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Shan-Ce Niu9✉ and Zhong-Jian Liu4✉

Abstract
As one of the largest families of angiosperms, the Orchidaceae family is diverse. Dendrobium represents the second
largest genus of the Orchidaceae. However, an assembled high-quality genome of species in this genus is lacking.
Here, we report a chromosome-scale reference genome of Dendrobium chrysotoxum, an important ornamental and
medicinal orchid species. The assembled genome size of D. chrysotoxum was 1.37 Gb, with a contig N50 value of
1.54 Mb. Of the sequences, 95.75% were anchored to 19 pseudochromosomes. There were 30,044 genes predicted in
the D. chrysotoxum genome. Two whole-genome polyploidization events occurred in D. chrysotoxum. In terms of the
second event, whole-genome duplication (WGD) was also found to have occurred in other Orchidaceae members,
which diverged mainly via gene loss immediately after the WGD event occurred; the first duplication was found to
have occurred in most monocots (tau event). We identified sugar transporter (SWEET) gene family expansion, which
might be related to the abundant medicinal compounds and fleshy stems of D. chrysotoxum. MADS-box genes were
identified in D. chrysotoxum, as well as members of TPS and Hsp90 gene families, which are associated with resistance,
which may contribute to the adaptive evolution of orchids. We also investigated the interplay among carotenoid, ABA,
and ethylene biosynthesis in D. chrysotoxum to elucidate the regulatory mechanisms of the short flowering period of
orchids with yellow flowers. The reference D. chrysotoxum genome will provide important insights for further research
on medicinal active ingredients and breeding and enhances the understanding of orchid evolution.

Introduction
With more than 25,000 species, Orchidaceae is the

largest angiosperm family1 and comprises 8–10% of
flowering plants. Orchids are renowned for their specia-
lized flowers, which have a very wide variety of growth
forms, and have been successful colonizers of a wide
variety of different habitats2. As one of the largest genera

of Orchidaceae, Dendrobium encompasses ~1450 species
with fleshy stems3. Many species of Dendrobium have
high medicinal and commercial value, and the main
medicinal active ingredients are in the stems4–9. There-
fore, studying the molecular mechanism of these active
ingredients and breeding cultivars with increased contents
of natural products are the main objectives in Den-
drobium scientific research and industrialization10.
Guchui Shihu (鼓槌石斛) Dendrobium chrysotoxum, a

medicinal species, is listed in the Chinese Pharmacopoeia
(2020, 2015, and 2010 edition) and contains an abundance
of erianin, gigantol, polysaccharides, and fluorenones,
among other compounds11–19 (Fig. 1). These compounds
show antipyretic, analgesic, antihyperglycemic, and
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antioxidant effects and enhance immune function11–19.
Recently, preliminary clinical study results suggested that
gigantol could delay lens turbidity through the inhibition
of aldose reductase and aldose reductase mRNA expres-
sion, which have good effects on diabetic cataracts16,17.
Erianin has been demonstrated to exhibit metabolic
inhibition20 and antitumor21, antiproliferative22, and
antiangiogenic activity23. Moreover, it also inhibits high
glucose-induced retinal angiogenesis12. Polysaccharides
isolated from D. chrysotoxum have potential utility in
enhancing antioxidation, immune function, and/or
hypoglycemic activity11. The stems of D. chrysotoxum are
fusiform and rich in active medicinal substances, which
makes it a suitable species for scientific research and
industrial applications in Dendrobium.
With the improvement of sequencing technology and

cost reduction, genome sequencing has become a neces-
sary method for obtaining comprehensive genetic infor-
mation and an effective method for screening candidate
genes for specific traits, especially for identifying candi-
date genes involved in the biosynthesis pathways of
medicinal compounds24–28. To date, only two Den-
drobium spp. genomes have been sequenced, and some
candidate genes involved in polysaccharide metabolic
pathways have been identified in those two species24,29,30.
However, these studies were largely limited due to their
low-quality genome assemblies. Therefore, high-quality
reference genomes and additional Dendrobium species
need to be sequenced to better understand the molecular
mechanisms underlying the production of medicinal
compounds and enable the breeding of new varieties.
In this study, we used PacBio sequencing and Hi-C

technology to generate a chromosome-level genome
assembly. The specific genes of D. chrysotoxum were
identified, which lays a foundation for further research on

the functions of medicinal active ingredients, provides a
reference for breeding new varieties and enhances the
understanding of orchid evolution.

Results and discussion
Genome sequencing and characteristics
D. chrysotoxum has a karyotype of 2N= 2X= 38, with

uniform chromosomes31. To completely sequence the D.
chrysotoxum genome, 138.15 Gb of clean reads were
generated by BGISEQ sequencing system (Supplementary
Table 1). The estimated genome size was 1.38 Gb with
1.84% heterozygosity, as determined by K-mer analysis
(Supplementary Fig. 1). To obtain a better assembly,
PacBio technology was employed, and 132.64 Gb of Pac-
Bio sequencing data were generated (Supplementary
Table 1). The assembly size was 1.37 Gb with a corre-
sponding contig N50 value of 1.54Mb (Supplementary
Table 2). The BUSCO32 assessment indicated that the
completeness of the gene set of the assembled genome
was 90.3% (Supplementary Table 3). This indicates that
the D. chrysotoxum genome assembly was complete and
could be used for subsequent analysis. We further used
125.96 Gb of reads from the Hi-C library. The assembled
scaffolds were ultimately clustered into 19 pseudomole-
cules, which represented the 19 chromosomes in the
haploid genome of D. chrysotoxum (Fig. 2a). The lengths
of the 19 pseudochromosomes ranged from 38.28 to
100.49Mb with a scaffold N50 value of 67.80Mb (Sup-
plementary Tables 4 and 5). In addition, contigs with a
length of 1.31 Gb were mapped onto the 19 pseudo-
chromosomes at a 95.75% anchor rate (Supplementary
Tables 4 and 5). The chromatin interaction data suggest
that our Hi-C assembly is of high quality (Fig. 2b).
Compared with those of other orchid genome assemblies,
the contig N50 and scaffold N50 values of the D. chry-
sotoxum genome were much higher (Table 1), and the
assembly completeness was higher than 90% (Table 1),
suggesting high genome quality and completeness.

Gene prediction and annotation
In D. chrysotoxum genome, 30,044 protein-coding genes

were annotated (see Materials and methods; Supplementary
Table 6). The completeness of the genome was 95.64%,
indicating that the D. chrysotoxum genome annotation was
relatively complete (Supplementary Table 7).
In addition to a high number of genes, the average

length of genes and introns was also larger in D. chryso-
toxum than in Phalaenopsis equestris, Gastrodia elata,
and D. catenatum24,33,34 and much higher than that in
most other angiosperms (Supplementary Table 8). The
average length of the coding DNA sequences (CDSs) in D.
chrysotoxum was longer than those in other angiosperms,
and a greater average intron length was also previously
observed for P. equestris, G. elata, and D.

Fig. 1 A flowering D. chrysotoxum plant. D. chrysotoxum is
lithophytic on rocks or epiphytic on tree trunks with bright yellow
flowers and fusiform, fleshy stems
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Fig. 2 Chromosomal features and intensity signal heat map of D. chrysotoxum chromosomes according to Hi-C output. a From inside
outward: chromosome (purple), gene density (red), DNA type repeat sequence density (green), copy density (blue), and gypsy density (orange). All
the data are shown with sliding windows of 500 kb, and the inner lines (green indicates the positive direction, and red indicates the opposite
direction) represent syntenic blocks on homologous chromosomes. b Heat map of the intensity of the Hi-C chromosome. The heat map represents
the contact matrices generated by aligning the Hi-C data to the chromosome-scale assembly of the D. chrysotoxum genome. A higher value on the
scale bar indicates a higher contact frequency
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catenatum24,33,34; thus, a relatively long CDS might be a
unique characteristic of Orchidaceae (Supplementary Fig.
2; Supplementary Table 8). Regulatory elements are fre-
quently present in introns, and alternative splicing events
often occur among different introns and exons, diversi-
fying the protein-coding aspect of the genome. All these
factors might contribute to genome structure evolution,
genome size, gene function diversification, and gene
expression patterns35–38. For example, intron transcrip-
tional delay in Drosophila is particularly important for
proper development of the embryo39,40. Thus, this char-
acteristic of orchids needs to be further analyzed and
researched. Moreover, 80 microRNAs, 1281 transfer
RNAs, 2275 ribosomal RNAs, and 882 small nuclear
RNAs were identified in the D. chrysotoxum genome
(Supplementary Table 9).
We estimated that the D. chrysotoxum genome com-

prised 62.81% repetitive sequences (Supplementary Figs. 3
and 4; Supplementary Table 10), the percentage of which
was higher than 62% in P. equestris but lower than 78.1%
in D. catenatum24,33. Transposable elements (TEs) are
important forms of repeats and constitute a substantial
part of the D. chrysotoxum genome (61.22%); TEs are the
most abundant repeat subtypes in this species. In addi-
tion, repeats predicted de novo were much larger than
those obtained based on Repbase11 database, suggesting
that, compared with other plants species whose genome
has been sequenced, D. chrysotoxum has many specific
repeats (Supplementary Table 10). Long terminal repeats
(LTRs) represented the highest proportion among all
subtypes of repeats, accounting for ~53.15% of the gen-
ome, which was higher than the 46% for D. catenatum24

(Supplementary Table 11).
In addition, 27,575 (91.78%) predicted genes were

functionally annotated (Supplementary Table 12). Among
them, 27,268 (90.76%) and 26,808 (89.23%) genes were
annotated to the TrEMBL and Nr databases, respectively
(Supplementary Table 12). The numbers of annotated
genes were 22,735 (75.67%), 19,185 (63.86%), and 18,666
(62.13%) in the InterPro, SwissProt, and KEGG databases,
respectively (Supplementary Table 12).

Evolution of gene families
A high-confidence phylogenetic tree was constructed,

and the divergence times were estimated based on 274
single-copy genes from 17 different plant species (Sup-
plementary Fig. 5 and Supplementary Table 6). As
expected, D. chrysotoxum was sister to D. catenatum,
forming an Epidendroideae clade together with P. eques-
tris, G. elata, and A. shenzhenica located at the bases of
Orchidaceae branches (Supplementary Fig. 6). The
Orchidaceae divergence was estimated to have occurred
123 Mya; the divergence between subfamily Apostasioi-
deae and subfamily Epidendroideae occurred 80 Mya; the
divergence between D. chrysotoxum and D. catenatum
occurred 11 Mya; and the divergence between Den-
drobium and Phalaenopsis occurred 38 Mya (Fig. 3).
Then, the expansion and contraction of orthologous gene
families were analyzed. According to the results, 140 and
1112 gene families expanded and contracted, respectively,
in the lineage leading to Orchidaceae. In D. chrysotoxum,
953 gene families were expanded, as opposed to 783 in D.
catenatum, 853 in P. equestris, 358 in G. elata, and 562 in
A. shenzhenica. At the same time, 1335 gene families were
contracted in D. chrysotoxum, as opposed to 644 in D.
catenatum, 1009 in P. equestris, 2748 in G. elata, and
1615 in A. shenzhenica. A greater number of expanded
gene families in D. chrysotoxum may lead to a larger
genome size than that in other sequenced orchid
species2,24,33,34.
The ancestral clade of Dendrobium had 464 expanded

gene families and 216 contracted gene families. The D.
chrysotoxum clade had 953 expanded gene families and
1335 contracted gene families. In the ancestral clade of
Dendrobium, there were 19 significantly expanded gene
families, including 236 genes from D. chrysotoxum. In the
D. chrysotoxum clade, 107 gene families were significantly
expanded, including 1048 genes, and 43 gene families
were significantly contracted, including 59 genes. We also
conducted Gene Ontology (GO) enrichment analysis for
the expanded gene families, and the GO terms “cyto-
plasmic part” and “intracellular organelle” were found to
be enriched (Supplementary Table 13). In addition, the

Table 1 Genome statistics and comparisons among orchid species whose genome has been sequenced

Species Gene number Contig N50 (bp) Scaffold N50 (bp) BUSCO assembly (%) CEGMA assembly (%)

D. chrysotoxuma 30044 1,540,953 67,798,029 90.30 –

D. catenatum2 28910 51,736 1,055,340 92.46 –

P. equestris33 29431 45,791 1,217,477 91.00 –

A. shenzhenica2 21841 80,069 3,029,156 93.62 –

D. officinale29 35567 25,122 76,489 - 91.50

aThis study

Zhang et al. Horticulture Research           (2021) 8:183 Page 4 of 14



bidirectional sugar transporter gene SWEET was identi-
fied (Supplementary Fig. 7), whose product plays impor-
tant roles in sugar translocation between compartments41,
phloem loading for long-distance translocation42, pollen
nutrition43, and seed filling44. Further phylogenetic ana-
lysis showed that 17 genes were expanded in clade II
(Supplementary Fig. 7), suggesting that these SWEET
genes might be associated with a fleshy stem that is
abundant in polysaccharides and other medicinal
compounds.

Synteny analysis and whole-genome duplication (WGD)
Both the loss of a substantial fraction of genes and the

increase in substitution rate complications were indicated
by WGD in D. chrysotoxum, which is thought to have
occurred among different orchid species2. WGD is evi-
dent in many lineages and is a practical method for
genome expansion45. To determine the occurrence of
WGDs in D. chrysotoxum, JCVI v0.9.1446 was used to
analyze the protein sequences of D. chrysotoxum, P.
equestris, P. aphrodite, and D. catenatum with the default
parameters and obtain collinear gene pairs. There were

21,881 collinear gene pairs between D. chrysotoxum and
P. equestris, 21,592 between D. chrysotoxum and P. aph-
rodite, 24,550 between D. chrysotoxum and D. catenatum,
and 2800 between D. chrysotoxum and itself (Supple-
mentary Table 14). Although D. chrysotoxum was
assembled to the chromosome level, its self-collinearity
was still very low compared to that of other sequenced
orchid species. The collinearity between D. catenatum
and D. chrysotoxum was fragmented, which may be the
result of the quality of the D. catenatum genome, which
was not at the chromosome level. The chromosomes of
Dendrobium and Phalaenopsis showed a good corre-
sponding relationship, indicating that after the divergence
of Dendrobium and Phalaenopsis, the chromosomes were
conserved, with few rearrangements. Syntenic figures
show that the collinearity blocks were mainly in a 1:1
pattern, indicating that after the differentiation of D.
chrysotoxum, no species-specific WGD events had
occurred (Fig. 4; Supplementary Figs. 8–12).
The distributions of synonymous substitutions per

synonymous site (Ks) were estimated to infer poly-
ploidization events that occurred in the D. chrysotoxum
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Fig. 3 Phylogenetic tree showing divergence times and the evolution of gene families in D. chrysotoxum. The green and red numbers
represent the numbers of expanded gene families and contracted gene families, respectively. The blue portions of the pie charts show that the copy
numbers of gene families are constant. Divergence times are represented by light blue bars at internodes; the divergence time is at a 95% confidence
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Materials and methods and Supplementary Fig. 6). The orange part of the pie chart at the top left represents the ratio of 11,252 gene families found
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genome. There were two peaks in the distribution of Ks
for paralogous D. chrysotoxum genes: Ks= 1.0 and
1.7–1.8 (Fig. 5). These results suggested that two poly-
ploidization events occurred in D. chrysotoxum. To fur-
ther verify the polyploidization events in D. chrysotoxum,
its genome was compared with that of P. equestris, A.
shenzhenica, and D. catenatum. The peaks in Ks values
between both D. chrysotoxum/P. equestris and D. chryso-
toxum/D. catenatum were less than 1.0, suggesting that
the events occurred before the differentiation of these
three species. There was a diverging peak in the Ks dis-
tribution of D. chrysotoxum and A. shenzhenica at Ks=
0.7–0.8, which was smaller than but close to the Ks peak
of the Orchidaceae (Ks= 1), indicating that extant orchid
species differentiated immediately after experiencing a
shared WGD event. Based on the evolution of gene
families, species differentiation mainly occurred through
gene loss with little gene expansion, which confirmed that
the WGD event occurred in the most recent common
ancestor of extant orchid species. The second peak in the
Ks distributions within D. chrysotoxum (1.7–1.8) indicated

that the τ WGD had occurred in most monocot species45.
Furthermore, the peak of the Ks distribution in D. chry-
sotoxum was smaller than 0.2, suggesting that it originated
from background (tandem) duplications and likely did not
signify additional recent WGDs2. Therefore, this study
found that D. chrysotoxum experienced two poly-
ploidization events: an early WGD event was shared
among all extant orchid species, and a later event that was
shared among most monocot species.

MADS-box genes and the evolution of flowers
MADS-box genes are among the most important reg-

ulators of plant floral development and compose major
class of regulators mediating floral transition. In total, the
D. chrysotoxum genome encodes 58 putative functional
MADS-box genes and 1 pseudogene (Table 2; Supple-
mentary Table 15). Interestingly, the number of MADS-
box genes was similar to that in other sequenced orchid
species but smaller than that in most sequenced angios-
perms2,24,33. D. chrysotoxum has 31 type II MADS-box
genes, which is higher than that found in P. equestris (29)

Fig. 4 Self-collinearity map of D. chrysotoxum (Guchui). The values on the X- and Y-axes are the numbers of cumulative genes on the 19
chromosomes
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and A. shenzhenica (27), but smaller than that of D.
catenatum (35)2,24,33. Phylogenetic analysis (Supplemen-
tary Fig. 13) showed that, except for those in the MIKC*,
Bs, and OsMADS32 clades, most genes in the type II
MADS-box clade were contracted. Bs genes are involved
in the differentiation and development of ovules47. In D.
chrysotoxum, there are four Bs members, more than the
number found in other sequenced orchid species. The Bs

genes had duplicated, as evidenced by higher seed pro-
duction in D. chrysotoxum than in other sequenced orchid
species. This must have been accompanied by duplication
of the type I MADS-box gene Mα, as D. chrysotoxum has
more Mα genes (19) than other sequenced orchid species
(Table 2), ensuring seed development. In addition, there
were no genes from the FLOWERING LOCUS C (FLC),
AGL12, or AGL15 clades in the D. chrysotoxum genome
or other sequenced orchid genomes. In comparison with
genes in the AGL12 and AGL15 clades, which are present
in both rice and Arabidopsis, orthologous genes of FLC,
AGL12, and AGL15 might have been specifically lost in
orchids. Although AGL12-like genes (XAL1 in A. thali-
ana) are necessary for root development and flowering48,
D. chrysotoxum and P. equestris have varying mechanisms
that perform the same function2, showing that D. chry-
sotoxum is not a terrestrial orchid but is an epiphytic
orchid.
The D. chrysotoxum genome has 26 putative functional

type I genes and 1 pseudogene (Table 2), which might
have resulted in a lower expansion rate or a higher con-
traction rate compared with those of type II MADS-box
genes in D. chrysotoxum (31 functional genes). Tandem
gene duplication might play an important role in the
increasing number of type I genes in the α group (type I
Mα), suggesting that the type I genes have mainly been
duplicated on a smaller scale from more-recent duplica-
tions49. Although members of the β group of type I
MADS-box genes (type I Mβ) do exist in A. thaliana,
poplar, and rice, they are absent in the D. chrysotoxum
genome. Interactions among these type I MADS-box
genes are essential for initiating endosperm develop-
ment50; therefore, like in other sequenced orchids2,24,33,
endosperm is also absent in D. chrysotoxum.
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chrysotoxum. The Ks distributions of paralogs using the reciprocal
best hit (RBH) and anchor are shown as light blue and red histograms,
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D. catenatum, and D. chrysotoxum–P. equestris are shown as green,
gray, blue, and cyan curves, respectively. RBH reciprocal best blast hit;
“anchor” refers to colinear regions

Table 2 MADS-box genes in D. chrysotoxum, A. shenzhenica, P. equestris, D. catenatum, and Arabidopsis thaliana

Category P. equestris33 D. catenatum24 D. chrysotoxum* A. shenzhenica2 A. thaliana37

Functional Pseudo Functional Pseudo Functional Pseudo Functional Pseudo Functional Pseudo

Type II (total) 29 1 35 11 31 0 27 4 45 5

MIKCc 28 1 32 9 28 0 25 3 43 4

MIKCa 1 0 3 2 4 0 2 1 2 0

Mδ 0 0 0 0 0 0 0 0 4 1

Type I (total) 22 8 28 1 26 1 9 0 62 36

Mα 10 6 15 1 19 1 5 0 20 23

Mβ 0 0 0 0 0 0 0 0 17 5

Mγ 12 2 13 0 8 1 4 0 21 8

Total 51 9 63 12 58 1 36 4 107 41

aThis study
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Floral color regulatory pathway in D. chrysotoxum
The flowering time of a single flower of D. chrysotoxum

was ~10 days51,52, the limit of which might be associated
with yellow flower color. All photosynthetic tissues in
each of the biological kingdoms can produce car-
otenoids53. More than 1100 naturally occurring car-
otenoids (http://carotenoiddb.jp/) are involved in many of
the red, orange, and yellow colors of flowers53. These
compounds also play important roles in photosynthesis.
Interestingly, carotenoids function as precursors for the
biosynthesis of abscisic acid (ABA)53. Moreover, ethylene
plays a role in senescing flowers54. Ethylene and ABA
regulate plant growth and development55 synergistically
or antagonistically. We therefore analyzed the network
involving carotenoid, ABA, and ethylene biosynthesis and
regulation (Fig. 6).
Eighteen genes or gene family members in the car-

otenoid biosynthesis pathway and related regulatory
mechanisms were identified (Supplementary Table 16).
These genes encode phytoene synthase (PSY), orange

protein, casein lytic proteinase B3 (ClpB3), deoxy-D-
xylulose 5-phosphate synthase (DXS), phytoene desatur-
ase, ζ-carotene isomerase, ζ-carotene desaturase, car-
otenoid isomerase (CRTISO), β-lycopene cyclase, ε-
lycopene cyclase (LYCE), β-carotene hydroxylase, car-
otene ε-hydroxylase (CYP97C), zeaxanthin epoxidase
(ZEP), violaxanthin de-epoxidase, neoxanthin synthase
(NXS), xanthophyll acyl-transferase (XAT), plastoglobule-
localized metallopeptidase 48, and carotenoid cleavage
dioxygenase (CCD). The expression of these genes
increased with flower development, except for LYCE,
which is targeted for downregulation during biofortifica-
tion, ZEP, NXS, and XAT (Supplementary Table 16; Fig.
6), suggesting that more carotenoids and fewer xantho-
phylls were produced during flowering to senescence.
The substrates used to produce ABA were neoxanthin

and violaxanthin, and the process was regulated by nine-
cis-epoxy carotenoid dioxygenases (NCEDs). The bio-
synthesis of ABA is catalyzed by the short-chain dehy-
drogenase/reductase-like (SDR1) enzyme abscisic
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Fig. 6 Gene expression patterns among the interactions between carotenoids, the ABA and ethylene biosynthesis pathways, and
regulatory mechanisms in D. chrysotoxum (adapted fromWatkins and Pogson53, Yin et al.55, Nisar et al.101, Sun et al.102, and Finkelstein96).
Increased gene expression during the four developmental stages of flowers is shown by thick green arrows, while decreased gene expression is
shown by thick red arrows. The enzymes or genes are indicated alongside the arrows. The dashed lines suggest that there are multiple steps.
Carotenes are shown in orange, and light gold indicates xanthophylls. ABA-related genes are shown in yellow, and ethylene-related genes are shown
in light green. CCDs (orange arrows) regulate carotenoid accumulation. Plastoglobule-localized metallopeptidase 48 (PGM48) is hypothesized to
regulate CCD4. The orange protein regulates PSY activity, acting as a chaperone. ClpB3 (red arrow) regulates the activity of DXS, acting as an enzyme
in the MEP pathway
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aldehyde oxidase (AAO) and molybdenum cofactor
(MoCo). The expression of NCED and SDR genes
increased gradually with the development of flowers,
while the expression of AAO and MoCo genes decreased
gradually (Supplementary Table 17; Fig. 6). Furthermore,
there were four AAO gene members detected in Arabi-
dopsis, while there was only one gene detected in D.
chrysotoxum (Supplementary Fig. 14). Taken together,
these findings might indicate that relatively low amounts
of ABA (C15) were produced, which might improve
ethylene biogenesis.
For ethylene biogenesis, genes encoding three kinds of

enzymes were identified. The expression of Maker79017,
encoding S-AdoMet synthetase (SAMS), Maker75695 and
Maker66290, encoding ACC synthase (ACS), and
Maker29641, encoding ACC oxidase (ACO), increased
gradually, suggesting that increased amounts of ethylene
were produced during the development of flowers (Sup-
plementary Table 18; Fig. 6). CONSTITUTIVE TRIPLE
RESPONSE 1 and ETHYLENE INSENSITIVE 2 regulate
the interaction between ethylene and the ABA pathway
and are partially dependent on the MHZ5/CRTISO-
mediated ABA pathway in rice55. Therefore, we also
analyzed the expression patterns of the two genes in D.
chrysotoxum, but there were no obvious differences in any
of the four stages of flower development (Supplementary
Table 18; Fig. 6).
In conclusion, carotenoid production increased gradu-

ally, and the content of xanthophylls decreased gradually
in yellow D. chrysotoxum flowers during flowering to
senescence. Less xanthophyll was degraded into less ABA,
and less ABA led to more ethylene being produced. As a
result, yellow flowers of D. chrysotoxum generally have a
relatively short flowering period.

Identification of the terpene synthases (TPS) and Hsp90
gene families and adaptive evolution
Dendrobium spp., with epiphytic or lithophytic life-

styles, frequently experience adverse environmental con-
ditions, such as chilling and water deficit56. During plant
responses to environmental stresses, volatile terpenes play
critical roles56. Moreover, terpenes also play an important
role in the formation of orchid floral scents56. TPSs are
the key enzymes involved in terpene biosynthesis57. Dif-
ferent sizes of TPS families and subfamilies in plant spe-
cies have evolved to synthesize a specific set of terpene
compounds57. There are seven subfamilies in the TPS
family: TPS-a, TPS-b, TPS-c, TPS-d, TPS-e/f, TPS-g, and
TPS-h57. Among them, TPS-a encodes a sesquiterpene
synthase that is found in both dicotyledonous and
monocotyledonous plants. Angiosperm-specific TPS-b
encodes a monoterpene synthase with an R(R)X8W motif
that catalyzes the isomerization cyclization reaction. TPS-
c belongs to the ancestral clade and catalyzes the activity

of copalyl diphosphate synthase. Gymnosperm-specific
TPS-d performs several functions, such as those of
diterpene, monoterpene, and sesquiterpene synthases.
TPS-e/f encodes copalyl diphosphate/kaurene synthases,
which are critical enzymes for gibberellic acid production.
Another angiosperm-specific TPS, TPS-g, encodes
monoterpene synthase enzymes that lack the R(R)X8W
motif. TPS-h has been observed only in Selaginella
moellendorffii58–61. Phylogenetic analysis of the TPS gene
family members and their expression in bud formation
and initial flower opening, blooming, and withering are
shown in Fig. 7. In this study, the TPS gene number in D.
chrysotoxum was 48, which was greater than that in D.
catenatum (42) (Fig. 7a). Moreover, there were 14 and 21
genes in A. shenzhenica and P. equestris, respectively. The
TPS-b subfamily can be divided into monocot and eudicot
clades. More D. chrysotoxum TPS genes than D. catena-
tum ones clustered in the monocot A clade—14 (red gene
ID) and 4 (blue gene ID), respectively (Fig. 7a). Fewer TPS
genes were found in D. chrysotoxum than in D. catenatum
in the monocot B clade—7 (red gene ID) and 10 (blue
gene ID), respectively (Fig. 7a). The different distribution
patterns might contribute to the difference in terpenoid
compositions between these two species, which needs
further validation.
To explore heat stress-related genes in D. chrysotoxum,

we also analyzed heat stress-related gene families across
orchid species. Only two Hsp90 genes (red gene ID) were
identified (clustering in group III), with high expression
during bud formation (Supplementary Fig. 15a, b). This
number was lower than that for the other four species
(six were identified in D. catenatum, seven in P. equestris,
six in A. shenzhenica, and seven in A. thaliana). This
large gene loss might be related to resistance to heat
stress.

Conclusion
Although D. chrysotoxum has high ornamental and

medicinal value, further molecular mechanism research
and development of medicinal compounds have been
limited by a lack of omics data. In this study, a
chromosome-level reference genome of D. chrysotoxum
with an assembled genome size of 1.37 Gb and 30,044
annotated protein-coding genes was obtained. Ks analysis
suggested that two polyploidization events occurred in D.
chrysotoxum: a recent WGD shared among other orchid
species and an ancient polyploidization event shared
among most monocots (τ event). Phylogenetic analysis of
the SWEET gene family in D. chrysotoxum showed that
gene expansion occurred in clade II of the SWEET gene
family, which might be related to fleshy stems containing
an abundance of polysaccharides. Floral color regulation
analysis showed that fewer xanthophylls degraded into
ABA, which led to more ethylene production, thus
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accelerating the senescence of D. chrysotoxum flowers.
The analysis of D. chrysotoxum helped elucidate the
mechanism through which fleshy stems produce an
abundance of polysaccharides and other medicinal com-
pounds, as well as flowering time regulation, which is

critical for industrial development. Our results provide
the first high-quality genome of Dendrobium and give
important insights into the molecular mechanism
underlying the production of medicinal active ingredients,
breeding, and orchid evolution.

Fig. 7 Analysis of TPS genes in D. chrysotoxum. a Phylogenetic analysis of TPS genes in D. chrysotoxum, D. catenatum, A. shenzhenica, A. thaliana,
and P. equestris. Ash A. shenzhenica, Maker D. chrysotoxum, Dca D. catenatum, Peq P. equestris, AT A. thaliana. b Expression patterns of TPS genes in
buds and in the initial flower opening, blooming, and withering stages of D. chrysotoxum
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Materials and methods
DNA preparation and sequencing
Fresh leaves of wild D. chrysotoxum were collected for

genome sequencing. A modified cetyltrimethylammonium
bromide protocol was used to extract the genomic DNA.
To estimate genome size and heterozygosity, 143.78 Gb of
raw data from paired-end libraries (PE150) constructed
from a MGISEQ-2000 sequencer were generated. After
data filtering was carried out by SOAPnuke v1.6.5 software
with the parameters -n 0.02 -l 20 -q 0.4 -Q 2 -i -G
--seqType 0 –rmdup, clean data (138.15 Gb) were
obtained (Supplementary Table 1). Then, a SMRTbell
Template Prep Kit 1.0 (PacBio, Menlo Park, CA, USA) and
a PacBio Sequel system were used to construct and
sequence the DNA libraries, respectively, for PacBio long-
read sequencing. A total of 132.64 Gb of sequencing data
(coverage of 96.12%) were generated, with an N50 read
length of 19.5 kb (Supplementary Table 1). Furthermore,
all libraries with a 500 bp insert size were sequenced on a
NovaSeq platform (2 × 150 bp). We ultimately produced
169.25 Gb of data and 125.96 Gb of clean data for Hi-C
analysis. The transcriptomes of flowers of D. chrysotoxum
were obtained from Huang’s doctoral thesis62 to assist
gene annotation.

Genome assembly
Genome size and heterozygosity were measured using

Jellyfish v.2.2.6 and GenomeScope (http://qb.cshl.edu/
genomescope)63 based on a 17-K-mer distribution. Canu64

was used to assemble the PacBio sequencing reads, with the
following parameters: minOverlapLength= 700; minRea-
dLength= 1000; and corOutCoverage= 50. Then, Arrow
software was used to polish the assembly, and Pilon v1.2365

was further used for correction of the assembly based on
short reads, with the following parameters: fixed bases;
mindepth 10; minqual 20; and diploid. Finally, the com-
pleteness and quality of the final assembled genome were
evaluated with BUSCO v332.

Hi-C library construction and chromosome assembly
The raw reads produced by the NovaSeq sequencing

platform were filtered by SOAPnuke66 (v1.6.5, https://
github.com/BGI-flexlab/SOAPnuke) software with the
following parameters: -n 0.02 -l 20 -q 0.4 -i –rmdup.
Then, the obtained clean reads were compared with the
preassembled contigs using Juicer67 software. After fil-
tering the results and removing the misaligned reads, 3D-
DNA68 software was used to preliminarily cluster,
sequence, and direct the pseudochromosomes. Juicer-box
was used to adjust, reset, and cluster the pseudochro-
mosomes to improve the chromosome assembly quality.
For the evaluation of the Hi-C assembly results, the final
pseudochromosome assemblies were divided into 100 kb
bins of equal lengths, and a heat map was used to visualize

the interaction signals generated by the valid mapped read
pairs between each bin.

Genome annotation
Repetitive sequences are an important part of a genome

and are divided into two types, namely, tandem repeats
and interspersed repeats. Two methods, de novo predic-
tion and homology-based searches, were used to annotate
repeat sequences in the genome. RepeatMasker v4.0.7 and
RepeatProteinMask v4.0.7 software69 (http://www.
repeatmasker.org) were used to identify repetitive
sequences based on the Repbase v21.12 database69 (http://
www.girinst.org/repbase). For de novo prediction, a
repetitive sequence database was constructed using
RepeatModeler v1.0.870 and LTR_FINDER v1.0671.
RepeatMasker software and Tandem Repeats Finder
v4.0972 were subsequently used to predict repeat
sequences and identify tandem repeats in the genome,
respectively. The annotation of high-quality protein-cod-
ing genes was carried out by integrating homology-based,
de novo and transcriptome-based predictions. For
homology-based prediction, protein sequences from six
species (Arabidopsis thaliana, Oryza sativa, Sorghum
bicolor, Zea mays, G. elata, and P. equestris) were used to
align D. chrysotoxum genome sequences via Exonerate
v2.2.073. Then, the complete sequences of 3000 genes
from the homology-based prediction method were used to
produce a training model through Augustus v3.2.374 and
SNAP v2006-07-2875 software. The RNA-seq data of D.
chrysotoxum were mapped to genome sequences through
HISAT2 and StringTie software76,77. Finally, Maker
v2.31.878 was used to annotate and integrate the results
generated by the above methods. BUSCO v332 was then
used to evaluate the completeness and quality of the gene
models.
Functional annotation of the predicted gene models was

carried out by BLAST v2.2.3179 software and aligned
against the contents of the SwissProt80, TrEMBL (http://
www.uniprot.org/), KEGG (http://www.genome.jp/kegg/),
InterPro81, Nr, and GO (The Gene Ontology Consortium)
databases82. For noncoding RNA annotations, tRNAscan-
SE 1.3.1 (http://lowelab.ucsc.edu/tRNAscan-SE/)83 was
used to annotate tRNA sequences. BLASTN79 was used to
search for rRNA, and miRNA and snRNA sequences were
predicted by Infernal 1.1 (http://infernal.janelia.org/)
software84.

WGD analysis
Ks distribution analysis was used to infer the occurrence

of WGD events in D. chrysotoxum and those between D.
chrysotoxum and A. shenzhenica, D. catenatum, and P.
equestris. BLASTP79 was used to search for putative
paralogous and orthologous genes within and between
genomes by alignment of each genome pair. MCScanX
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v1.5.285 was used to identify colinear regions, and then
CodeML in the PAML package86 was used to calculate the
Ks value of each salicoid duplicated gene pair. We used
CAFÉ87 to evaluate the significance of each expanded and
contracted gene family (P < 0.01).

SWEET gene family analyses
To identify SWEET proteins, proteomic datasets of four

orchid species (D. chrysotoxum, A. shenzhenica, D. cate-
natum, and P. equestris) and A. thaliana were con-
structed. The MtN3_slv domain PF03083 model profile
from the Pfam database88 was used for performing local
searches of proteome datasets containing five species via
the HMMER program89. The SWEET protein sequences
were aligned with MAFFT90. The alignment was then
used for phylogenetic tree reconstruction by PhyML
3.091–93 with the default parameters.

MADS-box gene family analysis
The sequences of the MADS-box proteins of A. thali-

ana and the HMM profile (PF00319) were obtained from
the Arabidopsis information resource (TAIR) (https://
www.arabidopsis.org/) and the Pfam database88, respec-
tively. Then, the sequences of the MADS-box gene family
members in the D. chrysotoxum genome were obtained
using HMMER 3.2.1 software89 and BLASTP83 methods.
The obtained amino acid sequences were used for
TBLASTN79 analysis of the D. chrysotoxum tran-
scriptomic assemblies. SMART94 was subsequently used
to confirm the obtained sequences by domain analysis.
MEGA X95 was then used for the alignment of the can-
didate genes, and the CIPRES website (https://www.phylo.
org/portal2/) was used for phylogenetic tree construction.
iTOL (https://itol.embl.de) was subsequently used to
visualize the phylogenetic trees.

Identification of genes involved in the carotenoid, ABA,
and ethylene biosynthesis pathways and regulatory
mechanisms in D. chrysotoxum
The sequences of all 17 genes or gene family members

involved in the carotenoid biosynthesis pathway and reg-
ulatory mechanisms in A. thaliana, Triticum aestivum, and
Pantoea ananatis53 were used as queries to search against
the protein database of D. chrysotoxum. The obtained amino
acid sequences were aligned using MAFFT90. We then
manually inspected the aligned sequences and removed any
obviously inconsistent sequences.
Four genes or gene family members involved in the

ABA biosynthesis pathway or regulatory mechanisms in
Arabidopsis were obtained96. BLASTP79 was used to
search for homologous genes by querying the protein
database of D. chrysotoxum. After aligning the amino acid
sequences with MAFFT90 software, we removed any
obviously inconsistent sequences.

The sequences of genes encoding SAMS, ACS, and
ACO, all of which are involved in the ethylene biosynth-
esis pathway, in Arabidopsis97 were used as queries for
searching proteins by BLASTP79 software.
For gene families, a phylogenetic tree was constructed

with PhyML98 based on the alignment of sequences from
D. chrysotoxum, D. catenatum, A. shenzhenica, P. equestris,
and A. thaliana. The tree was generated by the maximum
likelihood method based on the Jones–Taylor–Thornton
(JTT) matrix-based model99, and the fast likelihood-based
method was used for phylogenetic tests with SH-like
branch supports.

Gene expression analysis
Transcriptome data from flowers at four developmental

stages (flower buds, initial flowering stage, blooming
period, and withering flowers), stems, and leaves were
obtained (BioProject PRJNA691441), and Salmon
v1.3.0100 was used to quantify gene expression, with the
default settings.

TPS and Hsp90 gene family identification
The HMM profiles for PF01397 (Terpene_synth) and

PF03936 (Terpene_synth_C) were downloaded from the
Pfam database (pfam.xfam.org/), and both profiles were
used to carry out HMM searches against the information
of the protein databases for five species (D. chrysotoxum,
Dendrobium catenatum, P. equestris, Apostasia shenzhe-
nica, and A. thaliana). The sequences aligned with
MAFFT90 were used for phylogenetic tree construction
through PhyML79. The tree was generated by the max-
imum likelihood method based on the JTT matrix-based
model99 and the bootstrap method for phylogenetic tests
with 1000 replications. Similarly, the HMM profile for
PF00183 (Hsp90) was downloaded from the Pfam data-
base (pfam.xfam.org/), and the subsequent steps were the
same as those for TPS gene family identification.
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