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Integrative iTRAQ-based proteomic and
transcriptomic analysis reveals the accumulation
patterns of key metabolites associated with oil
quality during seed ripening of Camellia oleifera
Zhouchen Ye1, Jing Yu1, Wuping Yan1, Junfeng Zhang1, Dongmei Yang1, Guanglong Yao1, Zijin Liu1,
Yougen Wu 1 and Xilin Hou 2

Abstract
Camellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological,
economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during
ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil
quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel
analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA
sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas
chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with
significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317
were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism,
α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually
with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed
with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins
annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as
their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate
O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of
proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid
synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules
related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors
(TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B),
and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the
correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs),
caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened
out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation
process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate
genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.

Introduction
Camellia oleifera (C. oleifera), native to East Asia, is a

valuable oilseed crop belonging to the genus Camellia of
the Theaceae family1. It has been cultivated for more than
1000 years, with an annual output of seeds exceeding 2.4
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million tons distributed over an area of 4.4 million hec-
tares in China2. As an economically important tree spe-
cies, its seeds can be pressed to yield edible oil that is rich
in unsaturated fatty acids (UFAs, e.g., oleic acid, linoleic
acid, and linolenic acid) as well as natural bioactive
ingredients (e.g., squalene, sterols, flavonoids, and toco-
pherols) and that complies completely with the interna-
tional nutritional standards of “omega meals”3. This oil
has been recorded in the Chinese Pharmacopoeia as
having health-promoting effects on scavenging free radi-
cals, lowering blood pressure, delaying atherosclerosis,
reducing cholesterol, and improving immunity4. Thus, C.
oleifera oil is considered to be an attractive raw material
and functional product in the food industry and has been
widely used worldwide.
In particular, C. oleifera on Hainan Island has experienced

long-term geographic isolation from the mainland and is
regarded as an independent population and a traditional
plant resource. The unique climatic conditions and her-
editary characteristics have given birth to an abundant and
distinctive C. oleifera cultivated species with a large amount
of genetic variation5. Our previous studies have demon-
strated that the content of certain nutrient substances in
this cultivar is higher than that in other varieties, especially
flavonoids and fatty acids6. Their synthesis pathways may be
regulated both spatially and temporally during seed ripen-
ing, and these pathways are highly coordinated genetic
programming processes involving the expression of
numerous genes that can be analyzed by Illumina RNA
sequencing (RNA-seq)7. For example, chalcone isomerase
(CHI) has been recognized as a rate-limiting enzyme in the
catechin-producing branch8; omega-6 fatty acid desaturase-
2 has been demonstrated to be able to desaturate oleic acid
to generate linoleic acid9; and long-chain acyl-CoA syn-
thetase (LACS) has been shown to catalyze the formation of
free fatty acids from acyl-CoA10. However, the tran-
scriptomic dataset alone is insufficient for fully under-
standing the biosynthetic network because it only
represents the mRNA expression level but does not take
into account the presence of posttranslational modifica-
tions11. Most of the gene functions are ultimately realized in
the form of proteins that are thought to have a more direct
relationship with metabolites12.
Proteomics, which is a large-scale study of protein struc-

ture and function, can serve as an effective tool for obtaining
information concerning specific biological reactions and as
such is a powerful technique for identifying the proteins
responsible for regulating metabolic pathways involved in
seed growth and development13,14. Many comparative pro-
teomics studies have been conducted on higher plants, with
methods consisting of two-dimensional gel electrophoresis,
difference gel electrophoresis, and label-free shotgun15.
Surprisingly, the newly developed isobaric tags for relative
and absolute quantification (iTRAQ) labeling technology,

which can quantify protein levels with a higher accuracy, has
been confined to a small number of species, including
tomato16, peach17, blood orange18, and oriental melon19.
Therefore, we believe that iTRAQ-based quantitative pro-
teome analysis of C. oleifera would greatly enhance our
understanding of its seed maturation process. Moreover, the
field of potentially critical genes or proteins could be nar-
rowed by creating modules based on weighted gene coex-
pression network analysis (WGCNA) with the data
generated via RNA-Seq or iTRAQ assays. This promising
approach has been shown to be effective in identifying the
modules of coexpressed genes or proteins, as well as in
correlating these distinct modules with phenotypic traits, to
further detect the key genes (proteins) within the networks
and understand their regulatory mechanisms in living
systems20,21.
In light of the above, a complementary analysis was carried

out to acquire global proteome and transcriptome datasets
of C. oleifera seeds at different levels of maturity using
iTRAQ and RNA-seq methodologies complemented by
metabolic results. Then, a gene coexpression network was
constructed based on WGCNA and combined with corre-
lation analysis to further screen out the core genes or pro-
teins. Finally, quantitative real-time PCR (qRT-PCR) was
performed for 31 pivotal coexpressive transcripts and pro-
teins to validate their changes in abundance. The current
study aimed to (i) gain a broader systematic view of dynamic
alterations in central metabolism at various stages of C.
oleifera seed development and ripening; (ii) provide a
detailed framework for the practical association and differ-
ence between transcriptomic and proteomic profiles; and
(iii) identify a set of key candidate genes and proteins related
to flavonoid and fatty acid anabolism pathways and inves-
tigate their potential coordinated regulatory mechanisms. In
addition, the findings presented herein may lay the foun-
dation for preliminarily characterizing the complex mole-
cular networks controlling metabolite accumulation
processes of oil-bearing crops and expanding the exploita-
tion and utilization of interspecific resources within the
same genus.

Materials and methods
Plant materials
Fresh fruits of C. oleifera were harvested in 2018 from

Yangjiang town (19° 12′ 10″ N; 110° 24′ 32″ E), Qionghai
city, Hainan Province, China. Four developmental periods
were sampled from August to November: the nutrition
synthesis stage (S1), fat accumulation stage (S2), mature
stage (S3), and late mature stage (S4). The growth condi-
tions, selection criteria, and sampling method for the plants
followed those previously described22. For each phase, uni-
form fruits were pooled and divided into quarters for tran-
scriptome sequencing, proteome profiling, metabolite
detection, and qRT-PCR verification. Therefore, one-half of
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the samples were flash-frozen under liquid nitrogen after
peeling and wrapping in tinfoil and then stored at−80 °C for
later analysis, while the other half were air-dried for assays of
physicochemical properties.

Measurement of physiological parameters
Total flavonoids were determined according to a col-

orimetric method reported in the literature23, and the
content was recorded in units of micrograms rutin
equivalents (mg RE/g) based on a standard calibration
curve. The amount of phenylpropanoid was measured at
a 740 nm wavelength via the procedure developed by Xin
et al.24, using α-asarone as a reference. In addition, the
fatty acid composition was detected through a protocol
that was set in accordance with Chinese Standard GB
5009.168-2016. The standard preparation, sample pre-
treatment, and gas chromatography-mass spectrometry
(GC-MS) determination conditions were described in
our previous paper22. All samples for metabolite identi-
fication were analyzed in triplicate, and the data are
presented as the means ± standard deviation (SD). The
statistical significance of physiological characteristics
was evaluated by one-way analysis of variance (ANOVA)
with Duncan’s multiple comparison test (p < 0.05) in
IBM SPSS_v.19.0.

Transcriptome profiling
Total RNA was isolated from C. oleifera seeds using

TRIzol Universal Reagent (Tiangen Biotech, China) in
accordance with the manufacturer’s recommendations.
Sequencing libraries were constructed using the NEB-
Next® UltraTM RNA Library Prep Kit for Illumina®

(NEB, USA) by Biotree Biomedical Technology Co., Ltd
(Shanghai, China). Briefly, mRNA was enriched by oligo
(dT) beads and decomposed by fragmentation buffer.
These short fragments were reverse-transcribed into
cDNA using random hexamer primers, and second-strand
complementary DNA (cDNA) was subsequently synthe-
sized using dNTPs, DNA polymerase I, RNase H, and
buffer. Finally, the ligated products were selected by
agarose gel electrophoresis, PCR amplified, and then
sequenced on an Illumina NovaSeq platform. Next, clean
reads were obtained by removing unqualified reads with
ambiguous nucleotides, and adapter sequences were fil-
tered from raw reads. After de novo assembly via Trinity
software, the abundance of unigenes was estimated from
the read counts and normalized as FPKM (expected
number of fragments per kilobase of transcript sequence
per million base pairs sequenced). The relative expression
level of each transcript was calculated by the statistical
package DEGseq2, and the resulting p values were
adjusted by controlling for the false discovery rate (FDR).
Genes with |log2-fold change| > 1 and p adj < 0.05 were
considered differentially expressed genes (DEGs)25.

Functional annotation of unigenes was carried out by
BLASTx searches of the following public databases: Nr
(NCBI nonredundant protein sequences), Nt (NCBI
nonredundant nucleotide sequences), Pfam (Protein
family), KOG (euKaryotic Orthologous Groups of pro-
teins), Swiss-Prot (Swiss-Prot protein sequence database),
KO (Kyoto Encyclopedia of Genes and Genomes Ortho-
log database), and GO (Gene Ontology), with a threshold
E value of 10−5.

Proteome profiling
Protein extraction and quantitative analysis
Total seed protein was extracted as described elsewhere

with slight modifications26. In short, samples were finely
ground to a powder with liquid nitrogen in the presence of
polyvinylpolypyrrolidone (PVPP) and suspended in a two-
phase system consisting of fresh extraction buffer and chilled
phenol buffered with Tris(hydroxymethyl)aminomethane
hydrochloride (Tris-HCl), pH 7.8. After centrifugation at
7100 × g for 10min at 4 °C, the phenol-based upper phase
was transferred to a new conical tube. Then, the protein was
precipitated by adding five volumes of precooled methanolic
0.1M ammonium acetate and incubated at −20 °C over-
night. The precipitates were collected and washed with ice-
cold methanol and acetone to remove interfering com-
pounds. Next, each pellet was solubilized in sodium dodecyl
sulfate (SDS) lysis buffer at room temperature for approxi-
mately 3 h. The final protein solution was quantified by
using a Bovine Serum Albumin Protein Assay Kit (Thermo
Fisher, USA) and confirmed with SDS-polyacrylamide gel
electrophoresis (SDS-PAGE).

In-solution trypsin digestion and iTRAQ labeling
Protein was digested according to the filter-aided

sample preparation protocol as described previously27.
For each sample, 100 μg of protein was placed on an
ultrafiltration filter (10 kDa cutoff) containing 120 μL of
reducing buffer [100 mM triethylammonium bicarbo-
nate, 8 M urea, 100 mM dithiothreitol, pH 8.0] and
incubated at 60 °C for 1 h. Next, iodoacetamide was
incorporated to block any reduced cysteine residue. The
mixture was then kept at room temperature for 40 min
in darkness followed by centrifugation for 20 min at
15,000 × g and 20 °C. In-solution digestion with
sequence-grade modified trypsin at 37 °C was performed
for 12 h. Thereafter, the resulting peptides were col-
lected in the form of filtrates and labeled using 8-plex
iTRAQ reagents (ABSCIEX, USA), following the
instructions of the manufacturer (113, 114, 115, and 116
for S1, S2, S3, and S4, respectively, and S1 was used as
the control). Three independent biological experiments
were conducted. Ultimately, all tagged peptides were
multiplexed and vacuum-dried for further identification.
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SCX fractionation and LC–MS/MS analysis
After labeling, the peptide mixture was fractionated on

an Agilent 1100 high-performance liquid chromatography
(HPLC) series system (Agilent Technologies, USA)
equipped with an Agilent Zorbax Extend-C18 column
(2.1 mm× 150mm, 5 μm). Buffer A was 98% HPLC water
with 2% acetonitrile, and buffer B contained 90% acet-
onitrile with 10% HPLC water. The gradient for separation
was generated at a flow rate of 300 nL/min as follows: 98%
buffer A for 8 min, 98–95% buffer A for 0.01min, 95–75%
buffer A for 39.99min, 75–60% buffer A for 12min,
60–10% buffer A for 0.01 min, 10% buffer A for 9.99 min,
10–98% buffer A for 0.01min, and 98% buffer A for
4.99 min. The column was re-equilibrated to attain its
initial highly aqueous solvent composition prior to analy-
sis. The absorbances at 210 and 280 nm were monitored.
The eluent was collected every minute, and 15 fractions
were finally pooled according to the chromatogram.
Fractions were then analyzed by using a Q Exactive HF

Mass Spectrometer coupled with an Easy-nLC 1200
HPLC system (Thermo Fisher Scientific, USA). The
labeled peptides were loaded onto an Acclaim Pep-
Map100 column (RP-C18, 100 μm× 20mm) using an
autosampler. Chromatographic separation was performed
with an Acclaim PepMap RSLC column (75 µm × 15 cm).
The mobile phases consisted of solvent A (0.1% formic
acid in HPLC water) and solvent B (0.1% formic acid,
19.9% HPLC water, 80% acetonitrile). Tryptic peptides
were eluted by application of a linear gradient comprising
0–1min from 2% to 9% solvent B, 1–45 min from 9% to
29% solvent B, 45–52 min from 29% to 37% solvent B,
52–56 min from 37% to 100% solvent B, and 100% solvent
B for 4 min.
The mass spectrometer was operated in the data-

dependent acquisition mode, wherein the resolution of
the full MS scan was set to 60,000, the highest ion
injection time was 50ms, and the automatic gain control
(AGC) target was 3e6. Precursor ions were acquired
across a mass range of 350–1500m/z, and up to 10 of the
most abundant precursors per cycle from each MS
spectrum were selected with a 30-s dynamic exclusion
duration for subsequent higher-energy collisional dis-
sociation fragment analysis at a collision energy of 30%.
The MS/MS spectra were recorded in the high-resolution
mode of 15,000, a maximum injection time of 40 ms, and
an AGC value of 2e5, with the rolling collision energy on
and iTRAQ reagent collision energy adjustment on.

Database search, protein quantification, and bioinformatics
analysis
For protein identification, raw data were analyzed using

the MASCOT search engine embedded in Proteome
Discoverer 2.3 software with our above transcriptome
database on the basis of sequence homology. The

parameters were as follows: static modifications of the
iTRAQ 8plex at lysine (Lys), tyrosine (Tyr), the
N-terminal amino group of peptides and the carbamido-
methyl at cysteine (Cys); dynamic modifications of oxi-
dation at methionine (Met) and the acetyl at the
N-terminal amino group of peptides; enzyme specificity
was set to trypsin with two missed cleavages; and the mass
tolerance was 10 ppm for precursor ions and 0.02 Da for
fragmented ions. Proteins that contained at least two
unique peptide matches with confidence intervals higher
than 95% and FDR values less than 1% were qualified for
subsequent quantification analysis28. Furthermore, pro-
tein species with fold change > 1.2 and p value < 0.05
present in not less than two replicates were considered
differentially abundant proteins (DAPs). Sequences of the
positively identified proteins were employed for BLAST
searching against the UniProt database (E value= 10−5).
GO and KEGG enrichment analyses were conducted to
determine the functional subcategories and metabolic
pathways in which the proteins were significantly enri-
ched. The probable interacting partners between proteins
were then further predicted according to the STRING
database.

WGCNA for identifying correlated gene and protein
networks
WGCNA was performed using a freely accessible R

package with default parameters according to the protocol
to recognize coexpressed genes and proteins29. WGCNA
network construction and module detection were conducted
by using an unsigned type of topological overlap matrix,
soft-thresholding powers of 30 (genes) and 14 (proteins), a
minimum module size of 20, and a branch merge cut height
of 0.25. Next, the transcripts or proteins with identical
patterns of expression were grouped into one module, and
their eigengenes were also calculated. Finally, the phenotype
data were imported into the WGCNA software package to
obtain correlation-based associations between phenotypes
and gene (protein) modules.

Integrated transcriptome and proteome analysis
The proteins and corresponding transcripts were con-

sidered to be correlated if they were both expressed at the
same stage. Based on the log2-fold change of DEGs and
fold change of DAPs, the Spearman correlation coeffi-
cients and associated p values were calculated, the cor-
relation plots of three comparative analyses (S2 vs. S1, S3
vs. S1, and S4 vs. S1) were also drawn. GO term anno-
tation and KEGG pathway enrichment analysis were then
visualized. Moreover, to better understand the regulatory
status of the genes and proteins involved in flavonoid and
fatty acid anabolism processes, the cognate DEGs and
DAPs were mapped to the reference pathways in the
KEGG database30. DNAMAN software was used to
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perform amino acid multiple sequence alignment of the
key candidate proteins. A phylogenetic tree was rooted via
MEGA 6.0 software based on the neighbor-joining
method. Protein subcellular localization was conducted
by using WoLF PSORT online with 500 bootstrap repli-
cations. The motifs of the protein sequences were pre-
dicted by Multiple EM for Motif Elicitation online.

Validation by qRT-PCR analysis
A total of 31 candidate genes related to flavonoid and

fatty acid anabolism were screened for qRT-PCR assay. In
brief, new RNA was extracted as described above, and
then cDNA was synthesized using a RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
USA). The gene-specific primer pairs were designed by
Primer 5.0 (Premier Biosoft, USA). qRT-PCR was carried
out on a LightCycler 96 (F. Hoffmann-La Roche Ltd,
Switzerland). The thermal profile consisted of 95 °C for
30 s followed by 40 cycles of 95 °C for 10 s, 55 °C for 30 s,
and 72 °C for 30 s, with a final extension step of 72 °C for
30 s. The 2−ΔΔCt method was used to calculate relative
changes in gene expression levels, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) served as an endo-
genous control for normalization of cycle threshold
values. Data are presented as the mean ± SD of three
independent biological replicates31.

Results
Changes in the physiological characteristics of developing
C. oleifera
The phenotypic characteristics and dynamic changes in

reserve accumulation in fruits and seeds during four
developmental periods were measured (Fig. 1). The fresh
fruits exhibited a gradual increase in size and weight with
maturity, and a slight decrease in the dry weight of the
seeds was observed at the S3 stage. The oil content (ratio
in dry seeds) changed insignificantly from the S1 to
S2 stages and then rose rapidly up to the S4 stage. Table 1
shows the composition and amounts of major compo-
nents in C. oleifera samples. With the increase in seed
maturity, the concentration of the total flavonoids
declined significantly. The S2 stage possessed the highest
content of phenylpropanoid, followed by the S1 stage.
Moreover, nine common fatty acid compounds were
shared among all oil samples; their predominant con-
stituents were similar, being composed of palmitic acid,
oleic acid, and linoleic acid together accounting for 96.0%
of the total fatty acid profile. The contents of palmitic
acid, oleic acid, linoleic acid, and linolenic acid in the S1
and S2 stages were higher than those in other stages.
Notably, the highest levels of monounsaturated fatty acids
(MUFAs) and polyunsaturated fatty acids (PUFAs)
belonged to the S2 and S1 stages, respectively. Never-
theless, the highest ratio of oleic acid to linoleic acid was
found in the S4 stage. The total ionization chromatogram
of fatty acid methyl ester standards is presented in Fig. S1,
and their regression equations are listed in Table S1.

Transcriptomics analysis
Illumina paired-end sequencing and functional annotation of
unigenes
After a stringent quality evaluation and data filtering, a

total of 709.23 million clean reads (106.38 Gb high-quality
sequences) were retained, ranging from 8.02 to 11.49 Gb
per sample (Table S2). Using Trinity de novo assembly, all
high-quality reads were mutually aligned and assembled
into 502,269 transcripts, with lengths between 301 and
80,014 bp (N50 value of 1187 bp). These transcripts were
further clustered based on nucleotide sequence identity,
resulting in 170,891 unigenes (N50 value of 1106 bp) that
included 12,319 unigenes (7.21%) with lengths greater than
2 kb. High correlations were observed among biological
replicates (Fig. S2), suggesting that the experiment had good
reproducibility and reliability. In total, 137,753 coding
sequences were extracted from BLASTx and ESTScan
results, which were then searched against the Nr, Nt, Swiss-
Prot, Pfam, KO, KOG, and GO databases (Fig. S3 and Table
S3). Among them, 28,328 (41.7%) unigenes showed high
similarity with sequences of Actinidia chinensis var. chi-
nensis, and 4623 unigenes had good matches with genes
from Vitis vinifera, followed by Quercus suber. The top-hit

Fig. 1 Development of C. oleifera seeds. A Phenotypic
characterization of C. oleifera seeds in four growth periods. S1,
nutrition synthesis stage; S2, fat accumulation stage; S3, mature stage;
and S4, late mature stage. B Changes in morphological indexes of
developing fruits and seeds. Data represent the mean values from
three biological replicates, and error bars indicate standard deviations
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species distribution is depicted in Fig. S3 and Table S4. In
addition, only a small proportion of unigenes (10,466,
6.12%) carrying protein domains with KOG annotations
were subdivided into 25 clusters based on their main bio-
logical activities (Fig. S3 and Table S4). The largest cate-
gories included posttranslational modification, protein
turnover, chaperones (O, 13.70%), and general function
prediction only (R, 11.10%).
GO classification was used to describe the properties of

gene products in terms of their associated biological pro-
cesses, cellular components, and molecular functions, among
which 46,315 unigenes were categorized into 56 functional
subclasses (Fig. S4 and Table S4). The largest number of
annotations was in biological processes, where the major GO
term was cellular process. At the cellular component level, the
predominant group was cell. Binding and catalytic activity
were the most representative molecular function categories.
The results indicated that these unigenes were responsible for
fundamental biological regulation and metabolism common
to plants. Pathway-based analysis can assist in understanding
the functions and interactions of genes. In the current work,
20,546 unigenes were assigned to biological pathways in the

KEGG database, and the most highly represented pathways
were carbohydrate metabolism, translation, and folding,
sorting, and degradation (Fig. S5 and Table S4).

Differences in gene expression patterns during seed ripening
and enrichment analysis
In total, 16,530 DEGs were identified by pairwise

comparison of samples at the four growth periods.
Compared with stage S1, 1886 (1068), 5981 (6998), and
2657 (3474) DEGs were significantly upregulated (down-
regulated) in the S2, S3, and S4 stages, respectively. In
addition, only 696 DEGs were detected in all three com-
pared pairs (Figs. 2A, 3B and Table S5). In the results of
DEG grouping and sorting by hierarchical clustering
analysis, S1 and S2 were classified into one cluster, while
S3 and S4 were clustered together according to the rela-
tively high similarity in color (Fig. 2C). Broken line graphs
(Fig. 2D) were drawn to classify the expression patterns of
DEGs, and the number ascribed to each cluster was also
recorded. Cluster I contained 3882 unigenes with the
highest initial expression levels and then gradually
decreased to the S3 stage. The members of Cluster III

Table 1 The content of the main functional components of C. oleifera samples at different maturities

Physiological characteristics S1 S2 S3 S4

Phenylpropanoid content (mg/g) 4.021 ± 0.041a 4.028 ± 0.049a 3.895 ± 0.014b 3.886 ± 0.081b

Total flavonoid content (mg/g) 6.821 ± 0.060a 5.349 ± 0.010b 4.631 ± 0.000c 3.401 ± 0.026d

Oil content (%) 25.523 ± 0.837c 28.971 ± 0.474b 41.244 ± 0.223a 42.012 ± 0.937a

Fatty acid content (g/100 g)

Palmitic acid (C16:0) 10.799 ± 0.094a 9.607 ± 0.063b 9.187 ± 0.059c 7.905 ± 0.022d

Palmitoleic acid (C16:1) 0.083 ± 0.002a 0.051 ± 0.002b 0.036 ± 0.001c 0.026 ± 0.001d

Margaric acid (C17:0) 0.035 ± 0.001b 0.041 ± 0.000a 0.015 ± 0.000d 0.025 ± 0.001c

Stearic acid (C18:0) 1.815 ± 0.017d 2.232 ± 0.022a 2.057 ± 0.010b 1.931 ± 0.015c

Oleic acid (C18:1) 62.921 ± 0.393b 68.514 ± 0.328a 60.888 ± 0.116c 54.689 ± 0.242d

Linoleic acid (C18:2) 11.041 ± 0.061a 9.600 ± 0.049b 8.884 ± 0.063c 6.662 ± 0.016d

Linolenic acid (C18:3) 0.830 ± 0.005a 0.565 ± 0.003b 0.416 ± 0.006c 0.266 ± 0.003d

Arachidic acid (C20:0) nd 0.025 ± 0.000 nd nd

Eicosenic acid (C20:1) 0.466 ± 0.006a 0.469 ± 0.004a 0.426 ± 0.011b 0.360 ± 0.002c

Tetracosanoic acid (C24:0) 0.079 ± 0.001 0.062 ± 0.001 nd nd

Tetracosenic acid (C24:1) 0.081 ± 0.001a 0.047 ± 0.001b 0.035 ± 0.000c 0.017 ± 0.000d

SFAs 12.650 ± 0.083a 11.880 ± 0.084b 11.258 ± 0.069c 9.862 ± 0.024d

MUFAs 63.551 ± 0.398b 69.082 ± 0.331a 61.385 ± 0.127c 55.091 ± 0.239d

PUFAs 11.870 ± 0.063a 10.164 ± 0.046b 9.301 ± 0.057c 6.928 ± 0.016d

MUFAs/PUFAs 5.354 ± 0.006d 6.796 ± 0.011b 6.600 ± 0.028c 7.952 ± 0.048a

Oleic acid/linoleic acid 5.699 ± 0.004d 7.137 ± 0.013b 6.853 ± 0.036c 8.209 ± 0.048a

S1, nutrition synthesis stage; S2, fat accumulation stage; S3, mature stage; and S4, late mature stage. Each value is expressed as the mean ± standard deviation;
different small letters within a row indicate significant differences (p < 0.05)
nd not detected
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showed marked changes in expression, increasing sharply
to a maximum at the S2 stage and then declining dra-
matically at the S3 stage before being slightly upregulated
at the S4 stage. For Clusters V and VIII, the expression
abundances of unigenes first increased and subsequently
declined before reaching their peak values at the S3 stage.
The log2-fold change of Cluster VIII (approximately −4)
was greater than that of Cluster V.
DEGs were further classified into 113 subsets using GO

enrichment-based cluster analysis to provide potential clues
concerning the molecular events related to their functional
roles during seed ripening (Figs. 3A and S6, Table S6). For
three pairs of developmental stages, DEGs associated with

metabolic process and oxidation–reduction process were
overrepresented in the biological process category; catalytic
activity was the predominant classification in the molecular
function category; and the most assigned classification was
cell wall in the cellular component category. The KEGG
enrichment analysis of these DEGs could potentially yield
information for understanding the molecular mechanisms
underlying major metabolic processes in C. oleifera seeds
(Fig. S7 and Table S6). The pathways with the majority of
entries mapped in all comparative analyses included glu-
tathione metabolism, phenylpropanoid biosynthesis, and
flavonoid biosynthesis. Other important pathways involving
fatty acid degradation, fatty acid biosynthesis, α-linolenic

Fig. 2 Expression analysis and quantitative comparison of the identified DEGs in developing C. oleifera seeds. A Venn diagram of the shared
and unique DEGs among three compared pairs (S2 vs. S1, S3 vs. S1, S4 vs. S1, S1 as the control). B Numbers of up- and downregulated unigenes in
different comparisons. C Hierarchical clustering analysis of the identified DEGs across four growth periods of seeds. The horizontal axis represents the
sample clusters, and colors from green to red indicate gene expression from low to high. D The expression trends of the identified DEGs. Gene
abundance is expressed as log2-fold change (y-axis), and developmental stages are outlined on the x-axis, with the S1 stage as the zero point
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acid metabolism, and linoleic acid metabolism were only
found in S3 vs. S1 and S4 vs. S1 pairwise comparisons.

Identification and interaction network analysis of flavonoid
and fatty acid anabolism-related DEGs, including TFs
We obtained 115 DEGs involved in the phenylpropa-

noid biosynthesis pathway. Moreover, 37, 9, and 4 DEGs
were detected in the flavonoid biosynthesis, flavone and
flavonol biosynthesis, and isoflavonoid biosynthesis
pathways, respectively. Of these, ten unigenes including
peroxidases, ferulate-5-hydroxylase (F5H), and shikimate
O-hydroxycinnamoyltransferase (HCT) were markedly
upregulated and six unigenes composed of HCTs, flava-
none 7-O-glucoside 2″-O-beta-L-rhamnosyltransferase
(C12RT1), leucoanthocyanidin reductase (LAR), and
beta-glucosidases (bglXs) were downregulated in all
comparison analyses, revealing that the HCTs displayed a
mixed expression pattern. Specifically, 169 DEGs similar
to TFs belonging to the WRKY, basic helix-loop-helix
(bHLH), basic region-leucine zipper (bZIP), v-myb avian
myeloblastosis viral oncogene homolog (MYB-like), and
MADS-box families may be related to the synthetic reg-
ulation of flavonoids. Six WRKY-related genes and one

unigene encoding MYB were significantly upregulated in
three pairwise comparisons, while nine unigenes were
downregulated. Concurrently, we found 39, 14, and 53
candidate DEGs associated with the pathways of fatty
acid biosynthesis, fatty acid elongation and fatty acid
degradation, respectively. In addition, 26 and 58 DEGs
were identified in the linoleic acid metabolism and α-
linolenic acid metabolism pathways, respectively. Only
one key unigene (3-ketoacyl-CoA synthase, KCS) therein
was continuously upregulated in the pairwise compar-
isons. Remarkably, 129 DEGs annotated as members of
the DNA binding with one finger (DOF), homeodomain
leucine zipper (HD-ZIP), APETALA2 (AP2), and B3 TF
families were also involved in fatty acid metabolism
processes, among which nine AP2 genes were upregu-
lated in all three groups (Table S6).
Subsequently, a protein–protein interaction (PPI) net-

work was constructed to predict the putative functions
and relationships of the identified DEGs. The compre-
hensive analysis showed that among the 137 DEGs rela-
ted to flavonoid biosynthesis, 56 DEGs (19 unique
proteins) appeared to be closely linked and were classified
into three subclusters, with the seed proteins being
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Fig. 3 GO-based functional classification and protein–protein interactions of the identified DEGs in developing C. oleifera seeds. A Top 20
GO categories for the identified DEGs in the transcriptome. Bar diagrams indicate the number of DEGs that were up- and downregulated (x-axis),
annotated with functions (y-axis) for different compared groups. B Interaction networks among the predicted unique proteins involved in flavonoid
biosynthesis (a) and fatty acid metabolism (b) pathways. The network nodes represent proteins, and the edges represent predicted functional
associations between two proteins. Detailed information on protein names and abbreviations is found in Table S7
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dihydroflavonol 4-reductase (DFR), 4-coumarate: CoA
ligase (4CL), and cinnamyl-alcohol dehydrogenase
(CAD). Similarly, among the 137 DEGs involved in fatty
acid metabolism, 109 DEGs (30 unique proteins) exhib-
ited strong interactions and were present in six sub-
clusters whose seed proteins were alcohol dehydrogenase
(ADH), acetyl-CoA carboxylase/biotin carboxylase 1
(ACACA), acetyl-CoA C-acetyltransferase (ACAT), long-
chain acyl-CoA synthetase (ACSL), [acyl-carrier-protein]
S-malonyltransferase (fabD), and 3-hydroxyacyl-[acyl-
carrier-protein] dehydratase (fabZ) (Fig. 3B).

Analysis of the gene coexpression network
To identify the WGCNA modules related to oil quality

during seed ripening of C. oleifera, a coexpression net-
work was constructed by combining dramatic changes in

total flavonoids, oil, and major fatty acids with high-
throughput RNA-seq datasets. A total of 92 distinct
modules consisting of 25,955 nonredundant unigenes
were labeled in different colors and presented in the form
of a cluster dendrogram, network heatmap, and trait
heatmap, where the gray module represented genes that
were not assigned to any specific module and had no
reference significance (Fig. 4 and Table S8). Remarkably,
two unique modules containing 4350 unigenes were
highly correlated with the accumulation patterns of total
flavonoids, oil, and fatty acids, where the absolute corre-
lation coefficients were greater than 0.8 (p value ≤ 0.01;
indianred and tan2). We then depicted the heatmaps and
bar plots of genes across all samples to specifically detect
the transcriptional expression profiles of these modules,
among which the eigengene expression in the indianred

Fig. 4 Weighted gene coexpression network analysis (WGCNA) of the identified genes in developing C. oleifera seeds. A Gene dendrogram
obtained by clustering the dissimilarity based on consensus topological overlap, with each tree branch constituting a module and each leaf
representing one gene. Each colored row indicates a color-coded module that contains a group of highly interconnected genes. B Heatmap plot of
topological overlap in the gene network. Darker squares along the diagonal correspond to modules. C Module eigengene physiological indexes and
sample correlations. The numbers in colored rectangles represent gene numbers in the module. The color scale bar on the right shows the
correlation range from negative to positive
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module was the highest at the S1 stage (mean= 0.35). In
contrast, the eigengene of the tan2 module showed higher
expression at the S4 stage (mean= 0.34) than at the other
stages (Fig. S1 and Table S8). Subsequent enrichment
analyses were performed to explore the biological func-
tions underlying the transcriptome in the above modules.
As shown in Fig. 5A and Table S8, the significantly
enriched GO terms were responsible for metabolic pro-
cess and oxidation–reduction process. In addition, the
KEGG pathways participated mainly in fatty acid meta-
bolism, biosynthesis of UFAs, phenylpropanoid bio-
synthesis, fatty acid biosynthesis, and flavonoid
biosynthesis, a result that was in accordance with the
previous results of this study (Fig. 5B and Table S8). We
noted that 92 out of the 4350 unigenes encoded 39 key
enzymes, such as lipoxygenase (LOX1_5), acyl-CoA oxi-
dase (ACOX), aldehyde dehydrogenase (ALDH), ACAT,
CAD, HCT, and 4CL, and these unigenes were also found
in the preceding analysis.
Furthermore, based on the eigengene connectivity

(KME) values, the top 50 genes in the indianred and
tan2 modules were selected separately to generate the
coexpression subnetworks visualized using Cytosca-
pe_v.3.7.1 to search for putative candidates with
important contributions (Fig. 5C). Details of the

coexpressed genes in the subnetworks are listed in
Table S8. The highlighted gene (Cluster-7410.10394)
encoding protein trichome birefringence had the
highest KME value and was most closely associated
with other node genes in the indianred module; simi-
larly, the gene (Cluster-7410.50806) encoding
retrovirus-related Pol polyprotein belonged to the core
member of the tan2 module. Moreover, KEGG classi-
fication analysis of these unigenes provided additional
information concerning the enriched biological path-
ways, including circadian rhythm-plant, glyco-
sphingolipid, and biosynthesis-globo series (Fig. 5D and
Table S8). Finally, we used the 12 algorithms of Cyto-
hubba to screen out more crucial hub genes; 19 uni-
genes comprising 17 structural genes and two TFs
consisting MADS intervening keratin-like and C-
terminal (MIKC_MADS) and type-B authentic
response regulator (ARR-B) coding genes were of
potential research significance.

Identification and functional annotation of DEGs related to
flavonoid and oil anabolism
There was a highly significant negative correlation

(−0.8728) between the total flavonoid content and oil con-
tent in C. oleifera seeds, and the expression levels of 1110

Fig. 5 Enrichment analysis and gene networks of WGCNA modules in developing C. oleifera seeds. A GO circle plot displaying gene
annotation enrichment analysis. B The top 20 KEGG pathway enrichment categories of these genes. Detailed information is listed in Table S8.
C Cytoscape represents the top 50 coexpressed genes in the “indianred” (a) and “tan2” (b) modules. D KEGG pathway enrichment analysis of the
hub genes
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unigenes were remarkably correlated with the variation in
the above two physiological indexes (p value < 0.05). These
unigenes were mainly enriched in GO terms associated with
membrane, metabolic process, and transmembrane trans-
port. The proposed unigenes were further classified by
KEGG analysis, among which several pathways, such as
“glyoxylate and dicarboxylate metabolism”, “flavonoid bio-
synthesis”, and “photosynthesis-antenna proteins”, were
considerably modulated (Fig. S9 and Table S9). In addition, a
PPI network of 161 unigenes (135 unique proteins) with
confidence scores > 0.7 was constructed; the network
included 65 unigenes (45 unique proteins) previously iden-
tified based on known metabolic processes such as pheny-
lalanine ammonia-lyase (PAL), flavanone 3β-hydroxylase
(F3H), and ACACA, while 96 unigenes (90 unique proteins)
were newly found according to interrelation analysis (Fig. S9
and Table S9). These interacting proteins could be divided
into six groups. In Cluster 1, a total of 34 closely linked
proteins participated in carbon metabolism and glycolysis/
gluconeogenesis. Cluster 2 covered 26 proteins that played
crucial roles in arginine and proline metabolism. Cluster 3
comprised 25 proteins with different functions, including
phenylpropanoid biosynthesis and phenylalanine metabo-
lism. There were 21 proteins in Cluster 4, and these proteins
were important for fatty acid metabolism, starch and sucrose
metabolism, and fatty acid biosynthesis. Moreover, 19 pro-
teins were assigned to Cluster 5, most of which were related
to glyoxylate and dicarboxylate metabolism. Finally, ten
proteins engaged in flavonoid biosynthesis were gathered in
Cluster 6. Eight unigenes listed in this interacting network
were also speculated to be key factors involved in the reg-
ulation of flavonoid and oil anabolism. Arogenate dehy-
dratase (ADT, Cluster-7410.66059) and aspartate
aminotransferase (AAT, Cluster-7410.42278) interacted
directly with PAL. Auxin response factor ARF, Cluster-
7410.77325 could interact with F3H. There was an obvious
interaction between cysteine protease (Cluster-7410.66445)
and peroxidase as well as a close relationship between beta-
fructofuranosidase (INV, Cluster-21049.0) and beta-
glucosidase (bglB).

Proteomics analysis
General information for protein identification
In this study, the uniform distribution and high

repeatability of bands on an SDS-PAGE gel indicated that
the quality of extracted proteins was suitable for
subsequent analyses (Fig. S10). A total of
1,337,264 spectra were generated, of which 134,352 were
effective after the removal of the low-scoring spectra. By
searching the Mascot engine, 27,674 unique peptides
were inferred, and 5541 proteins were confidently iden-
tified. Among these, 4516 proteins were obtained from at
least two experiments, and 3619 proteins were expressed
over all three trials. In terms of protein mass distribution,

we found good coverage for the molecular weight, ran-
ging from 10 to 200 kDa (Table S10). These recognized
proteins were acquired from 126 plant species by
searching against the NR database (Fig. S10 and Table
S10). The largest portion comprised 1508 proteins with
strong sequence homology to Actinidia chinensis var.
chinensis, followed by 113 proteins related to Camellia
sinensis. As shown in Fig. S10 and Table S10, 630 pro-
teins were of unknown functions or lacked KOG anno-
tation information, and the remaining 2052 proteins were
divided into 24 groups. The main functional categories
were posttranslational modification, protein turnover,
chaperones (O, 15.26%), and general function prediction
only (R, 10.35%).

Quantitative comparison of protein expression during seed
development
Applying the cutoff threshold of a 1.2-fold change for

differential accumulation together with the number of
unique peptides ≥ 1, 1228 DAPs were recognized (Fig.
6A, B and Table S11). Compared with the S1 stage, 556
DAPs were identified at the S2 stage, among which 150
proteins displayed an increase in abundance; the S3 vs. S1
comparison group contained 455 DAPs consisting of 152
upregulated and 303 downregulated proteins; in the S4
vs. S1 comparison, 258 upregulated and 794 down-
regulated protein species were detected. Notably, 287
DAPs were shared in three pairwise comparisons; nearly
all of these DAPs exhibited the same change trend, with
only three proteins changing the direction of their
expression. In addition, 61, 29, and 590 DAPs were found
to be specific to the S2 vs. S1, S3 vs. S1, and S4 vs. S1
pairs, respectively.
As illustrated in Fig. 6C, D, hierarchical clustering and

timing analysis revealed that the protein expression pro-
files in the S2 and S3 stages were closer to each other.
According to their relative abundances, the DAPs were
further assigned to 20 clusters. Stage-specific patterns
were present in almost all the clusters, although in gen-
eral, protein levels were only moderately changed. The
largest category, Cluster 9, comprised 91 proteins showing
a marked drop at prophase, then a slight increase from the
S2 to S3 stages, and again a dramatic decline at the
S4 stage. Cluster 2 referred to 41 proteins that demon-
strated considerable accumulation in abundance up to a
Z-score of approximately 1.0 and then decreased rapidly
before reaching a peak at the S3 stage. Cluster 4 consisted
of 59 proteins exhibiting an intermediate initial expres-
sion level that sharply increased to a maximum at the
S2 stage and then remained fairly constant until the
S3 stage. Sixty members were grouped into Cluster 6, in
which proteins displayed a gradual increase in expression
over the entire course of seed ripening. This trend was
opposite that in Cluster 14.
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Overall GO and KEGG pathway enrichment analysis
GO enrichment analysis was used to clarify the func-

tional distributions of proteins during the hull develop-
ment of C. oleifera seeds. A bar graph of GO
classifications is presented in Fig. S11 and Table S12. A
total of 15,395 proteins corresponding to three major
subsets were obtained, among which the categories of
binding and cellular process were dominant. Furthermore,
the most abundant GO terms of DAPs were screened for
visualization (Fig. 7A). The results showed that the
represented subclasses were oxidation–reduction process
of the biological process category, integral component of
the membrane for the cellular component category, and
protein binding for the molecular function category. It
was noteworthy that the S3 vs. S1 pair had the lowest
number of DAPs mapped with GO information, which
was inconsistent with the transcriptomic data.
The DAPs were coordinated with each other in vivo to

express their biological functions, suggesting that our

understanding of important metabolic processes during
seed ripening could be further broadened by pathway-
based annotation. According to the results, all identified
proteins were categorized into 29 classes, mainly involving
translation and carbohydrate metabolism (Fig. S12 and
Table S12). A bubble chart of the top 20 KEGG pathways
with p values less than 0.01 is plotted in Fig. S12. The
universally enriched pathways shared among the three
pairwise comparisons included fatty acid degradation,
phenylpropanoid biosynthesis, and fatty acid metabolism.
Specifically, the DAPs involved in α-linolenic acid meta-
bolism were quite active in both the S3 vs. S1 and S4 vs.
S1 comparison groups.

Identification and interaction network analysis of flavonoid
and fatty acid anabolism-related DAPs, including TFs
As shown in Table S12, six DAPs took part in the flavo-

noid biosynthesis process, including F3Hs, DFR, trans-
cinnamate 4-monooxygenase (C4H), flavonol synthase
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Fig. 6 Expression analysis and quantitative comparison of the recognized DAPs in developing C. oleifera seeds. A Venn diagram of the
shared and unique DAPs among three pairwise comparisons (S2 vs. S1, S3 vs. S1, S4 vs. S1, S1 as the control). The overlapping regions indicate the
number of shared proteins. B Histogram showing the number of up- and downregulated DAPs in each compared group. C Hierarchical cluster
heatmap of the recognized DAPs in four development periods. The colored bars indicate the changes in protein abundance after normalization;
similar colors displayed by DAPs represent high correlation coefficients. The green color represents a low expression level, and the red color
represents a high expression level. D Space-time clustering analysis of the recognized DAPs in developing C. oleifera seeds
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(FLS), and chalcone synthase (CHS). Four proteins were
significantly downregulated in the three comparison groups.
Some key enzymes for phenylpropanoid biosynthesis were
detected among the 22 DAPs that comprised caffeic acid 3-
O-methyltransferase (COMT), 4CL, and 20 other proteins.
In particular, 13 members of the WRKY, bHLH, bZIP,
MYB-related, and tryptophan-aspartate (WD40) repeat
protein families could regulate flavonoid synthesis; of these,
one bHLH was markedly upregulated in three pairwise
comparisons, whereas one MYB-related (TRINI-
TY_DN19768_c2_g2_i2) and two WD40 proteins were
downregulated. Moreover, there were 18 DAPs related to
fatty acid biosynthesis, including [acyl-carrier-protein]
desaturases (FAB2s), fatty acyl-ACP thioesterase A (FATA),
and 13 other proteins. Palmitoyl-protein thioesterase and
17β-estradiol 17-dehydrogenase (KAR) were associated with
fatty acid elongation. A total of 14 DAPs composed of enoyl-
CoA hydratases (MFP2s), ADHs, and 10 others were
detected in the fatty acid degradation process. Moreover, 15
DAPs were identified in the α-linolenic acid metabolism
pathway, and LOX1_5 was a downregulated protein (lowest
at the S1 stage) that participated in linoleic acid metabolism.
Analysis of the iTRAQ-based data also revealed eight DAPs
that were annotated as TFs involved in fatty acid

metabolism, and the proteins belonging to the AP2 and HD-
ZIP families were all downregulated, a result that was not in
accordance with the transcriptome results.
To elucidate the possible relationships among the protein

species related to seed maturation of C. oleifera, PPI net-
works were generated based on the data from Arabidopsis
thaliana. Given the potential size of the visualization image,
the interacting proteins of particular interest were further
extracted from the whole network, and two complex sub-
networks were constructed (Fig. 7B). Specifically, 22 DAPs
were associated with flavonoid biosynthesis, among which 13
DAPs (11 unique) represented a strongly interactive network.
Nodes in different colors belonged to two major modules.
Seven proteins (all unique) were assigned to Cluster 1, and
the seed protein was coniferyl-ALDH (REF, TRINI-
TY_DN20769_c2_g2_i1). These proteins mainly participate
in carbohydrate transport and metabolism. Cluster 2 was
composed of five enzymes, with the core protein being
peroxidase (TRINITY_DN17817_c0_g2_i2), and this group
included six proteins functioning in secondary metabolite
biosynthesis, transport, and catabolism. In addition, 40 DAPs
involved in fatty acid metabolic processes constituted an
interaction network that contained 20 nodes and 45 edges.
Eleven DAPs (eight unique) were divided into two functional

Fig. 7 GO-based functional classification and protein–protein interactions of the recognized DAPs in developing C. oleifera seeds. A Top 20
GO categories for the recognized DAPs in the proteome. Yellow and blue bars represent up- and downregulated proteins in three main GO domains,
respectively. B Interaction networks among the unique proteins involved in flavonoid biosynthesis (a) and fatty acid metabolism (b) pathways. The
network nodes represent proteins, and the edges represent predicted functional associations between two proteins. Detailed information on protein
names and abbreviations is found in Supplementary Table S13
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modules forming tightly connected clusters. Seven proteins
(four unique) were defined as Cluster 1, which was organized
around ACOX (TRINITY_DN17755_c0_g1_i1). These pro-
teins are known enzymes that participate in lipid transport
and metabolism as well as amino acid transport and meta-
bolism. Four proteins (all unique) were linked with Cluster 2,
wherein FATA (TRINITY_DN15408_c0_g1_i2) was deemed
to be the central protein. Taken together, this information
provided some preliminary insights into the relationship
networks concerning flavonoid and fatty acid anabolism.
However, the above results were not perfectly consistent with
those predicted by the transcriptome and therefore need to
be verified by yeast two-hybrid experiments in the future.

Analysis of the protein coexpression network
Through WGCNA, eight distinct modules were con-

structed based on the coexpression patterns of 2682
individual proteins (Fig. 8A, B and Table S14). The con-
tents of total flavonoids, oil, and major fatty acids at each
mature stage were used as phenotypic data for the analysis
of module-trait correlations (Fig. 8C and Table S14). Of
these coexpressed protein networks, four specific modules
composed of 2250 genes had strong associations with
flavonoids, oil, and fatty acids, with absolute correlation
coefficients greater than 0.6 (p value ≤ 0.05; magenta,
midnightblue, black, and yellow). Combined with their
heatmaps (Fig. S14 and Table S14), we found that the
eigengenes of the black and yellow modules showed the
highest expression at the S1 stage (mean= 0.27 and mean
= 0.49), whereas the eigengene expression of the magenta
and midnightblue modules exhibited the lowest levels at
the S1 stage. The significantly overrepresented GO cate-
gories were further examined in the WGCNA modules
mentioned above, whose proteins were predominantly
enriched in oxidation-reduction process and metabolic
process (Fig. 9A and Table S14). In addition, these unique
proteins were mapped to 51 KEGG pathways, including
carbon metabolism, biosynthesis of amino acids, glyco-
lysis/gluconeogenesis, and fatty acid metabolism (Fig. 9B).
Coincidentally, 62 critical proteins corresponding to 34
important enzymes (e.g., peroxidase, CAD, and FAB2)
were also identified in previous research results.
Similar to those found in the transcriptome analysis, the

top 25 proteins in the magenta, midnightblue, black, and
yellow modules were selected according to their KME
values to produce four coexpression subnetworks (Fig. 9C
and Table S14). The proposed proteins are listed with
their annotations in Table S14, among which succinate-
semialdehyde dehydrogenase (TRINITY_DN17680_c0_g
2_i3), GEM-like protein (TRINITY_DN17268_c0_g1_i1),
RuBisCO large subunit-binding protein subunit alpha
(TRINITY_DN18751_c0_g1_i1), and an uncharacterized
protein (TRINITY_DN15138_c0_g1_i1) were considered
the respective centers in the magenta, midnightblue,

black, and yellow modules. In addition, these proteins
were assigned to biochemical pathways in the KEGG
database, mainly glycolysis/gluconeogenesis and thiamine
metabolism (Fig. 9D, Table S14). Most notably, the hub
proteins screened by Cytohubba’s 12 algorithms con-
tained three TFs. B3 (TRINITY_DN21536_c0_g2_i1) and
bHLH (TRINITY_DN20453_c0_g2_i1), located on the
periphery of the midnightblue subnetwork, were basically
upregulated throughout the whole ripening period of C.
oleifera seeds, while the abundance of AP2 (TRINI-
TY_DN21019_c0_g3_i3), situated in the outer ring of the
yellow subnetwork, was lower in the S4 stage than in
other phases, suggesting possible roles in regulating the
accumulation of flavonoids, oil, and fatty acids.

Identification and functional analysis of DAPs related to
flavonoid and oil anabolism
The contents of total flavonoids and oil in C. oleifera

seeds showed obvious correlations with the abundance of
177 proteins (p value < 0.05). Specifically, these proteins
corresponded to 386 GO terms. The oxidation-reduction
process and cellular aromatic compound metabolic pro-
cess were considerably enriched. KEGG analysis indi-
cated that the proteins could be mapped to 74 pathways,
of which 11 were significantly enriched, mainly involving
carbon metabolism and the biosynthesis of amino acids
(Fig. S15 and Table S15). Furthermore, a total of 65
unique proteins identified in this research were annotated
in STRING and used to construct the PPI network (Fig.
S15 and Table S15). Intriguingly, 14 unique proteins (e.g.,
CHS, F3H, FLS, and 4CL) were recognized based on their
related metabolic processes, whereas 51 unique proteins
were discovered by the association study. Finally, these
protein species were presented in six main groups.
Cluster 1 contained 18 proteins involved in the TCA
cycle, galactose metabolism, and peroxisomes in the
endoplasmic reticulum. Cluster 2 was composed of 13
proteins related to phenylpropanoid biosynthesis, flavo-
noid biosynthesis, and phenylalanine metabolism.
Moreover, 11 proteins were gathered in Cluster 3; these
proteins primarily belonged to 2-oxocarboxylic acid
metabolism and carbon metabolism. Similarly, ten pro-
teins that participated in the biosynthesis of amino acids
were assigned to Cluster 4. Cluster 5 consisted of ten
ribosome-associated proteins. In Cluster 6, three unique
proteins were observed, namely, AT1G20580, NRPB11,
and NRPD2A. Notably, eight proteins present in this
interactive network were also conjectured to be the key
factors affecting the dynamic changes of total flavonoids
and oil contents in C. oleifera seeds, among which CHI-
like protein (CHIL, TRINITY_DN21343_c1_g1_i2)
interacted strongly with CHI, F3H, and FLS. Likewise,
glycosyltransferase (GT, TRINITY_DN19890_c0_g2_i1)
was linked with F3H. There was an obvious interaction
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between NAD(P)-binding Rossmann-fold superfamily
protein (TRINITY_DN18784_c2_g2_i1) and CAD. In
addition, ATP-dependent (S)-NAD(P)H-hydrate dehy-
dratase (TRINITY_DN20543_c0_g1_i9), tubulin beta-6
chain (TRINITY_DN21381_c0_g3_i5), melibiase (TRI-
NITY_DN19655_c0_g1_i4), glycosyl hydrolase (TRINI-
TY_DN19932_c1_g1_i4), and peroxiredoxin (PRDX2F,
TRINITY_DN17999_c0_g1_i1) showed clear interactions
with PRDX6.

Conjoint analysis of transcriptome and proteome data
To evaluate the congruence between the transcriptome

and proteome, as well as to understand how transcribed
mRNA was manifested at the protein level, we conducted
a global combination analysis of RNA-seq and iTRAQ
assays (Fig. S16 and Table S16). A total of 2660 proteins
could be matched to unigenes; however, most proteins
and their transcripts did not meet the requirement for
discrepancy accumulation. Approximately 98% of the
DAPs were covered by RNA sequencing profiles. For the
comparison of S2 vs. S1, the expression tendencies of 21

DAPs (14 upregulated and 7 downregulated proteins)
agreed with the transcriptome data. Compared with stage
S1, 140 DEGs showed the correlated regulation of both
transcription and translation levels at stage S3. In the S4
vs. S1 pair, 223 DAPs overlapped with the transcriptomic
results, among which 52 members exhibited an opposite
changing trend across the two levels.
In addition, we focused on the overlap between DEGs

and DAPs that shared the same regulatory status across
the three comparisons. There were only four upregulated
members (lowest at the S1 stage), basic 7S globulin
(7SB1), malate synthase (MASY), late embryogenesis
abundant protein (LEA14), and one annotated as coding
for an uncharacterized protein. The three downregulated
members were vinorine synthase (VINSY), glutelin
(GLUA2), and carboxylesterase (CXE12). This phenom-
enon demonstrated that time-dependent delays or reg-
ulatory processes occurring from transcript to protein
levels might directly affect protein synthesis. We next
conducted an association analysis using the quantitative
data of unigenes and proteins. The abundance levels of

Fig. 8 Weighted gene coexpression network analysis (WGCNA) of the identified proteins in developing C. oleifera seeds. A Protein
dendrogram obtained by clustering the dissimilarity based on consensus topological overlap, with each tree branch constituting a module and each
leaf representing one protein. Each colored row indicates a color-coded module that contains a group of highly interconnected proteins. B Heatmap
plot of the topological overlap in the protein network. Darker squares along the diagonal correspond to modules. C Module eigengene physiological
indexes and sample correlations. The numbers in colored rectangles represent protein numbers in the module. The color scale bar on the right
shows the correlation range from negative to positive
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the protein species and their corresponding mRNAs
appeared to have lower correlation values; the Spearman
correlation coefficients for the three comparisons were
0.13, 0.05, and 0.16 (Fig. S17 and Table S16). Further-
more, poor correlations were also observed between
DEGs and DAPs, with coefficients of 0.09–0.28. Sig-
nificantly, the S4 vs. S1 pair had the largest number of
mutually relevant members, and similar results were
found when their expression patterns were compared via
heatmaps (Fig. S18).

Bioinformatic analysis of the matched DEGs and DAPs
We further performed GO distribution analysis of these

members, and the enriched outputs of their biological
processes, molecular functions, and cellular components
were presented (Fig. 10A and Table S17). The S4 vs. S1
group had the most abundant DEGs or DAPs, followed by
the S3 vs. S1 pair. Regarding all three comparisons,
oxidation-reduction process and metabolic process
occupied the largest proportion, and the integral com-
ponent of the membrane and oxidoreductase activity were
the main categories in both the S3 vs. S1 and S4 vs. S1
pairwise comparisons. We found that seven GO terms
were significantly enriched in the S2 vs. S1 pair, among
which the abundance changes of DAPs related to trans-
ferase activity agreed with the transcription levels. The
proportions of three GO classifications with the two
omics datasets were compared and illustrated by a double
pie chart (Fig. S19).

The regulated genes (differentially expressed at both the
mRNA and protein levels) were classified into different
KEGG pathways, where the screening criterion was a p
value less than 0.05 (Fig. 10B and Table S17). The pha-
gosome and glutathione metabolism were significantly
modulated in the S2 vs. S1 comparison. With regard to
the S3 vs. S1 group, the members were mainly involved in
carotenoid biosynthesis as well as glyoxylate and dicar-
boxylate metabolism. For the S4 vs. S1 pair, we discovered
that the most universally enriched pathways were linked
to metabolic processes such as fatty acid metabolism and
α-linolenic acid metabolism. The expression abundances
of DEGs and DAPs associated with fatty acid metabolism
and fatty acid biosynthesis were all downregulated.

DEGs and DAPs involved in flavonoid biosynthesis and
fatty acid metabolism
Classification and annotation of the transcripts and protein

species related to the “flavonoid biosynthesis” and “phenyl-
propanoid biosynthesis” pathways were completed to char-
acterize their functions more comprehensively (Table S17).
The results indicated that 20 genes or proteins were differ-
entially regulated, among which six members corresponded
to peroxidases. Three members belonged to CADs and were
all downregulated in the S4 vs. S1 group. Two members were
F3Hs, and one unigene (Cluster-7410.85148) therein was
upregulated in the comparison of S2 vs. S1, while its corre-
sponding protein was downregulated. Genes annotated as
cinnamoyl-CoA reductase, F5H, 4CL, COMT, and FLS were

Fig. 9 Enrichment analysis and protein networks of WGCNA modules in developing C. oleifera seeds. A GO circle plot displaying protein
annotation enrichment analysis. B The top 20 KEGG pathway enrichment categories of these proteins. Detailed information is listed in Table S14.
C Cytoscape represents the top 50 coexpressed proteins in the “indianred” (a) and “tan2” (b) modules. D KEGG pathway enrichment analysis of the
hub proteins
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downregulated at both the mRNA and protein levels in the S4
vs. S1 comparison. In addition, to better understand the
expression profiles of candidate DEGs or DAPs during seed
ripening, their abundances were estimated via hierarchical
clustering (Fig. 10C). The unigene (Cluster-7410.72331) had
the highest expression level at the S4 stage, in parallel with the
corresponding two proteins (peroxidases). The changing
trend of the unigene (Cluster-7410.45764) decreasing from S3
to S4 was opposite the pattern of the homologous protein
(peroxidase). In the current work, 25 members were involved
in several fatty acid metabolism-related pathways (Table S17).
The expression tendencies of DEGs encoding FAB2 and
hydroperoxide lyase agreed with their corresponding DAPs in
the pairwise comparison of S4 vs. S1. In addition, three
members were regarded as ACOX, wherein one unigene
(Cluster-7410.78314) and its cognate protein were down-
regulated in both the S3 vs. S1 and S4 vs. S1 pairs. Moreover,
the unigene (Cluster-7410.63152) was expressed at a higher
level at the S3 stage than at the S1 stage, in contrast to its

corresponding protein (ALDH). The abundances of the uni-
gene (Cluster-7410.69986) and the unigene (Cluster-
7410.66802) were lowest at the S1 stage, and their regulatory
status contrasted with the proteins annotated as
12-oxophytodienoic acid reductase (OPR) and ACOX,
respectively (Fig. 10C).
According to the known metabolic pathways combined

with WGCNA and correlation analysis, five coexpressed
transcripts and proteins (CADs, COMT, FLS, and 4CL)
associated with oil quality during seed ripening of C. oleifera
were screened out, among which one member of interest
(FLS) was selected for the bioinformatics assay. The results
indicated that this protein (TRINITY_DN18738_c0_g2_i1)
was located in the cytosol and contained a specific domain
of 2OG-FeII_Oxy that was conserved in the 2OG-Fe(II)
oxygenase superfamily. Its amino acid sequence was highly
homologous to the FLS sequences from other plants,
including Camellia fraterna (98.53%, AUM57439.1), C.
sinensis (99.41%, ARM53419.1), Camellia nitidissima

Fig. 10 Enrichment analysis and hierarchical cluster heatmap of the coexpressed DEGs and DAPs. A GO analysis of the cognate DEGs and
DAPs in the three pairwise comparisons with the smallest p values (< 0.05) and no fewer than two members. B Abundance patterns of unigenes
related to flavonoid biosynthesis (a) and fatty acid metabolism (b) pathways. Abundance patterns of the proteins related to flavonoid biosynthesis (c)
and fatty acid metabolism (d) pathways. Z-score fold change values are shown on a color scale that is proportional to the abundance of each
member. C KEGG pathway enrichment of the three comparative analyses. The rich factor is the percentage of members out of the total number
detected. The bubble size represents the number of members detected in the KEGG pathway, and the color of the bubble represents the p value
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(82.44%, ADZ28516.1), and Nyssa sinensis (79.70%,
KAA8546373.1). In addition, a phylogenetic tree was con-
structed to further clarify the corresponding characteristics;
the protein clustered with the known proteins of C. sinensis
in a clade, revealing that they shared the most recent genetic
relationship (Figs. S20 and S21).

qRT-PCR validation of differential expression
To verify the reliability of the transcriptomic and pro-

teomic data, 31 representative DEGs among the

coexpressed mRNA and protein profiles potentially
involved in flavonoid and fatty acid anabolism were
selected for qRT-PCR assays (Fig. 11 and Table S18). The
results were in general agreement with those from the
RNA-seq, with a Spearman correlation coefficient of
0.804, indicating that the transcriptome data were able to
reflect transcript abundance in this study. Nevertheless,
the relationship between transcription and translation
levels was not strong, suggesting that proteins had longer
half-lives than mRNAs; the change trends of a few

Fig. 11 qRT-PCR verification of the expression profiles in developing C. oleifera seeds. The relative expression levels of candidate genes were
calculated according to the 2−ΔΔCt method using GAPDH as an internal reference gene. All data represent the mean values ± standard error of three
biological replicates. Different letters above the columns indicate significant differences in seeds at four developmental phases based on one-way
ANOVA (p < 0.05). The blue and yellow colors represent the genes associated with flavonoid biosynthesis (A) and fatty acid metabolism (B) pathways,
respectively. Linear regression between the levels of qRT-PCR data and transcript expression (C) and protein accumulation (D)
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unigenes were similar to those of the proteins they
encoded, implying that our iTRAQ results were basically
accurate and credible.

Discussion
General features of the transcriptome and proteome
In recent years, the breeding objective for C. oleifera has

gradually turned from high yield to high quality; however,
several studies on accumulative regulation related to its
fatty acids or other active ingredients are based solely on
transcriptome sequencing, which cannot provide a com-
plete biometabolic map. As a complementary analysis to
transcriptomics, proteomics mainly delineates the protein
expression profiles to characterize the functional aspects
in living systems32. With that in mind, RNA-seq, iTRAQ,
and GC-MS techniques were applied to preliminarily
decipher the dynamic variation of nutritional components
during seed maturation of C. oleifera from Hainan Island
as well as their possible molecular mechanisms.
In our research, a total of 16,530 DEGs and 1228 DAPs

were identified according to the stated thresholds,
meaning that the data have enriched the current knowl-
edge of the C. oleifera transcriptome and proteome. The
largest number of DEGs was detected in the comparison
of S3 vs. S1, while the most abundant DAPs were recog-
nized in the S4 vs. S1 comparison, implying that greater
changes in biological processes may appear in the mature
phases. Although more than 98% of the differentially
expressed proteins were covered by the transcriptomic
results, poor concordance between the expression levels
of DEGs and DAPs was observed, as reflected by the low
Spearman correlation coefficients. This result was similar
to those reported for potatoes33 and peppers34. A plau-
sible explanation is that the fluctuation of transcription
levels is more rapid than the changes in protein abun-
dance, as the latter is accompanied by posttranscriptional
modification, translational regulation, or the involvement
of splicing events in cells35,36. Simultaneously, KEGG
pathway analysis was performed to better interpret the
complex metabolic networks related to the synthesis and
degradation of flavonoids or fatty acids from the per-
spective of multiomics.

Flavonoid biosynthesis
Flavonoids are a large group of polyphenolic secondary

metabolites that are widespread in spermatophytic plants,
and this group includes flavonols, flavones, flavan-3-ols,
isoflavones, flavanones, and anthocyanidins37. There is
increasing evidence that flavonoid components have med-
icinal properties such as antioxidant activity, anti-
inflammatory activity, antitumor activity, vascular activity,
estrogenic activity, and other biological functions38. Flavo-
noids are products of phenylpropanoid metabolism, which is
considered to be a bridge connecting primary and secondary

metabolism39. More concretely, this regulatory network
begins from phenylalanine with p-coumaroyl-CoA acting as
a precursor and is further channeled into the biosynthetic
pathway of flavonoids through the catalysis of PAL and 4CL,
which reside at critical positions for controlling the flow of
carbon40. The expression levels of unigenes encoding these
two gateway enzymes were downregulated continuously,
and the abundances of their corresponding proteins also
generally decreased along with seed ripening, in line with the
changes in phenylpropanoid content. The involved enzy-
matic candidates annotated with protein and mRNA dif-
ferential expression levels are shown in Fig. 12. Interestingly,
multiple members could be annotated as the same enzyme,
possibly because they belong to different alternative splicing
transcripts as well as specific gene families41.
Three aromatic rings generated by CHS constitute the

basic skeleton of all flavonoids42; only one such corre-
sponding protein was identified in our dataset, and this
displayed a similar regulation pattern that declined with
increasing maturity. Chalcone is subsequently isomerized
to naringenin (flavanone) by CHI, and dihydroflavonols
are further formed with the participation of F3H43. The
peak abundances of F3H proteins and their corresponding
genes were basically in the S1 stage, whereas the CHIs
were identified as having no differences during seed
maturation. FLS is a committed enzyme that converts
dihydrokaempferol, dihydroquercetin, and dihydromyr-
icetin into aglycones (flavonols) by competing at crucial
branch points with DFR44. Phylogenetic analysis showed
that one FLS protein recognized in this work had the most
recent genetic relationship with those of C. sinensis and C.
fraterna, indicating that the FLS gene was relatively
conserved. However, the abundances of FLS- and DFR-
encoded proteins might not be consistently correlated
with the expression levels of their cognate transcripts. The
same situation was reported in a recent profiling study on
leaves at different maturity levels in C. sinensis L45. This
result was largely a consequence of the lag between
mRNA appearance and protein synthesis46. Anthocyani-
din reductase (ANR) and LAR are key downstream
enzymes for the biosynthesis of non-epi- and epi-types of
catechins, afzelechin, and gallocatechin47. Only one
transcript annotated as ANR was found to be expressed at
a low level, and the differences among four developmental
phases were marginal. We also discovered two LAR genes
that were expressed substantially higher at the S1 stage
than at the S4 stage. In addition, HCT has been con-
sidered a reversible enzyme under which p-coumaroyl
CoA can be committed to lignin production. Li et al.48

indicated that the inhibition of HCT expression could
result in the accumulation of flavonoids. In this work,
most structural DEGs encoding HCT were abundantly
expressed at the S3 stage, which might be one of the
factors leading to a decrease in the flavonoid content as
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the seeds mature. Coincidentally, a similar inference was
drawn from the result that in HCT-silenced plants, the
metabolic flux was reoriented to flavonoids through CHS
activity49. To summarize, the overall tendency of these
positive regulatory enzymes related to flavonoid-derived
compound biosynthesis was attenuated with seed matur-
ity at both the proteome and transcriptome levels, con-
firming our metabolic results.
TFs, as proteins dominating the spatial and temporal

changes of genetic transcription, are involved in organism
development. Studies have revealed that certain TFs could
control flavonoid metabolism in various organs or growth
phases of plants50,51. Of particular note, the ternary MBW
complex composed of R2R3-MYB, bHLH, and WD40
proteins regulates flavonoid biosynthesis by activating
some downstream genes encoding CHS, F3H, FLS, and
DFR, leading to the formation of diverse branches52.
Specifically, WD40 proteins are not considered to have
catalytic capability but rather seem to be a docking plat-
form for the regulation of flavonoid synthesis53. In our
research, the expression analysis showed that a MYB gene

(Cluster-7410.73237) and a bHLH protein (TRINI-
TY_DN20453_c0_g2_i1) were significantly upregulated in
three comparisons, and thus, the two members above
might have crucial roles in activating the late flavonoid
biosynthetic genes of C. oleifera seeds. This is possibly due
to the lack of a published genome and the limitations of
current technology, as we only found a few subtypes of
these transcriptional regulators. Even so, our results could
still yield preliminary transcriptomic and proteomic data
support for the coregulatory effects of TFs on flavonoid
biosynthesis.

Fatty acid metabolism
C. oleifera oil shares an extremely similar fatty acid profile

with olive oil, and as such, it has been shown to be superior
to soybean, castor, peanut, and sunflower oils. Therefore, it
is listed among the priority healthy edible oils by the Food
and Agriculture Organization54. Numerous studies have
indicated that this oil is characterized by abundant UFAs
that have significant health-related functions and ther-
apeutic effects55,56. Because of this, systematic investigations
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and practical applications are expanding constantly. In the
current work, a visible alteration in the fatty acid contents of
oil samples was observed, as the contents increased rapidly
at first, attaining a peak at the S2 stage, and then progres-
sively declined. A similar phenomenon has been described
in several oilseed species, i.e., a decrease in lipid content
occurs at the very end of the seed maturation process57,58.
To interpret this, one could consider that maturing seeds
with low moisture content and no more trophic connections
with plants must utilize part of their lipid reserves while
completing oligosaccharide synthesis59. Intriguingly, we also
found that there was a trade-off relationship between the
changes in diverse components, implying possible conver-
sions of palmitic acid to stearic acid, SFAs to UFAs, and
PUFAs to MUFAs during the accumulation of fatty acids.
Past studies have proven that substantial variation in fatty
acid composition is regulated by certain key pathways60,61.
However, information regarding the metabolic mechanisms
underlying fatty acid biosynthesis in C. oleifera on Hainan

Island is still limited. It needs to be stated that we have
previously performed a comprehensive proteomic and
transcriptomic analysis on the mature seeds of this plant by
using a shotgun qualitative approach and RNA-seq techni-
que (Illumina HiSeq X Ten platform) and preliminarily
revealed the characteristics of fatty acids in seeds at the
maturity stage22. On this basis, the present study further
elucidated the dynamic changes in the functional protein
profile and its mRNA transcriptional level during seed
ripening of C. oleifera on Hainan Island via an iTRAQ-based
quantitative method and RNA-seq technology (Illumina
NovaSeq platform). It is hoped that the corresponding DEGs
or DAPs discovered in our experiments will be useful for
identifying some potential regulatory factors and providing
molecular clues for profoundly studying fatty acid metabo-
lism (Fig. 13).
Fatty acid biosynthesis is derived from acetyl-CoA with

a chain length of C16 or C18 and mainly involves two
enzyme systems: acetyl-CoA carboxylase (ACC) and fatty
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acid synthase complex62. This functional network is
initially catalyzed by ACC and FabD to form malonyl-
ACP, and then four committed steps are taken in turn,
requiring the addition of two carbons, under the catalysis
of 3-oxoacyl-[acyl-carrier-protein] synthases III (fabH,
KAS III), 3-oxoacyl-[acyl-carrier-protein] reductase
(fabG), FabZ, and enoyl-[acyl-carrier protein] reductase I
(FabI). The product of the first synthetic cycle, butyryl-
ACP, is the substrate for subsequent elongation rounds,
each of which needs to use one molecule of malonyl-ACP
and release carbon dioxide9. Furthermore, the condensa-
tion from C4 to C16 is carried out through 3-oxoacyl-
(acyl-carrier protein) synthase I (FabB, KAS I) instead of
fabH, while the reaction from C16 to C18 is conducted via
3-oxoacyl-[acyl-carrier-protein] synthase II (FabF, KAS
II). Notably, acyl-CoA, as a lipid metabolic intermediate
that participates in multiple physiological processes, is
generated from free long-chain fatty acids catalyzed by
ACSL63. In our study, these coexpressed transcripts and
proteins showed basically similar change tendencies, first
increasing and then declining with seed maturity, which
was coincident with the fatty acid accumulation pattern.
This means that the important enzymes mentioned above
were positively related to the biosynthesis of fatty acids in
a synergistic manner. Consequently, we speculated that
the synthesis rate of fatty acids in the early period of seed
maturation might be faster than that in the later period,
whereas the consumption of free fatty acids was the
opposite. A similar scenario was found in Camellia che-
kiangoleosa; that is, these fatty acid-synthesizing DEGs
encoding ACC, FabF, FabG, and FabB were more highly
expressed in the low-yield type than in the high-yield type,
indicating a high level of fatty acid generation in the low-
yield type. Thus, the low-yield type had a higher oil
content than the high-yield type64.
For the degradation of fatty acids in mitochondria,

ACAT can facilitate the condensation of two acetyl-CoAs
to yield acetoacetyl-CoA, a common starting substrate for
metabolite production65. We have previously demon-
strated that this protein is the central one in the inter-
action network due to its strong relationships with many
other proteins involved in lipid metabolic processes22.
Two DAPs and five DEGs whose expression levels chan-
ged significantly during seed maturation were also iden-
tified in this work. MFP2 was the second multifunctional
enzyme discovered in the peroxisomal β-oxidation path-
way responsible for chain shortening of carboxylates66.
The rapid accumulation of most MFP2 proteins and their
corresponding mRNAs from the S1 to S4 stages agreed
with the outputs of metabolism tests, indicating that the
S4 stage possessed the lowest content of total fatty acids.
This further illustrated that the enzyme could accelerate
the decomposition rate of fatty acids with increasing
maturity. Our results are in accordance with the findings

in coix seed oil, suggesting that perhaps a similar reg-
ulatory mechanism is involved67. In addition, α-linolenic
acid, which can attenuate a variety of inflammatory
reactions, is typically consumed as part of a dietary sup-
plement68. Reportedly, LOX as a major substrate takes
part in the α-linolenic acid metabolic pathway and can
catalyze linoleate oxidation in higher plants69. In the
present study, we showed that six LOX-encoded genes
were differentially expressed. ADH is capable of pro-
moting the interconversion of alcohols to aldehydes or
ketones, and the reaction requires NAD+ or NADP+ 70.
Following the ripening of C. oleifera seeds, the DEGs
encoding ADH were upregulated gradually at both the
transcriptional and translational levels, peaking at the
S3 stage, in agreement with the GC-MS data and in line
with the prior research conclusion that the observed
increases in ADHs and LOXs were correlated with a
reduction in linoleic acid synthesis67. Conversely, Song
et al.71 demonstrated that the ADH protein decreased
markedly with advanced strawberry fruit maturity. This
discrepancy may be due to genetic, environmental, or
other factors that deserve to be thoroughly explored.
In recent years, TFs belonging to the AP2, B3, DOF,

HD-ZIP, HAP3/CBP, and CHD3 families have been
favored because of their ability to regulate fatty acid bio-
synthesis, thereby paving the way for increasing the yield
and quality of vegetable oils. Instead of acting alone, they
form a metabolic network. In our study, the proteins
annotated as AP2 and HD-ZIP were all downregulated
(lowest at the S1 stage). Ibáñez-Salazar et al.72 considered
that the overexpression of DOF-type TF genes would
increase lipid production in Chlamydomonas reinhardtii
seeds. Unfortunately, although multiple differentially
expressed DOF unigenes were detected, we could not find
any of their homologous proteins in this experiment,
possibly owing to accumulated transcripts not always
being converted to cognate proteins. The investigation of
TFs associated with fatty acid metabolism can provide a
reference for varietal improvement in C. oleifera, but
there are still some limitations: the structural character-
istics of many TFs are unclear, and the functional
mechanisms of downstream target genes remain to be
clarified.

Potential candidate genes and proteins detected by
WGCNA and correlation analysis
Genes or proteins often participate in biological processes

via coordinated expression73; hence, we employed the
WGCNA method to construct coexpression networks
separately and to identify several key modules associated
with flavonoid, oil, and fatty acid metabolism in C. oleifera
during seed ripening. The results of this study could also
provide new insights into the corresponding molecular
mechanisms. Regarding the transcriptome data, the

Ye et al. Horticulture Research           (2021) 8:157 Page 22 of 26



indianred and tan2 modules were found to contain some
high-degree hub genes that played critical roles in the net-
work. Significantly, two TF coding genes with the same
expression pattern of continuous decrease and then increase
were screened out; MIKC_MADS (Cluster-7410.24253)
belonging to the type II model is a member of the MADS-
box TF superfamily whose genes are involved in virtually all
aspects of plant development, especially in regulating bio-
synthesis of secondary metabolites in eukaryotes74. Meng
et al.75 indicated that one MADS-box gene (GlMADS1)
could control flavonoid production in Ganoderma lucidum.
Li et al.76 reported that another MADS-box gene
(EgMADS21) might modulate TAG assembly and PUFA
accumulation in the maturation of oil palm fruit. ARR-B
(Cluster-7410.115051) is characterized by a receiver domain
followed by a DNA binding domain (GARP motif), thus
acting as a TF77. The specific GARP TF family, which is
distantly related to the MYB superfamily, contains genes
with multiple plant functions78. Petridis et al.79 demon-
strated that the GARP gene (At5g45580) was able to affect
phenylpropanoid metabolism under low-temperature con-
ditions, favoring the accumulation of flavonoids. It can be
speculated that these two genes may also have similar
functions. For proteome data, four distinct modules
(magenta, midnightblue, black, and yellow) showed obvious
correlations with the examined traits, and B3, bHLH, and
AP2 proteins were found within the subnetworks built from
the top proteins. This result is also entirely consistent with
the prior analysis outcome of the present work. Considering
this result, molecular biology research on these TF-related
unigenes (proteins) recognized in our investigations should
be carried out thoroughly in the future to fully understand
the genetic regulators of flavonoid, oil, and fatty acid ana-
bolism in C. oleifera seeds.
Remarkably, several research studies have confirmed that

flavonoids have negative regulatory effects on fatty acid
accumulation. Flavonoids can restrain fatty acid generation by
competing for synthesizing substrates and inhibiting the
expression of critical reductases FabG and FabI80. However,
the absence of flavonoids may cause the enhancement of
auxin, which makes plant seeds utilize more energy for car-
bon source transformation, finally leading to an increase in
fatty acid content81. At the same time, our study also found
that there was a significant negative correlation between the
total flavonoid content and oil content with increasing
maturity of C. oleifera seeds. Fortunately, five unigenes and
eight proteins identified in this work were suggested to be the
key factors involved in the regulation of flavonoid and oil
anabolism. Among these, ADT encoded by the unigene
(Cluster-7410.66059) is able to transform the prephenate
produced from the shikimate-chorismate pathway into phe-
nylalanine, which is not only the precursor of flavonoid bio-
synthesis but can also synthesize important neurotransmitters
together with tyrosine, participating in fat metabolism82,83. In

addition, AAT encoded by the unigene (Cluster-7410.42278)
catalyzes the reversible transfer of the amino group of
aspartate or glutamate to 2-oxoglutarate or oxaloacetate,
which can then be converted to phosphoenolpyruvate asso-
ciated with flavonoid biosynthesis, and acetyl-CoA related to
fatty acid biosynthesis84,85. At the protein level, CHIL is a
component of flavonoid metabolon that has been shown to
physically interact with CHS of the same plant species by
yeast two-hybrid and luciferase complementation imaging
assays86. Moreover, this enzyme and fatty acid-binding pro-
tein (FAP) belong to different types of CHI polygene family
members, and FAP can affect the biosynthesis of fatty acids in
plant cells and their storage in developing embryos87. GT
(TRINITY_DN19890_c0_g2_i1) can have an impact on the
synthesis and metabolism of fatty acids through the glycolysis
pathway, and Tohge et al.88 reported that this transferase
played an important role in flavonoid biosynthesis. This study
presented a dynamic picture of the maturation process of C.
oleifera seeds on Hainan Island by using an exploratory
multiomics dataset combined with WGCNA and correlation
analysis. Some key candidate genes or proteins participating
in flavonoid biosynthesis and fatty acid metabolism were
screened out, and their temporal expression specificities were
also revealed. Nevertheless, the specific conversion relation-
ships and corresponding modulatory mechanisms of these
abovementioned genes or proteins are worthy of further
analysis and verification through genetic engineering techni-
ques to lay a foundation for molecular breeding and cultiva-
tion of new varieties and to improve the quality of C. oleifera
oil produced.

Conclusions
In summary, the present study applied RNA-seq tran-

scriptome analysis in conjunction with iTRAQ pro-
teomics technology to probe the dynamic changes in
reserve accumulation of C. oleifera seeds at different
stages of maturity. In addition, we examined the potential
regulatory mechanisms concerning the biosynthesis and
metabolism of flavonoids and fatty acids. Many functional
transcripts (16,530) and protein species (1228) were
recognized to have a significantly changed pattern, among
which 317 DAPs were covered by the transcriptomic
results. The regulatory networks of important metabolites
were discussed in combination with the expression pro-
files of structural genes (proteins) or TFs and the contents
of corresponding compounds, revealing that the synthesis
ability of flavonoids was attenuated during seed ripening,
while that of fatty acids increased initially and then
declined. We further identified two gene modules
(indianred and tan2) and four protein modules (magenta,
midnightblue, black, and yellow) related to flavonoid, oil,
and fatty acid anabolism by using WGCNA. Notably,
based on the known metabolic pathways and WGCNA
combined with a correlation analysis, five coexpressed
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transcripts and proteins (CADs, COMT, FLS, and 4CL)
were screened out, among which one member of interest
(FLS) was selected for the bioinformatics assay. Finally,
qRT-PCR validation indicated that our sequencing results
were reliable. Consequently, the data provide a perspec-
tive for fully understanding the roles of genes and proteins
that contribute to the oil quality of C. oleifera from Hai-
nan Island. In addition, the screening of candidate genes
or proteins that underwent remarkable variation in rela-
ted pathways could serve as a foundation for marker-
based breeding of other oil-pressing plants.
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