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Abstract
Fruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium
corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the
underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between
two southern highbush blueberry cultivars, ‘Reveille’ and ‘Arlen’, were phenotyped over three years (2016–2018) for
fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage
map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of
1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the
hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for
titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than
one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid,
and 8–13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic
variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear
magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid
were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and
positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and
established an association between these fruit quality traits and metabolites.

Introduction
Blueberries are well recognized as a rich source of

health-promoting phytochemicals, which have in part
contributed to a rapid increase in consumer demand and
production over the past 15 years1–4. In the USA, per-
capita blueberry consumption increased from 0.18 kg/
person in 2002 to 0.57 kg/person in 2011 with a 21.66%
annual growth rate for this specific period5. Polyphenols

or bioactives such as flavonoids (anthocyanins, flavanols,
and flavonols) and non-flavonoids such as phenolic acids
are found in large amount in blueberry. Clinical evidence
suggests that sufficient intake of blueberries provides
multiple health benefits including lowering blood pres-
sure, protecting against heart attack, preventing cancer,
improving mental health and managing diabetes1,2,6.
These health benefits associated with blueberry con-
sumption contributed to the increased consumption. In
recent years, the blueberry industry recognized that after a
decade of significant production expansion and growth,
the blueberry market in North America has matured,
whereby both the industry and consumers are becoming
more selective and quality-driven7,8. Indeed, multiple
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studies in blueberry reported that fruit quality (FQ) traits,
including size (FW), total soluble solid content (TSS),
titratable acidity (TA), and texture influence consumer
preferences1–4,9–13. In particular, consumers cited flavor
and sweetness as positive characteristics, and TSS and TA
as the most and least important characteristics associated
with overall consumer preferences for blueberries,
respectively4,14. In fact, the balance between sugars and
acids is determinant factor for berry taste. Sweet berries
do not necessarily have high sugar content, instead they
may retain lower level of acids, which results in the higher
the sugar/organic acid ratio4,13,14.
While some cultivars meet consumer preferences, a

wide variation for FQ traits exists among blueberry cul-
tivars. As a result, blueberries available on the market
represent a blend of multiple cultivars, and the variation
for FQ traits makes the consumer experience inconsistent
across multiple purchases. In turn, this can affect con-
sumer re-purchasing frequency and overall consump-
tion4,7,8,14. Developing strategies that can increase the
blueberry production that meet consumer preferences
will be critical for sustaining the consumption growth.
The development of new cultivars has played and will

continue to play a major role in the growth of the blue-
berry market in North America and worldwide. In the last
two decades, breeding programs have developed
improved cultivars that have supported the expansion of
blueberry production into new growing areas, such as
low-chill regions and the southern hemisphere. Today the
industry and consumers are quality driven, and genetic
gains for fruit quality traits will be a key factor to sustain
the growth of the blueberry industry7,8.
Blueberry breeding activities strongly rely on

phenotypic-based selection for multiple traits following
multiple rounds of crossing and testing in multiple
environments. The use of wild species in blueberry
breeding programs is common and has contributed to
blueberry improvement with respect to a wide range of
important traits including resistance to biotic and abiotic
stress, fruit quality and adaptation to new environ-
ments15–18. However, the process of breeding a new
variety solely based on phenotypic selection takes a long
time (10–20 years), is expensive and somewhat ineffi-
cient17,19. As a result, breeders are only able to select for a
limited number of traits. Modern plant breeding
approaches such as genomic-assisted breeding must be
incorporated into traditional breeding programs to meet
the current consumer’s preferences and accelerate
breeding activities, especially for FQ traits.
The use of advanced molecular tools to facilitate

breeding for economically important traits including FQ
rely on the characterization of the existing blueberry
germplasm1–3,11 and the study of the genetic mechanisms
controlling these traits. Multiple studies demonstrated

significant phenotypic variability for FQ traits within
blueberry germplasm, and the traits have also shown
moderate to high genetic heritability1–3,11,20,21.
Quantitative trait loci (QTL) mapping has been an

important method to study the genetic mechanisms and
identify genomic regions and genes that control traits of
interest including FQ traits21,22. Despite the importance of
FQ traits, only few studies have reported QTLs for FQ traits
in blueberries11,21. This is partly due to limited genomic
resources and tools that are important for the investigation
of the genetic basis of important FQ traits in blueberry11.
Recent advances in next generation sequencing (NGS),

high-throughput genotyping platforms, reference gen-
omes, and statistical tools offer the development of a
sufficient numbers of molecular markers, high-density
genetic maps, and increased power for QTL detection in
tetraploid species including blueberry21–25. Hence, the
objectives of this study were to develop a high-density
linkage map and to investigate the genetic control of FQ
traits including FW, TSS, TA, and pH through QTL
analysis in an F1 mapping population. The study also
investigated the association between FQ traits and organic
acids, sugars, and amino acids.

Results
Phenotypic data
Extensive phenotypic variation was observed for all FQ

traits for three consecutive years (2016–2018). Similar
levels of trait variability were observed for three years,
with an approximate 1.7, 2, 6 and 10-fold phenotypic
variation for pH, TSS, FW and TA, respectively (Supple-
mentary Table 1). Analysis of variance (ANOVA) showed
a significant effect of genotype, year and genotype by year
interaction for all the FQ traits in this study (Supple-
mentary Table 2). Trait distributions were somewhat
similar for all three years. The FQ traits, TSS, FW and pH
had a near-normal distribution, suggesting a polygenic
genetic control. However, the distribution of TA in the
population was skewed towards the lower acidity values
(Fig. 1). Broad sense heritability (H2) estimates were 46%
for TSS, 52% for pH, 60% for TA and 74% for FW
(Supplementary Table 1). TA had the highest phenotypic
variability while FW showed a higher broad sense herit-
ability among the traits considered in this study.
Correlation analysis revealed that TA and pH were

strongly and negatively correlated across three years
(Supplementary Fig. 1). However, the correlations
between traits did not show a similar pattern over the
years. For 2016 data, TSS was negatively correlated with
pH. Whereas FW was significantly and negatively corre-
lated with TSS and pH for 2017 data (Fig. 2). Overall, the
correlation analysis revealed a clear pattern for TA and
pH. The relationship between other traits were envir-
onmentally dependent (Supplementary Fig. 1).
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High density linkage map construction
A total of 17,438 single nucleotide polymorphisms

(SNP) markers were used for linkage map construction.
The SNP markers were composed of 8,232 simplex
(AAAB x AAAA), 2,655 duplex (AABB x AAAA) and
6,551 common markers (AAAB x AAAB; AABB x
AAAB). On average, 47% of the markers were simplex.
Across the chromosomes, the composition of simplex
markers to the total markers in each linkage map varied
from 43% on chromosome 12 to 50% on chromosome 10
(Table 1).
The final map covered a total of 1,397 cM, with an

average inter-locus distance of 0.0182 cM. The average
length of a linkage group was 116 cM, ranging from
101.6 cM on chromosome 7 to 130.3 cM on chromosome
2 (Table 1, Fig. 2). The MDS diagnostic plot indicated that
the map data did not have large gaps and outliers (Sup-
plementary Fig. 2). Furthermore, the SNP markers were
uniformly distributed across eight homologous chromo-
somes of each linkage group except for ‘Arlen’ chromo-
some 1. On chromosome 1, half of two homologous
representing the parent ‘Arlen’ were not covered by any

Fig. 1 Phenotypic distribution of FQ traits over three years. TSS, total soluble solids; TA titratable acidity

Fig. 2 Distribution of SNP markers along the 12 linkage groups
(LG) (I–XII) mapped in the RxA mapping population. SNP positions
are marked in red from ‘Arlen’ (A), blue from ‘Reveille’ (R) and cyan
(common markers). LG numbers (I–XII) were assigned based on the
corresponding chromosome numbers (1–12) on the published
tetraploid blueberry genome25
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marker (Supplementary Fig. 3). Overall, the marker cov-
erage/density on the integrated map (Table 1, Fig. 2) was
uniform. In addition, it was possible to identify all the 96
homologous chromosomes (12 chromosome × two par-
ents × four copies of homologs) that are expected
from the tetrasomic species of blueberry (Supplementary
Fig. 3).
Alignment of the integrated map (cM) with the physical

map (Mb) of tetraploid reference genomes revealed that
the linkage map was highly collinear with the tetraploid
reference genome (Supplementary Fig. 4). Minor rear-
rangements were identified while examining the colli-
nearity between the genetic linkage map and tetraploid
genome in regions of chromosomes 5, 6, 7, and 10 with
low recombination, likely centromeric, and some degree
on the telomeric regions of chromosomes 2, 3, 5, 7 and 9
(Supplementary Fig. 4).

QTL mapping for fruit quality traits
QTLs controlling TA in blueberry were identified on

chromosome 3, 4, and 5. A major-effect QTL was
detected on chromosome 3 with LOD scores of 14, 16 and
13 for three consecutive years, 2016–2018, respectively.
This QTL explained 22%, 28%, and 19% of the phenotypic
variance (PV) for 2016–2018, respectively and was asso-
ciated with increasing acidity values. Analysis of the QTL
genotype means using the simple model indicated that a
simplex allele on homologous 8 (h8) of ‘Reveille’ had the
lowest Schwarz Information Criteria (SIC) compared to

the SIC of the full (additive) model (Table 2, Fig. 3). The
locus is located around 110 cM, which corresponds to
position 37.9Mb of the tetraploid blueberry genome,
chromosome 3 (VaccDscaff 9). A second QTL identified
on chromosome 5 was detected for three years,
2016–2018 with LOD scores of 6.6, 8.2, and 5.2, respec-
tively. The QTL explained 10%, 14 and 7% of the PV for
2016, 2017, and 2018, respectively. An additional minor
effect QTL on chromosome 4 was detected for the 2016
cropping season (Table 2).
A total of five QTLs were identified for pH, one on each

chromosome 3, 4, 5, 7 and 8. A QTL identified on chro-
mosome 3 was stable across three years, with LOD scores
of 5.9, 5 and 6.4, and explained 13%, 13 and 11% of the PV
for 2016–2018, respectively (Table 2). A second QTL was
found on chromosome 4 for two years (2016 and 2017)
and explained 10% of the PV for both years. Another QTL
on chromosome 5 was detected for two years (2016 and
2018) and explained 8% of the PV (Table 2). In addition to
this, the two QTLs on chromosomes 7 and 8 were
detected for one year, year-2017 and year-2018, respec-
tively. Consistent with the correlation analysis, three out
of the five QTLs detected for pH co-localized with that of
TA (Table 2), while the other two QTLs on chromosomes
7 and 8 were specific for pH (Table 2).
For TSS, three QTLs were detected one on each chro-

mosome 2, 7 and 10. The QTL on chromosome 7 was
stable over three years, with LOD scores of 7.5, 13.3 and
8.2, and explained 15%, 28 and 14% of PV for years

Table 1 Distribution of SNPs into genotype classes and summary of integrated map of Reveille x Arlen mapping
population

Chr. No. of

mapped SNP

SxN1 (#) DxN1 (#) SxN2 (#) DxN2 (#) Common

Markers (#)

% of

simplex SNPs

Map

length (cM)

Average inter-loci

Distance (cM)

1 1494 283 69 440 167 535 48.39 109.8 0.0730

2 1300 329 90 263 101 517 45.54 130.31 0.1000

3 1644 382 73 369 169 651 45.68 123.23 0.0750

4 1339 350 118 292 106 473 47.95 129.48 0.0968

5 1393 379 60 301 58 595 48.82 112.73 0.0810

6 1749 448 135 389 193 584 47.86 114.17 0.0650

7 1267 281 130 334 94 428 48.54 101.61 0.0803

8 1798 477 142 382 110 687 47.78 116.92 0.0650

9 1426 280 81 361 108 596 44.95 108.36 0.0760

10 1346 307 79 371 111 478 50.37 117.89 0.0880

11 1254 241 108 357 192 356 47.69 120.85 0.0964

12 1428 333 96 283 65 651 43.14 111.97 0.0785

Total 17438 4090 1181 4142 1474 6551 47.21 1397.32 0.0812

1indicate simplex (SxN) or duplex (DxN) markers from Arlen; 2indicates simplex (SxN) or duplex (DxN) markers from Reveille. Common SNPs represent simplex by
simplex (SxS), duplex by simplex (DxS), simplex by duplex (SxD), duplex-by-duplex (DxD). Chr., chromosome
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2016–2018, respectively (Table 2, Fig. 4). Analysis of the
QTL genotype means using the simple model showed that
a simplex allele on homologous 5 (h5) of ‘Reveille’ had the
lowest SIC compared to the SIC of the full (additive)
model and was associated with reducing the TSS values
(Table 2). This QTL is located around 26 cM of the
linkage map, which is 30.3Mb of the Draper genome of
VaccDscaff23 (Fig. 4; Supplementary Table 3). Similarly,

the QTL on chromosome 10 was stable across three years
and explained 16%, 14 and 7% for years 2016–2018,
respectively. Analysis of the QTL genotype means using
the simple model showed that a double simplex allele on
homologs 4 (h4) of ‘Arlen’ and 6 (h6) of ‘Reveille’ had the
lowest SIC compared to the SIC of the full (additive)
model. This QTL was associated with increasing TSS
value (Table 2), and was located at 9.4Mb of the Draper

Table 2 Summary of QTLs identified for fruit quality traits in the Reveille x Arlen mapping population

Trait Chr LOD R2 Position (cM) Best simple model Scaffold (S) and position (Mb) Effect

FW_2017 2 4.43 8.83 64 S15 (S25, 27.4) -ve

FW_2018 2 6.27 10.14 56 S15 (S25, 27.4) -ve

TSS_2017 2 4.56 8.60 33 H1 (S68, 0.75) -ve

FW_2018 3 4.99 8.00 90 V57 (S37, 25.71) -ve

FW_BLUE 3 5.48 6.00 82 H5 (S4, 32.92) -ve

pH_2016 3 5.93 13.00 112 H8 (S9, 37.9) -ve

pH_2017 3 5.06 13.00 110 H8 (S9, 37.9) -ve

pH_2018 3 6.40 11.00 110 H8 (S9, 37.9) -ve

TA_2016 3 13.67 22.00 110 H8 (S9, 37.9) + ve

TA_2017 3 15.74 28.00 110 H8 (S9, 37.9) + ve

TA_2018 3 13.00 19.00 110 H8 (S9, 37.9) + ve

TSS.TA_2016 3 7.15 16.29 115 H8 (S9, 37.9) -ve

TSS.TA_2017 3 7.57 19.00 110 H8 (S9, 37.9) -ve

TSS.TA_2018 3 8.29 14.00 110 H8 (S9, 37.9) -ve

FW_2016 4 4.67 7.00 105 S35 (8.0, 39) -ve

FW_2017 4 4.18 8.00 76 H2 (S38, 18.37) -ve

FW_2018 4 5.44 9.00 77 V13 (S38, 18.50) -ve

pH_2016 4 5.03 10.28 114 S16 (S38, 5.93) + ve

pH_2017 4 4.37 10.00 101 S26 (S37, 22.3) + ve

TA_2016 4 4.47 6.10 98 S27 (S37, 26.67) + ve

pH_2016 5 4.44 8.70 12 H3 (S7, 2.72) + ve

pH_2018 5 4.88 8.00 13 S38 (S7, 2.72) + ve

TA_2016 5 6.64 10.25 6 H3 (S7, 2.72) -ve

TA_2017 5 8.21 14.00 9 S38 (S7, 2.72) -ve

TA_2018 5 5.18 7.00 13 S38 (S7, 2.72) -ve

FW_2016 7 4.58 6.50 9 H8 (S12, 3.1) + ve

pH_2017 7 5.07 13.00 34 T15 (S41, 1) + ve

TSS_2016 7 7.52 15.00 26 D58 (S23, 30.3) -ve

TSS_2017 7 13.34 28.60 26 H5 (S23, 30.3) -ve

TSS_2018 7 8.20 14.00 24 H5 (S23, 30.3) -ve

FW_2018 8 5.30 8.20 45 V58 (S32, 27.72) + ve

pH_2018 8 4.83 8.00 49 D34 (S30, 24.58) -ve

pH_BLUE 8 6.25 8.39 75 H2 (S32, 15.65) + ve

FW_2016 10 4.75 7.00 57 S15 (S44, 18.19) + ve

TSS_2016 10 7.60 16.00 79 S46 (S44, 9.4) + ve

TSS_2017 10 6.88 14.00 69 S46 (S44, 9.4) + ve

TSS_2018 10 4.86 7.00 54 S46 (S44, 9.4) + ve

FW_2016 12 4.73 7.00 90 H2 (S43, 7.9) -ve

FW_2017 12 4.74 9.80 90 S36 (S43, 7.9) -ve

FW_BLUE 12 6.74 8.20 90 H2 (S43, 7.9) + ve

Chr., chromosome number; LOD, threshold values of logarithms of odds (LOD) for the QTL calculated by TetraploidSNPMap; R2, phenotypic variance explained by the
QTL; BLUE, best linear unbiased estimate; H1, simplex marker on homolog 1; S38, double simplex marker on homologs 3 and 8; V13, duplex as codominant variate on
homologs 1 and 3; T15, dominant double simplex; D58, dominant duplex markers on homologs 5 and 8; TSS.TA, ratio of TSS to TA. Simplex models are indicated as
homologs h1-h4 from ‘Arlen’ and h5-h8 from ‘Reveille’. Effect represents the direction of the QTL effect on the trait performance (increasing=+ve and reducing -ve).
Scaffold (S) and physical position (Mb) of the markers spanning the QTL peak refer to the Draper genome25
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genome of VaccDscaff44 (Supplementary Table 3).
Another QTL on chromosome 2 was detected for one
year (Table 2).
For FW, seven QTLs were detected one on each chro-

mosome 2, 3, 4, 7, 8, 10, and 12 (Table 2). A QTL on
chromosome 4 was detected for three years and explained
7%, 8%, and 9% of the PV for years 2016–2018, respec-
tively (Table 2). A QTL on chromosome 2 was identified
for two years, with LOD scores of 4.43 and 6.33, and
explained 9 and 10% of the PV for the years 2017 and
2018, respectively. Similarly, a QTL on chromosome 12
was detected in 2016 and 2017 and explained 7% and 10%
of the PV, respectively (Table 2). Four other QTL one on
each chromosome 3, 7, 8, and 10 were also detected for
one year (Table 2). Overall, three out of the seven QTLs
detected for FW were stable over two years. However,
none of these QTLs explained more than 10% of the PV.
Although we did not observe a significant phenotypic
correlation between FW with other FQ traits, most of the
QTLs detected for FW were located in the same genomic
regions of the other FQ traits evaluated here (Table 2).

Metabolome analysis
Metabolic profiling of blueberry extracts revealed over

80 distinct peaks across the Proton nuclear magnetic
resonance (1H NMR) spectra. A total of 45 annotations
were made using reference library data integrated into
Chenomx software (Supplementary Table 4). Of these

annotations, 24 compounds were annotated with higher
confidence (level 2B) based on orthogonal 1D or 2D data
from reference databases. A total of 25 metabolites were
sufficiently resolved to be quantified (Supplementary
Table 4). Among the upfield peaks in the spectra (Fig. 5A),
the most intense peaks were citric acid and alanine. The
midfield peaks (Fig. 5B) mainly comprised intense and
partially overlapping sugar peaks. The sugars that were
sufficiently resolved for quantitation were glucose, fruc-
tose, sucrose, arabinose and maltose. The most intense
peaks in the downfield region (6.0–10 ppm) arose from
chlorogenic acid. A singlet peak at 3.19 ppm was anno-
tated as either choline or O-phosphocholine based on an
HSQC cross peak (3.21/56.6 ppm) but could not be
confirmed further. The doublet at 1.32 ppm was anno-
tated as either lactate or threonine based on an HSQC
cross peak (1.33/22.7 ppm) but could not be confirmed
further.

Phenotypic variation of the 25 metabolites
A total of 25 metabolite peaks including seven sugars,

five organic acids, and nine amino acids were used for the
subsequent analysis. The phenotypic distribution, corre-
lation and PCA analysis were performed based on these
metabolites.
Extensive phenotypic variation was revealed for all

metabolites in the study. For sugar, there was a 1.5-fold
variation between genotypes for all sugars except for
sucrose. Sucrose showed a 5.8-fold variation between

Fig. 3 QTLs identified for titratable acidity and pH on linkage
group 3 and the effect of haplotypes relative to the overall
phenotypic mean. A Representation of six QTLs for titratable acidity
and pH in linkage group 3 (representing chromosome 3) detected
over three years; B heatmap legend shows the effect of each
homolog relative the overall phenotypic mean performance. The h1-
h8 represents the eight homologs with the first four homologs (h1-h4)
from the parent ‘Arlen’ and the other four homologs (h5-h8) from the
parent ‘Reveille’. Chr, chromosome

Fig. 4 QTLs identified for total soluble solids on linkage group 7
and the effect of haplotypes relative to the overall phenotypic
mean. A Representation of three QTLs for total soluble solids
detected in linkage group 7 (representing chromosome 7) over three
years; B heatmap legend shows the effect of each homolog relative
the overall phenotypic mean performance. The h1-h8 represents the
eight homologs with the first four homologs (h1-h4) from the parent
‘Arlen’ and the other four homologs (h5-h8) from the parent ‘Reveille’.
Chr, chromosome
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genotypes (Supplementary Table 5). Amino acids varied
between genotypes, ranging from 2.5 to 7.6-fold changes
for x-amino butyrate to arginine, respectively. Among
organic acids, citric acid followed by ferulate showed the
highest phenotypic variation between the genotypes
(Supplementary Table 5). The histogram distributions of
the metabolites also showed that most of the metabolites
had a bimodal distribution (Supplementary Fig. 5), sug-
gesting that few genes may regulate these traits. To
compare the composition of metabolites, we first grouped
the metabolites into sugars, organic acids and amino
acids. We observed that citric acid followed by quinic acid
were the most abundant organic acids in blueberry.
Similarly, beta glucose followed by fructose were the most
abundant sugars whereas, arabinose and maltose were the
least abundant sugars in blueberry. Among the annotated
amino acids, arginine and 4-amino butyrate were the most
abundant whereas, isoleucine and asparagine were the
least abundant amino acids observed in blueberry (Sup-
plementary Fig. 6).

Association between metabolites and fruit quality traits
To further examine the association between metabolites

and fruit quality traits, we ran correlation and principal
component analysis (PCA) using data from the 2016
cropping season. As expected, citric and quinic acid were
strongly and positively correlated with TA, whereas
components of sugars were strongly and positively cor-
related with TSS (Fig. 5C). The correlation analysis also
revealed that metabolites were clustered based on their

chemical properties (Fig. 5). The PCA analysis also
showed that the first two components explained 56% of
the variances. The results also showed that citrate is an
important variable to discriminate the genotypes and
strongly associated with TA. The data also showed that
arabinose is an important discriminant variable in the
sugar group (Supplementary Fig. 7).

Discussion
High-density linkage map construction
High-density genetic maps are a prerequisite for the

precise identification, dissection, and quantification of
QTLs and map-based gene cloning, and are useful for
genomic–assisted breeding15,21,22,26. The linkage maps
also provide critical information about organization of the
genome of the population being evaluated, its recombi-
nation landscape and facilitated genome assembly and
structural comparative genome analysis within a species27.
Despite its importance, only two linkage maps are cur-
rently available for tetraploid blueberry21,26. This is, in
part, due to the high cost of genotyping a large number of
samples, the few genotyping platforms available for
blueberry, and limited tools to estimate dosage and
incorporate dosage in linkage map construction. The
recent advances in sequencing platforms such as capture-
seq, along with the development of new computational
tools to estimate SNP dosage and construct linkage maps
with high numbers of markers has facilitated closing some
of the existing gaps in blueberry genetics. The first linkage
map for autotetraploid blueberry was constructed using

Fig. 5 Details of proton nuclear magnetic resonance (1H NMR) spectrum of blueberry extract and correlation between fruit quality traits
and metabolites. Annotated spectrum shows data acquired for a pooled sample. Selected peaks used for quantitative analysis are labeled in (A)
upfield region with organic and amino acids, (B) midfield region with sugar peaks, (C) correlation between FQ traits evaluated in this study, and
metabolites detected using 1H-NMR across 98 F1 Reveille × Arlen genotypes. TA, titratable acidity; TSS, total soluble solids; FW, fruit weight; CHA,
chlorogenic acid; NAD-NADH, nicotinamide adenine dinucleotide (NAD)+ hydrogen (H)
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99 individuals from an F1 mapping population derived
from a cross between Jewel and Draper. A total of 1,794
SNP markers and 233 SSR markers were mapped and
exhibited segregation patterns consistent with a random
chromosomal segregation model for meiosis in an auto-
tetraploid. The linkage map was constructed and included
12 and 20 linkage groups for Draper and Jewel, respec-
tively26. The linkage map was fragmented and did not
identify all expected 96 homologous chromosomes, 48 for
each parent26. Most recently, a new linkage map was
developed with 237 F1 individuals and included 11k SNP
markers21. This linkage map represented two cultivars
named ‘Sweetcrisp’ and ‘Indigocrisp’ and covered all 96
parental chromosomes. The linkage map presented here
represents the linkage map with the largest set of markers
(17k) and individuals (N= 287) in blueberry21,26 and
represents the structure of the genome of two additional
cultivars (‘Reveille’ and ‘Arlen’) and covered all 96 par-
ental homologous chromosomes.

QTL mapping for fruit quality traits
The development of blueberry varieties with quality that

consistently meets consumer preferences and industry
needs is a high priority for the blueberry industry7. The
balance between sweetness and acidity in blueberry fruits
is an important quality criterion of consumer preferences
for blueberry fruit and can affect purchasing deci-
sions4,13,14. In this article, we described the phenotypic
variation of four FQ traits, their genetic basis, and their
association with specific metabolites.
Overall consumer preference for blueberry is positively

and strongly correlated with sweetness and TSS has been
identified as a very good indicator for sweetness and
overall consumer acceptance of blueberry fruits4,13,14.
Strong and positive associations of TSS with sugar
molecules such as arabinose, glucose, fructose, and
sucrose were established in this study (Fig. 5). We also
observed that glucose was the most abundant sugar in
blueberries (Supplementary Fig. 5). These results are
consistent with the recent findings13 that glucose followed
by fructose were the most abundant sugar in blueberry
cultivars. Despite the moderate phenotypic variation and
up to a 2-fold variation for TSS between blueberry
accessions was detected in previous studies1,4, the genetic
basis of TSS has not been fully investigated to date28.
In this study, we identified three QTLs that explained

from 7 to 28% of variation for TSS, of which two QTLs on
chromosomes 7 and 10 were stable across three years.
However, the QTL peak position on chromosome 10 was
shifted over the years and spanned a wide genomic region
(Table 2). The peak position of the TSS QTL on chro-
mosome 7 overlapped over years and was located at
30.3Mb genomic regions of the Draper genome. Within
this region, a UDP-glycosyltransferase (Supplementary

Table 3) was identified as a possible candidate gene. UDP-
glycosyltransferases are responsible for the metabolic
process including the transfer of sugar moieties from
activated donor molecules to specific acceptor molecules
such as sugars, lipids and nucleic acids29. The TSS QTL
on chromosome 7 was negatively regulated by the total
soluble solids, suggesting that the glucose molecules are
transferred to the synthesis of water-insoluble molecules.
Indeed, UDP-glycosyltransferases are involved in the
synthesis of insoluble solids such as callose and cellulose,
so its activity may have resulted in trade off with the other
soluble solids30,31.

Blueberry acidity
Titratable acidity is a determinant factor for blueberry

sourness4,13. According to4,14, sourness is negatively
associated with overall acceptance by blueberry con-
sumers. In fact, TA and pH are excellent predictors for
sourness; therefore, higher acidity is also associated with
lower consumer preference4. As expected, a strong cor-
relation was observed between TA and pH. This rela-
tionship was also reported in our previous study using a
diverse set of blueberry accessions1,2. However, the two
traits (TA/pH) did not show strong and consistent cor-
relation with other traits including FW and TSS over the
years. This suggests that the relationship between these
traits was strongly environmentally dependent, consistent
with the previous reports1,4. The presence of significant
phenotypic variation for TA/pH in blueberry germplasm
was reported in the previous studies1,4,13. Furthermore,
the moderate broad sense heritability estimated for TA/
pH in this study was consistent with previous reports1.
Given the moderate broad sense heritability and pheno-
typic variation among blueberry accessions for TA/pH,
the genetic basis of the phenotypic variability has not been
yet fully exploited in blueberry1,4,11,13.
In this study, we reported three QTLs that regulate both

TA and pH, and two additional QTLs specific for pH. The
QTL for TA/pH located on chromosome 3 was stable
across three years and co-localized for both traits. The
QTL genotype mean analysis indicated a simplex marker
(H8) from the parent ‘Reveille’, was the best fit for the full
model. This implies that one haplotype/homologous
region inherited from ‘Reveille’ contributes to increased
TA. The closest SNP marker associated with this QTL
was located at 38Mb of the Draper genome at scaffold
VaccDscaff9 (Supplementary Table 3). Consistent with
this result, a recent GWAS study11 detected a QTL for pH
at the same location at ~ 38Mb of the Draper genome on
chromosome 3, suggesting this QTL is stable across
populations. Analysis of the genes predicted in this region
allowed us to identify a H (+ )-ATPase that could be a
possible candidate gene regulating the pH/TA of blue-
berry (Supplementary Table 3). Phylogenetic analysis of
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known H+-ATPases confirmed that the blueberry gene
(gene 379.23) clustered with the P3A-ATPase subfamily
that includes PH5-like H+-ATPase genes (Supplementary
Fig. 8), was responsible for citrate accumulation in plants32.
In addition to the manual inspection of this region, the
protein sequences of five functionally characterized genes,
including PH from melon33, Ma, Ma2, and Ma10 from
apple34, PpRPH from peach9, regulate pH and TA, and were
aligned against the Draper genome. None of these genes
aligned to chromosome 3 of the blueberry.
Fruit acidity depends on the composition and levels of

organic acids13,35. Multivariate analysis in this study
revealed a strong association between citrate and pH/TA
of blueberry. The results also suggest that citric acid fol-
lowed by quinic acid are the most abundant organic acids
in blueberry. These results are consistent with a recent
study on different blueberry cultivars evaluated at two
locations in China13. A study in a related species, cran-
berry, showed that TA was strongly and positively cor-
related with citric and quinic acids. Furthermore, the
degree of correlation was higher for TA with citric acid
than TA with quinic acid35. QTL analysis identified a
major-effect QTL for citric acid which has been recently
deployed in marker-assisted selection35,36. Although we
did not investigate the genetic basis of organic acids in
this study, our results suggested that citric acid strongly
contributes to TA/pH and that the R×A population is
segregating for citric and quinic acids. In addition, the
candidate gene, PH, identified on chromosome 3 is
involved in citric acid accumulation. These results open
the opportunity to further study the genetic basis of these
organic acids and their contribution to TA, pH and to
consumer preference.
Fruit weight is an important FQ trait in blueberry

breeding. According to ref. 28, consumers prefer large-
sized berry fruits. Interestingly, this study highlighted that
larger-sized berries have higher sugar concentrations than
smaller-sized berries (Supplementary Fig. 7). In addition,
our previous study indicated that TSS was moderately
correlated with fruit size. These results suggest that
selection for larger-sized berries could facilitate selection
for high sugar content and TSS, which are associated with
sweetness and overall consumer liking. On the other
hand, FW was negatively correlated with multiple acids
including ferulate, succinate, chlorogenic acid, and cho-
line/O-phosphocholine. The negative association of FW
with chlorogenic acid and anthocyanins were reported in
our previous study1,2. Both phenotypic and genetic ana-
lysis revealed that fruit weight is a quantitatively inherited
trait. Although we identified seven QTLs related to fruit
size, none of them explained more than 10% of the PV
and only three of the seven were detected more than one
year, suggesting that the trait is governed by complex
genotype by environmental factors1,28.

Implications of fruit quality QTLs for blueberry breeding
Blueberry is a highly heterozygous plant with unique

features including both asexual and sexual reproductive
systems, production of gametes with unreduced chro-
mosome number, a range of ploidy levels (diploid, tetra-
ploid, and hexaploid), and a long juvenile period15,17,19.
The history of blueberry breeding, and commercial cul-
tivation goes back to the early 1900s. Given its recent
domestication and breeding history, breeding programs
have achieved much success including interspecific
hybridization to develop cultivars adapted to warm cli-
mates and exploiting phenotypically diverse germplasm
regarding specific traits15,17. However, the genetic
mechanisms involved in major FQ and agronomic traits
are by no means fully explored11,28.
This study provides the first insight into the inheritance

of multiple fruit quality traits and detected major-effect
loci for TA, TSS, developed a high-density linkage map
with highest number of markers and individuals, and
established the first assessment of the relationship
between fruit quality traits and metabolites (sugars,
organic acids, and amino acids). The traits evaluated here
are complex and quantitative in nature. However, there
are promising QTLs for marker-assisted selection for TA
and TSS. The balance between TA and TSS is an
important objective of blueberry breeding programs to
address consumer preferences. The QTLs on chromo-
some 3 for TA and 7 and 10 for TSS could be a target for
future fine mapping, functional gene analysis and then
marker-assisted development and selection. In this study,
we also highlighted the potential of the existing genetic
variability to dissect the genetic basis of organic acids.
Overall, the study provides critical information for blue-
berry breeding and future studies.

Materials and methods
Plant materials and phenotyping for FQ traits
The study included 287 F1 genotypes derived from a

cross between ‘Reveille’ and ‘Arlen’. ‘Arlen’ is a paternal
parent whereas ‘Reveille’ is a maternal parent. Both par-
ental cultivars were unpatented and released by North
Carolina State University37. The 287 F1 seedlings were
grown in Ivanhoe, located within the state of North
Carolina at coordinates of 34.5845° N, 78.2419° W
(Sampson County), USA. Berries from the 287 F1 seed-
lings were harvested when fully ripe as indicated by the
surface of the skin of the berries being completely blue for
three consecutive years (2016–2018). After the harvest,
the berries were stored at −80 °C until processing. Frozen
berries (three replicates of approximately 10–30 g each),
were then used to evaluate the following FQ traits: pH,
TSS, TA, and fruit size. For the fruit harvested in 2016
and 2017, fruit size was estimated using an image-based
method1,38. For the fruit harvested in 2018, image-based
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phenotyping and fruit weight (g per fruit) were highly
correlated (R2 > 97%)1, average fruit weight was used as a
proxy of fruit size.
For evaluating the other fruit quality traits (TSS, pH,

and TA), the berries were homogenized to a puree in a
Waring Commercial Blender 7012 G (Torrington, CT,
United States). The homogenized samples were used to
measure TSS, TA, and pH. TSS, TA, and pH were mea-
sured as described1,2. Briefly, TSS was measured using a
digital hand-held ‘pocket’ refractometer PAL-1 (Atago,
Tokyo, Japan) and the measurements were expressed as °
Brix. The pH and TA were measured using 1 g of
homogenized sample diluted with 30ml pre-boiled dou-
ble distilled water. The pH was measured using an
Accumet AB15, pH-meter (Fisher Scientific, Waltham,
MA, United States). Subsequently, the TA was deter-
mined with a Mettler DL15 Auto-Titrator (Columbus,
OH, United States) at a pH of 8.2 using 0.02 mol L–1

sodium hydroxide and milliequivalent factor value 0.064.
The TA was expressed as the percentage of citric acid (wt/
wt) per 1 g FW.

Extraction and quantification of metabolites
In addition to FQ traits, we randomly selected 98 F1

genotypes from the RxA mapping population and these
were profiled for metabolites including sugars, amino
acids, and organic acids. Berries from the 98 F1 genotypes
were harvested when fully ripe during the 2016 cropping
season. The berries were freeze-dried in 50 mL tubes and
stored in −80 °C until further processing.
Approximately 1.4 g of freeze-dried berry sample was

pulverized with a glass rod and brought to a total volume
of 20mL using 70% methanol, and then homogenized
with a stick blender. The samples were centrifuged for
20min at 20 °C at 5000 × g, and the supernatant filtered
through glass wool into a 50mL volumetric flask.
Approximately 10 mL of 70% methanol was added to the
pellet, vortexed and centrifuged and the supernatant
combined in the volumetric flask with the previous frac-
tion. The pellets were rinsed a second time as above, and
the combined supernatant brought to a total volume of
50mL with 70% methanol. A 1mL aliquot of the extract
was transferred to a tube and stored at −80 °C. After
processing, all samples were thawed and evaporated
under a stream of nitrogen to dryness. The dried extract
was reconstituted in 650 µL of NMR solvent (100 mM
phosphate buffer, 0.5 mM DSS, in 100% D2O, pH 7.4),
and 600 μL was transferred to a 5 mm 7″ NMR tube for
analysis. A 25 µL aliquot of each study sample was com-
bined to generate a pooled QC sample, and 4 × 600 µL
transferred into NMR tubes.
NMR spectra were recorded at 298 K on a Bruker

600MHz Avance III spectrometer equipped with a DCH

cryogenically cooled probe, operating at a 1H frequency of
600,133MHz. For each of the study samples, data were
collected using pulse sequences incorporated into the
Bruker TOPSPIN 2.1 software. 1D 1H data were acquired
(noesypr1d) with 192 scans across 32 K data points, sweep
width 11 ppm, delay 2 s, noisy mixing time 100msec. Free
induction decays (FIDs) were Fourier transformed with
0.5 Hz line broadening and no zero-filling applied, and
spectra were manually phased, and baseline corrected
using only zero order correction, and NMR chemical
shifts referenced to the DSS signal at 0.0 ppm. For the
pooled sample, additional data were collected to assist
with annotations (1D 13 C, 2D-HSQC, 2D-HMBC,
COSY). Spectra for the pooled QC samples were used to
segment 1H NMR spectra into domains and integrated
using MestReNova NMR suite (version 11.0.3, Mestrelab
Research S.L., Escondido, CA). All spectra were then
integrated and normalized by area of the DSS peak and
sample mass. Spectral peaks were annotated using stan-
dard reference libraries integrated with Chenomx NMR
Suite software (version 13, Chenomx Inc., Edmonton,
Canada) with further confirmation made when necessary
by matching spectral data (1D/2D) to reference data
(Biological Magnetic Resonance Data Bank (BMRB))39.
Annotation confidence levels were derived from recom-
mended minimum reporting standards for analytical
data40. Briefly, the levels were divided as follows: 1H
spectra matched to a reference library entry (2 A); Mul-
tiple peaks (1D and/or 2D) matched to reference library
data (2B); Compound class assigned (3); Unknowns (4).

Phenotypic data analysis
For QTL analysis in individual years, genotype means

were calculated based on the average values of the three
replicates. Genotype means over years were estimated
using best linear unbiased estimate (BLUE), with both
genotype and year considered as fixed factors. Broad-
sense heritability was estimated using variance compo-
nents calculated from the restricted maximum likelihood
(REML), calculated as follows:

H2 ¼ δg2

ðδg2 þ δgy2

y þ δe2
ry Þ

where δg2, δe2, and δgy2 are variance components of
genotypes, plot-to-plot variation of residuals and [geno-
type x environment] interaction, respectively; y is the
number of environments (number of years in this study,
=3) and r is the number of replications (=3). The
relationship between traits was calculated using the
Pearson Coefficient of Correlation using BLUE and
three-year data, independently. The correlation was
visualized using the R package corrplot41.
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DNA extraction, SNP detection, and SNP genotyping
Total genomic DNA from individual plants was

extracted using 3 grams of fresh leaves by CTAB
method42. DNA concentration and purity were evaluated
using Qubit® and NanoDrop®. DNA sequencing was
performed by RAPiD Genomics (Gainesville, FL, USA)
using capture-seq method. Prior to the genotyping of the
F1 clones, the parents (‘Reveille’ and ‘Arlen’) were eval-
uated using a set of 31,000 probes. Subsequently, 10k
informative probes with the maximum number of variants
evenly distributed across the genome were selected for
genotyping the F1 clones. The capture-seq was used to
make Illumina paired-end libraries. An equimolar of the
population’s individual libraries were pooled and ran on
two lanes of Illumina 2500.
Raw reads of all individuals’ pooled libraries were

demultiplexed. The low-quality reads were removed, and
the remaining reads were trimmed for adapters and pri-
mer sequences using Trimmomatic43. High-quality short
reads from each library were mapped against the blue-
berry reference genome sequence using BWA MEM
aligner44. Uniquely mapped reads were used to call SNPs
using freebayes v.1.0.145, targeting 1,000 bp flanking the
10k probe regions. Following the SNP calling, the dataset
was filtered: (I) minimum mapping quality of 20; (II) mean
depth of coverage of 50; (III) maximum missing data of
10% across SNPs and individuals; (IV) only biallelic loci.
Then, the read depth of the reference and alternative
alleles of each SNP and individuals was extracted from the
variant call file using vcftools v.0.1.1646. The tetraploid
allele dosages were called based on the read depth counts
and “F1” model using updog R package47. The genotypes
for the tetraploid calling were coded as 0 for nulliplex
(AAAA), 1 for simplex (AAAB), 2 for duplex (AABB), 3
for triplex (ABBB), and 4 for quadruplex (BBBB).

Linkage map construction
The linkage map was constructed using an R package

PolymapR24. Prior to linkage map construction, a chi-
square test for goodness of fit was performed at P < 0.01
and P < 0.05 for simplex (simplex by nulliplex) and higher
dosage SNPs (duplex by nulliplex, duplex by simplex,
duplex by duplex), respectively. Furthermore, the quality
of markers and individuals were assessed based on the
individual/SNP missing value rate. Individuals/markers
with more than 10% missing value rate were discarded
prior to linkage analysis. The linkage map was con-
structed per parent. For each parent simplex markers
were used to estimate the two-point recombination fre-
quency between markers. Following pairwise linkage
analysis, the markers were clustered into 48 homologs
using LOD scores. Then, the 48 homologs (four homologs
per linkage group are expected in a tetraploid) were

assigned to the 12 chromosomes using duplex by nulliplex
markers. Duplex by nulliplex (D×N) markers were used to
provide bridging linkages between homologous clusters.
Following this step, double simplex (S×S) and higher
dosage markers including double by simplex (D×S),
duplex by duplex (D×D), and simplex by duplex (S×D)
were added to the linkage groups based on the two-point
linkage analysis. Finally, the markers were ordered using
multidimensional scaling (MDS) and visual inspection of
outliers48. Markers with nearest neighbor fit >5 were
discarded as recommended48. Up to five rounds of
MDSmap were performed until all outlying markers were
removed. Finally, all linkage groups were combined to
develop an integrated linkage map. Graphical presenta-
tions of linkage maps were prepared using Mapchart 2.349

and ggplot2 R package50.
The resulting linkage map was aligned to the reference

Draper blueberry genome25. The order of markers on the
genetic map was reversed if the orientation of the physical
and genetic map was found to be inversely ordered in
respect to the reference genome. Meiotic recombination
rate was estimated using loess (locally weighted regres-
sion) smoothing with a span of 0.4 using MareyMap51.
This regression smooths over windows of a fixed number
of SNPs instead of physical length to reduce bias in
regions where more SNPs were recovered.

QTL mapping for FQ traits
QTL analysis was performed using Tetra-

ploidSNPMap23. The phenotypic data were regressed to
the QTL genotypes at each position, with the regression
coefficients being weighted by the conditional prob-
abilities of the QTL genotypes. The trait value was
modeled as an additive function of the QTL allele effect
on each of the eight homologous chromosomes (referred
to in the results as the “full model”) as described52. The
full model is an additive function of the QTL allele effect
on each of the eight homologous chromosomes for each
position on the grid. This model was fitted by regression
of the trait values on the QTL genotype probabilities from
the Hidden Markov Model (HMM). For each trait, a
significant QTL was declared with 1,000 permutations
and 95% confidence interval thresholds. For each sig-
nificant QTL, the “simpler model” function was tested,
and the best simple model was identified using the
Schwarz Information Criteria (SIC)53. The SIC is calcu-
lated in TPM as follows:

SIC ¼ �2logLþ plogmo;

where L is the likelihood of the simple model, p is the
number of parameters in the simple model and mo is the
number of observations (the 36 genotype means). The
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best simple model was represented by the lowest value for
the SIC and the best simple model was considered a good
fit if the SIC was lower than that of the full model, and the
adjusted R2 values of the simple model were close to or
better than the full model52. For presentation, homo-
logous chromosomes derived from ‘Arlen’ are designated
h1 to h4 and those derived from ‘Reveille’ are designated
h5 to h8.

Candidate gene annotation
Where possible, we reported the potential candidate

genes for the QTLs that had been detected at least for two
years and explained more than 10% of the PV. In order to
define the regions of the genome, we first identified the
best SNP configuration from simple model analysis. Then,
the sequence of the SNP was blasted against the Draper
genome (V. corymbosum cv. Draper v1.0 genome scaf-
folds). We searched for candidate genes within 100 kb
regions of the genome on both the right and left side of
the SNP. The function of the genes that were found in the
100 kb regions were blasted against the NCBI.
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