The raw reads were transformed from the sequencing

raw image data by CASAVA base recognition. To obtain
high-quality data, adapters of sequences were cut, and
low-quality reads with ≥5 uncertain bases or with over
50% Qphred ≤20 bases were removed using fastp41. The
GC-content of clean reads was calculated. The Q20 and
Q30 values were also produced by FastQC to evaluate the
base quality.
Then, the clean reads were mapped to the hickory

reference genome using HISAT with default para-
meters42,43. Gene expression levels were determined using
the RPKM (reads per kb per million reads) method44.

Real-time RT-PCR analysis
Purified RNA (1 µg for each sample) was reverse tran-

scribed to first-strand cDNA with a cDNA Reverse
Transcription Kit (PrimeScriptTM RT Master Mix,
Takara) based on the manufacturer’s instructions. The
primers are listed in Supplementary Table S1. qRT-PCR
was conducted with a ChamQ SYBR qPCR Master Mix kit
(Vazyme) and a C1000 Touch™ Thermal Cycler system
(Bio-Rad). Relative transcript levels were calculated
according to the 2−ΔΔCp method using a housekeeping
gene, CcActin, for reference. Three biological and tech-
nical replications were performed.

Transient fluorescent protein expression assay in Nicotiana
benthamiana leaves
Genes used for investigation of subcellular localization

were amplified from cDNA using PrimeSTAR® HS (Pre-
mix, Takara) and introduced into the 35 S::GFP vector
(modified from pCAMBIA1300) using a ClonExpress®II
One Step Cloning Kit (Vazyme, China). The primers are
specified in Supplementary Table S1. All constructs were
introduced into Agrobacterium tumefaciens strain
GV3101. Positive clones were grown in LB medium with
kanamycin at 28 °C until the OD600 reached 0.5. After
centrifugation at 6000 rpm for 5 min at 4 °C, the super-
natants were removed, and the agrobacteria were resus-
pended using infiltration medium containing 10mM
MgCl2, 0.2 mM acetosyringone, and 10 mMMES (pH 5.6)
and brought to an OD600 of 0.5–1.0. Before being
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infiltrated, agrobacteria carrying constructs with the GFP
signal and marker vectors with the RFP signal were mixed
in a 1:1 ratio. For transient expression of the fluorescent
proteins, infiltration buffer was injected into leaves of
Nicotiana benthamiana. After 3 days of incubation,
fluorescent signals were detected by confocal laser scan-
ning microscopy (LSM510, Karl Zeiss) at room
temperature.

Plant hormone treatment
Ethrel (500, 1000, or 1500mg/L) and ABA (50, 100, or

150mg/L) were sprayed once a day for 7 days, from July
24 to July 30, onto the pericarps of hickory grown in the
orchard of Zhejiang A&F University. Spray application of
water was used as a control.

Dual-luciferase assay
To determine the transactivation activity of transcrip-

tion factors to the promoters of coexpressed melatonin
biosynthesis genes, a transient dual-luciferase assay was
performed. The coding regions of transcription factors
were cloned into the pCAMBIA1300 vector under the
control of the CaMV35S promoter as an effector. The
fragments of the promoters of melatonin biosynthesis
genes were introduced into the pGreenII 0800-LUC vec-
tor, allowing the promoter fragments to be cloned as a
transcriptional fusion with the firefly luciferase gene
(LUC). The constructed effector and reporter plasmids
were introduced into Agrobacterium tumefaciens
(GV3101) and then cotransformed into tobacco. All pri-
mers are listed in Supplementary Table S1. LUC and REN
luciferase activities were measured using a dual-luciferase
assay kit (Promega) and a Luminoskan Ascent Microplate
Luminometer (Thermo Fisher Scientific). The results
were calculated by the ratio of LUC to REN.

Yeast one-hybrid assay
The yeast one-hybrid assay was performed using the

MATCH-MAKER Gold Yeast One-Hybrid Library
Screening System (Clontech). The ORFs of transcription
factors were cloned in frame after the transcriptional acti-
vation domain of yeast GAL4 in pGADT7. The promoter
fragments of CcTDC1 and CcASMT1 were cloned upstream
of the aureobasidin A (AbA) resistance reporter gene
(AUR1-C) in the pAbAi vector. Primers are listed in Sup-
plementary Table S1. Pairs of plasmids were introduced
into yeast strain Y1H Gold and cultured on SD medium
without Leu containing 0–300 ng/ml AbA at 30 °C for 72 h.

Statistical and sequence analyses
Correlations among data were calculated by Pearson’s

correlation coefficients (r) using SPSS, version 16.0 (SPSS,
Inc., Chicago, IL, U.S.A.). Significant differences were
determined using Duncan’s new multiple range test at p <

0.05. Phylogenetic analysis was performed based on the
deduced amino-acid sequences of melatonin biosynthesis
pathway enzymes from hickory and other plants using a
bootstrap neighbor-joining evolutionary tree by MEGA
7.0 software with 1000 bootstrap replicates. Amino-acid
sequence alignment was conducted with DNAMAN
software (version 9).

Results
Metabolic profiling of hickory embryos and quantitative
analysis of melatonin
To understand the melatonin level of hickory fruits and

elucidate its biosynthesis pathway, we selected nine
embryos in the ripening stage with different degrees of
maturity for metabolite quantification using a broadly
targeted LC-MS/MS-based metabolic profiling method. A
total of 608 annotated metabolites were identified (Sup-
plementary Table S2). From the database, we found that
melatonin existed in hickory embryos. Furthermore, we
quantified melatonin using authentic melatonin standards
(Fig. 1A). The results showed that the melatonin content
among the embryos of different maturities varied and was
high, ranging from 485 to 839 pg/g dry weight of embryo
(Fig. 1B). To investigate the synthetic pathway of mela-
tonin, metabolites that may be intermediates for melato-
nin synthesis were selected and are listed in Table 1. The
parameters used to identify these metabolites are also
presented in Table 1. Their relative contents (represented
as peak areas) are shown in Supplementary Table S2. L-
tryptophan, L-tryptamine, 5-hydroxytryptophan, ser-
otonin, N-acetylserotonin, and melatonin were detected.
However, 5-methoxytryptamine was not detected in
hickory embryos. These results suggested that COMT/
ASMT may have no catalytic activity for serotonin or that
SNAT has higher catalytic efficiency toward
5-methoxytryptamine in hickory, making the
5-methoxytryptamine level too low to detect.

De novo sequence assembly, functional annotation, and
validation of RNA-seq data
To further elucidate the melatonin biosynthesis path-

way at the transcriptional level, nine cDNA libraries,
which were constructed from total RNAs, were subjected
to high-throughput parallel sequencing. After removing
adaptor sequences and low-quality reads, total clean reads
and clean bases were generated, ranging from 45.96 to
64.39 million (M) and 6.89 to 9.66 Gb, respectively. The
GC percentages ranged from 46.13 to 48.18%. The Q20
and Q30 values used to assess the quality of the sequen-
cing bases were also obtained, ranging from 96.89 to
97.57% and 91.84 to 93.29%, respectively. The percentage
of clean reads per library mapped to the hickory reference
genome ranged from 95.83% to 96.94% (Supplementary
Table S3).
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To confirm the expression levels of genes from RNA-
Seq data, the transcriptional abundance of 13 genes ran-
domly selected from the melatonin biosynthesis pathway
was detected using qRT-PCR (Supplementary Fig. S1A-
M). The results showed a high correlation between the
qRT-PCR and RNA-Seq data with an r of 0.720 (p <
0.001), suggesting that the expression data from RNA-seq
were reliable (Supplementary Fig. S1N).

Identification of the genes potentially involved in
melatonin biosynthesis
Six enzymes were involved in four melatonin bio-

synthesis pathways in plants. We tried to identify all the
genes annotated as encoding the six enzymes to further
identify the melatonin biosynthesis pathway at the tran-
scriptional level in hickory embryos. Interestingly, the
genes encoding the enzymes TDC (9 genes), T5H (11
genes), SNAT (1 gene), COMT (7 genes), and ASMT (1
gene) were expressed in hickory embryos, while we could
not find any genes encoding TPH (Fig. 2).
To identify the possible candidate genes, we evaluated

the evolutionary relationships between the genes encod-
ing proteins from hickory and known enzymes involved in
melatonin synthesis from other plants. As shown in
Supplementary Fig. S2, CCA0568S0058 was most closely
clustered with JrTDC2, followed by CaTDC (Supple-
mentary Fig. S2A). CCA0743S0031 was most closely
clustered with JrT5H and OsT5H (Supplementary Fig.
S2B). MSTRG.22548 and MSTRG.22549 were most clo-
sely clustered, and they had high homology with JrASMT
(Supplementary Fig. S2C). CCA0646S0015 and
CCA0903S0007 were closely clustered, and they were
most closely clustered with JrCOMT, followed by
MsCOMT (Supplementary Fig. S2D). CCA1453S0002
was most closely clustered with JrSNAT2 (Supplementary
Fig. S2E).
CCA0568S0058 (named CcTDC1), CCA0743S0031

(named CcT5H1), MSTRG.22548 (named CcASMT1),
CCA0646S0015 (named CcCOMT1), and
CCA1453S0002 (named CcSNAT1) were selected as
candidate transcripts of enzymes in the melatonin bio-
synthesis pathway based on phylogenetic analysis. The
protein domains and functional sites of each candidate
gene encoding an enzyme were predicted by PROSITE
(https://prosite.expasy.org/prosite.html). The CcTDC1
protein sequence contained a DDC/GAD/HDC/TyrDC
pyridoxal-phosphate attachment site that was similar to
those of OsTDC1, OsTDC2, and OsTDC3 (Fig. 3A). The
CcT5H1 protein sequence contained a highly conserved
cytochrome P450 cysteine heme-iron ligand signature
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Table 1 Six metabolites involved in melatonin biosynthesis in hickory embryos

Compounds Q1 (Da) Q3 (Da) Rt (min) Molecular weight (Da) Ionization model

L-tryptophan 203.0 116.1 2.39 204.0899 [M− H]−

N-acetylserotonin 219.0 160.1 3.32 218.1060 [M+ H]+

5-hydroxy-L-tryptophan 221.1 114.8 1.66 220.0850 [M+ H]+

L-tryptamine 161.1 144.2 2.74 160.1000 [M+ H]+

Serotonin 177.0 160.2 1.63 176.0950 [M+ H]+

Melatonin 231.0 144.1 4.16 232.1210 [M− H]−
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along with other known T5Hs (Fig. 3B). The CcSNAT1
protein sequence was similar to the OsSNAT1 and AtS-
NAT protein sequences (Fig. 3C). A dimerization domain,

S-adenosyl-L-methionine, and proton acceptor were
predicted in both the CcASMT1 and CcCOMT1 protein
sequences (Fig. 3D and E).

5-hydroxytryptophan

Serotonin

SNAT ASMT/
COMT

N-acetylserotonin 5-methoxytryptamine

Tryptamine

T5H

ASMT/
COMT

SNAT

Melatonin

Tryptophan

TPH TDC

TDC

SNAT:

ASMT:

COMT:

Fig. 2 Putative pathways for melatonin biosynthesis in hickory embryos and expression levels of the candidate enzyme genes involved in
melatonin biosynthesis. Light-colored words represent the genes or metabolites that were not detected in this study. The nine squares of each
enzyme correspond to the nine embryos
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Subcellular localization of candidate transcripts encoding
enzymes
To investigate the subcellular localization of the tran-

scripts encoding enzymes, we constructed CcTDC1-GFP,
CcT5H1-GFP, CcASMT1-GFP, CcCOMT1-GFP, and
CcSNAT1-GFP fusion plasmids and transiently expressed
them in tobacco leaves. Examination of epidermal cells by
confocal microscopy showed that strong GFP signals of
CcTDC1-GFP, CcCOMT1-GFP, and CcASMT1-GFP
were present in the cytoplasm and nucleus, similar to
those seen in the empty vector-GFP control (Fig. 4A-D).
Therefore, our results suggest that CcTDC1, CcCOMT1,
and CcASMT1 are soluble enzymes with no specific
subcellular localization. As shown in Fig. 4E, the CcT5H1-
GFP signal essentially overlapped with the OsPLA2α-RFP
fusion protein, an ER marker. CcSNAT1-GFP colocalized
with chloroplast autofluorescence (Fig. 4F). Thus, we
concluded that CcT5H1 and CcSNAT1 were located in
the ER and chloroplast, respectively.

Screening of candidate transcriptional modulators
involved in the melatonin biosynthesis pathway
Transcription factors are critical to regulate gene

expression. To search for the transcription factors that
were coexpressed with CcTDC1, CcCOMT1, CcT5H1,
CcSNAT1, or CcASMT1, Pearson’s correlation analysis
between the expression level of genes annotated as tran-
scription factors and candidate genes was performed. The
transcription factors that were significantly correlated
with CcTDC1, CcCOMT1, CcT5H1, CcSNAT1, or
CcASMT1, with Pearson’s correlation coefficients ≥ 0.95
and FPKM ≥ 10, were selected (Fig. 5A and B). Notably,
we found that most of the selected transcription factors
were phytohormone-responsive transcription factors (Fig.
5C). Five of the 11 transcription factors highly coex-
pressed with CcTDC1 were ethylene-responsive genes.
One of the two transcription factors highly coexpressed
with CcCOMT1 was an ethylene-responsive gene. Two of
six transcription factors highly coexpressed with
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CcSNAT1 were gibberellin-responsive genes, and one was
an ethylene-responsive gene. Notably, all the selected
transcription factors highly coexpressed with CcASMT1
were phytohormone-responsive transcription factors. Of
these transcription factors, two and two were ethylene-
and ABA-responsive genes, respectively.

Identification of candidate transcriptional modulators
involved in the melatonin biosynthesis pathway
A dual-luciferase assay was carried out to further

identify which hormone-responsive transcription factors
regulate melatonin synthase genes. The results showed
that two transcription factors, CCA1573S0039 and
CCA0578S0087, were both annotated as EIN3 (ethylene
insensitive protein 3) and could activate the expression of
CcTDC1 (Fig. 6B). For the four transcription factors that
were coexpressed with CcASMT1, only one transcription

factor, CCA0859S0013, annotated as AZF2 (ABA-
responsive protein), could activate the expression of
CcASMT1 (Fig. 6C).
To further verify whether CcEIN3 and CcAZF2 regulate

CcTDC1 and CcASMT1 by directly binding to their pro-
moters, the yeast one-hybrid method was used. EIN3 and
AZF2 can recognize EIN3-binding sites (ATGTAT,
ATACAT, CTACAT, or ATGTAC)45 and A(G/C)T-
box46, respectively. We found that there are many sites
similar to EIN3-binding sites and many A(G/C)T repeat
sequences in the 2000 bp length of CcTDC1 and
CcASMT1 promoter sequences upstream of the CcTDC1
and CcASMT1 translation start codons, respectively
(Supplementary Fig. S3). We selected promoter fragments
with more potential cis-acting elements distributed on
them for further yeast one-hybrid analysis (Fig. 7A). The
results of yeast one-hybrid assays showed that CcEIN3
and CcAZF2 could bind to the CcTDC1 and CcASMT1
promoters to activate AUR1-C expression in yeast (Fig. 7B
and C).
To verify whether CCA0859S0013 (named CcAZF2)

and its homologs respond to ABA and whether
CCA1573S0039 (named CcEIN3-1), CCA0578S0087
(named CcEIN3-2) and their homologs respond to ethy-
lene in hickory embryos, different concentrations of ABA
(50, 100, or 150 mg/L) and Ethrel (500, 1000, or 1500mg/
L) were sprayed onto hickory fruits for 7 days from July 24
to July 30. Water was used as a control. The real-time RT-
PCR results showed that 100mg/L and 150mg/L ABA
increased the expression level of CcAZF2 (Supplementary
Fig. S4A). The expression of both CcEIN3-1 and CcEIN3-
2 was upregulated by Ethrel at concentrations of 500 and
1500 mg/L (Supplementary Fig. S5A and B). The expres-
sion of the homologs of CcAZF2, the homologs of
CcEIN3-1, and the candidate pathway genes was also
significantly regulated by ABA and Ethrel (Supplementary
Fig. S6). Phylogenetic analysis results showed that
CcAZF2 was most closely clustered with XP_018844631.1
(Juglans regia) (Supplementary Fig. S4B), and CcEIN3-1
and CcEIN3-2 were most closely clustered with
XP_018850150.1 (Juglans regia) and XP_018846243.1
(Juglans regia) (Supplementary Fig. S5C and D), respec-
tively. The protein domains of each transcription factor
were predicted by PROSITE. CcAZF2 protein sequences
contained two highly conserved zinc finger C2H2-type
domains, which were similar to AtAZF2 (Supplementary
Fig. S4C). Each of the CcEIN3 protein sequences con-
tained a heme-binding NEAT domain that was similar to
AtEIN3 (Supplementary Fig. S5E).

Discussion
Melatonin, a multifunctional hormone, is involved in

improving the tolerance of biotic and abiotic stresses in
plants and regulating plant development and growth47. In
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this study, we found that hickory nuts contain upto
485–839 pg/g melatonin. However, the molecular reg-
ulatory mechanism underlying the high level of melatonin
synthesis is still unclear. The identification of the bio-
synthetic pathways of bioactive components and char-
acterization of the related genes are essential for
understanding the molecular regulatory mechanism.
In this study, the melatonin biosynthesis pathway in

hickory was proposed for the first time by combined
metabolome and transcriptome analysis. Transcriptome
sequencing-generated clean reads were mapped to the
hickory reference genome. From the annotated genes, 9,
11, 1, 7, and 1 were annotated as TDC, T5H, SNAT,
COMT, and ASMT, respectively. However, no gene was
annotated as TPH. Similarly, genes encoding the enzymes
of TDC, T5H, SNAT, COMT, and ASMT in various plant
species have also been identified, except the putative gene

encoding TPH20. TPH is the first enzyme in the melatonin
biosynthesis pathway in animals and uses tryptophan as a
substrate to synthesize 5-hydroxytryptophan20,48. The
cloning of TPH coding genes and determination of cor-
responding TPH enzyme activities in plants have not been
reported.
Overall, 608 metabolites were identified by UPLC-ESI-

MS/MS. To investigate the metabolic components
involved in the melatonin biosynthesis pathway, we
focused on tryptophan and the class of tryptamine deri-
vatives. All metabolites mentioned in Fig. 2 were detected,
except 5-methoxytryptamine. As tryptophan and 5-
hydroxytryptophan, which are the substrate and product
of TPH, respectively, were detected, there must be a gene
in hickory that encodes an enzyme that performs the
same function as TPH in animals. Some evidence suggests
that TPH-like genes exist in plants, although no animal

Fig. 5 Screening of transcription factors coexpressed with genes encoding enzymes involved in the biosynthesis of melatonin from the
transcriptome. A Pearson’s correlation analysis between the expression levels of genes encoding enzymes involved in the biosynthesis of melatonin
and all transcription factors from the transcriptome. B Transcription factors significantly correlated with CcTDC1, CcCOMT1, CcT5H1, CcSNAT1, or
CcASMT1 with a Pearson’s correlation coefficient ≥ 0.95 and FPKM ≥ 10 were selected. The right Y-axis with a red line represents the Y-axis of CcTDC1,
CcASMT1, or CcSNAT1. The transcription factors with green lines indicate that they have a negative correlation with CcSNAT1. C Annotations of
transcription factors from B. Genes marked with a red color indicate that they are hormone-responsive transcription factors
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TPH homologs have been found in plant genomes. For
example, the seeds of Griffonia simplicifolia are rich in
5-hydroxytryptophan49,50, and the soluble fraction of
extracts from rice roots showed tetrahydropterin-
dependent amino-acid hydroxylase activity, which is
similar to TPH51. Although the suppression of T5H can
reduce serotonin levels, it has been observed that sup-
pression lines accumulate more melatonin than control
lines, suggesting that a putative TPH is a key target for
promoting melatonin synthesis in plants52.
It was reported that COMT/ASMT can catalyze N-

acetylserotonin to synthesize melatonin and/or methylate
serotonin into 5-methoxytryptamine in the cytoplasm19.
In this study, 5-methoxytryptamine was not detected,
suggesting that COMT/ASMT may have no catalytic
activity against serotonin, resulting in the inability to
methylate serotonin into 5-methoxytryptamine, or the
content of 5-methoxytryptamine was too low to be
detected. In Arabidopsis, AtSNAT had a 23-fold higher
catalytic efficiency toward 5-methoxytryptamine than
toward serotonin53. CcSNAT in hickory is probably
similar to AtSNAT in Arabidopsis, which has higher
catalytic efficiency toward 5-methoxytryptamine. There-
fore, the content of 5-methoxytryptamine in embryos of
hickory is likely too low to be detected.

The localization of a protein is very important for its
function. In this study, the candidate genes encoding
TDC, T5H, SNAT, COMT, and ASMT in hickory were
first identified by phylogenetic analysis and amino-acid
sequence alignment. However, it is not clear whether
these candidate genes encoding proteins, such as their
plant counterparts, are located in a specific subcellular
component to perform their functions. Previous studies
have demonstrated the subcellular localization of enzymes
involved in melatonin synthesis. Both AtCOMT and
OsCOMT lack leader or transit sequences and are loca-
lized in the cytoplasm54,55. The fluorescence of Arabi-
dopsis SNAT and rice SNAT1 and SNAT2 merged with
the fluorescence of chlorophyll, indicating that they are
localized to chloroplasts53,56,57. In rice, the fluorescence of
OsASMT1-mCherry, OsASMT2-mCherry, and
OsASMT3-mCherry was colocalized with the fluores-
cence of cytoplasmic GFP58. In Catharanthus roseus and
Tabernaemontana divaricata, TDC is localized in the
cytoplasm59,60. The localization of MeTDC2, MeASMT2,
and MeASMT3 from cassava was investigated using
transient expression in tobacco leaves, and the results
showed that they were localized in both the cytoplasm
and nucleus61,62. T5H has been shown to be localized in
the endoplasmic reticulum63. Similarly, our results

Fig. 6 Identification of hormone-responsive transcription factors
regulating melatonin synthase genes by dual-luciferase assay. A
Diagrams of the reporter and effector vectors used in dual-luciferase
assays. B CcEIN3-1 and CcEIN3-2 activate the promoter of CcTDC1. C
CcAZF2 activates the promoter of CcASMT1. The LUC/REN value of the
empty vector on each promoter was set as 1 as a calibrator. Each
value represents the mean ± SD of three independent experiments,
with three replicates in each experiment. Statistical significance was
determined by Student’s two-tailed t-test (*P < 0.05, **P < 0.01)
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Fig. 7 CcEIN3 and CcAZF2 activate CcTDC1 and CcASMT1 by
directly binding to their promoters, respectively. A Schematic
diagram of the bait fragments used to construct the reporter vectors
in the yeast one‐hybrid assay. B Yeast one‐hybrid assay for CcEIN3-2
and promotor fragments of CcTDC1. C Yeast one‐hybrid assay for
CcAZF2 and promoter fragments of CcASMT1. Each pair of plasmids
was cointroduced into yeast strain Y1H Gold and cultured on SD
medium without Leu containing different concentrations of AbA at
30 °C for 72 h

Chen et al. Horticulture Research           (2021) 8:196 Page 10 of 13



showed that CcTDC1, CcCOMT1, and CcASMT1 were
localized in the cytoplasm and nucleus, and CcT5H1 and
CcSNAT1 were localized in the ER and chloroplast,
respectively (Fig. 4). These results further suggested that
CcTDC1, CcT5H1, CcSNAT1, CcCOMT1, and
CcASMT1 in hickory, similar to their homologous pro-
teins in other plants, function as melatonin biosynthesis
pathway enzymes.
Transcription factors could bind to the cis-acting ele-

ment on the promoter of their target genes to regulate
gene expression. In plants, transcription factors play vital
roles in various biological processes, including develop-
mental regulation, defense induction, and stress respon-
ses26,64–67. However, only a few transcription factors were
found to be involved in the regulation of melatonin
synthesis. By using chromatin immunoprecipitation, an
electrophoretic mobility shift assay, and activation of
promoter activity, Wei et al. found that MeWRKY79 and
MeHsf20 could target the W-box and heat-stress ele-
ments (HSEs), respectively, in the promoter of MeASMT2
in cassava. MeWRKY79- and MeHsf20-silenced plants
showed lower MeASMT2 transcripts and less melatonin
accumulation, leading to disease sensitivity37.
MeWRKY20/75 can interact with MeTDC2/MeASMT2/3
to form a protein complex to further regulate melatonin
levels39. Both an in vitro electrophoretic mobility shift
assay and in vivo chromatin immunoprecipitation cou-
pled with qPCR analysis revealed that the transcription
factor HsfA1a binds to the COMT1 gene promoter and
acts as a positive regulator of COMT1 to promote mela-
tonin accumulation and increase Cd tolerance38.
MeRAV1 and MeRAV2 positively regulate MeTDC2,
MeT5H, and MeASMT1 by directly binding to their
promotors in cassava35. However, the transcription fac-
tors that regulate melatonin synthesis in hickory have not
been identified. Therefore, finding transcription factors
related to melatonin biosynthesis in hickory is essential
for investigating its melatonin biosynthesis regulatory
mechanisms. In this study, we found that most of the
transcription factors highly coexpressed with melatonin
synthase genes were ethylene-, ABA-, or GA-responsive
transcription factors, suggesting that these
phytohormone-responsive transcription factors may reg-
ulate melatonin biosynthesis by inducing the expression
of melatonin biosynthesis genes. The characterization of
melatonin as a regulatory factor involved in the expres-
sion of enzymes and regulatory element of plant hor-
mones is an interesting and controversial research
direction. Studies have shown that exogenous melatonin
regulates genes associated with plant hormones, from
genes involved in IAA, CKs, Gas, ABA, JA, and ethylene
biosynthesis or catabolism to genes encoding auxin car-
riers, such as PINs, ethylene-related proteins (e.g., NR and
ETR4), ABA receptors (PYL8), and signal transduction

elements23. However, the effects of other plant hormones
on melatonin have not been reported. Our results pro-
posed a new hypothetical model of melatonin biosynthesis
regulated by other phytohormones. As shown in Fig. 8,
some upstream signals result in increased ethylene and
ABA accumulation in hickory, which could further
upregulate the expression of CcEIN3 and CcAZF2,
respectively. EIN3 and AZF2 directly bind to the pro-
moters of CcTDC1 and CcASMT1 and promote the
expression of CcTDC1 and CcASMT1, respectively.
Finally, the melatonin content is increased, and sub-
sequent activation of the signal response is induced,
which needs to be verified by further experiments. It is
also possible that other hormones or transcription factors,
which we have not yet found, are involved in melatonin
biosynthesis.
In summary, we generated comprehensive metabolome

and transcriptome databases from hickory using UPLC-
ESI-MS/MS and high-throughput RNA sequencing. We
proposed a melatonin biosynthesis pathway in hickory
through combined metabolome and transcriptome ana-
lysis. Most notably, the metabolic components (L-tryp-
tophan, L-tryptamine, 5-hydroxytryptophan, serotonin,
N-acetylserotonin, and melatonin) involved in the
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Melatonin 
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Fig. 8 A new hypothetical model of melatonin biosynthesis
regulated by other phytohormones. Some upstream signals cause
hickory to accumulate more ethylene and abscisic acid, which in turn
upregulate the expression of CcEIN3 and CcAZF2, respectively. EIN3
and AZF2 directly promote the expression of CcTDC1 and CcASMT1,
respectively, and increase the melatonin content, thus inducing the
activation of signal responses
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melatonin biosynthesis pathway, and the candidate genes
encoding TDC, T5H, COMT, SNAT, and ASMT were
identified. Further identification of the gene encoding
TPH and confirmation of whether 5-methoxytryptamine
can be produced in hickory are needed to better under-
stand the melatonin biosynthesis pathway. One ABA-
responsive transcription factor (CcAZF2) and two
ethylene-responsive transcription factors (CcEIN3-1 and
CcEIN3-2) were shown for the first time to activate the
transcription of CcASMT1 and CcTDC1, respectively.
Our results revealed novel melatonin biosynthesis reg-
ulatory mechanisms and enriched our understanding of
the interaction between melatonin and other plant
hormones.
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