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Applications of deep-learning approaches in
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Abstract
Deep learning is known as a promising multifunctional tool for processing images and other big data. By assimilating
large amounts of heterogeneous data, deep-learning technology provides reliable prediction results for complex and
uncertain phenomena. Recently, it has been increasingly used by horticultural researchers to make sense of the large
datasets produced during planting and postharvest processes. In this paper, we provided a brief introduction to deep-
learning approaches and reviewed 71 recent research works in which deep-learning technologies were applied in the
horticultural domain for variety recognition, yield estimation, quality detection, stress phenotyping detection, growth
monitoring, and other tasks. We described in detail the application scenarios reported in the relevant literature, along
with the applied models and frameworks, the used data, and the overall performance results. Finally, we discussed the
current challenges and future trends of deep learning in horticultural research. The aim of this review is to assist
researchers and provide guidance for them to fully understand the strengths and possible weaknesses when applying
deep learning in horticultural sectors. We also hope that this review will encourage researchers to explore some
significant examples of deep learning in horticultural science and will promote the advancement of intelligent
horticulture.

Introduction
Horticultural crops are an important part of our daily

life and mainly include fruits, vegetables, materials for
beverages and fragrances, herbal medicine, and orna-
mental plants. With the progress of modern society,
horticultural crops not only play an economic role in
providing foods but also play a social role in shaping
human culture, beautifying landscapes, and influencing
the lifestyles of humans1,2. This change in roles, which is
becoming increasingly important, has driven horticultural
workers to produce more varieties and better products. It
also encourages horticultural researchers to do more
practical work to improve the functional applications of
horticultural crops.

However, in the process of planting horticultural crops,
much delicate work needs to be done manually and relies
heavily on experienced workers completing jobs, such as
pruning branches, thinning flowers and fruit, picking fruit,
and preventing insect and pest infestations. Unfortu-
nately, many young people are no longer engaged in
gardening; however, with the progress of technology,
many advanced and automatic instruments and equip-
ment have been developed and applied to horticulture. To
meet the forthcoming demands and challenges, horti-
cultural researchers need to divert their attention towards
new technologies to help make better orchard manage-
ment decisions and revolutionize horticultural pro-
ductivity. Therefore, producing high-quality fruits,
vegetables and ornamental crops by employing advanced
technologies, equipment and systems to reduce the use of
human force and to improve its efficiency is the primary
goal of intelligent horticulture. The rapid, accurate and
automatic identification of horticultural crops and the
acquisition of planting and postharvest data are important
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directions of intelligent horticulture3,4. Based on new
computer technologies and data analysis methods, the
development of intelligent systems has provided golden
opportunities to improve the cultivation and management
of horticulture crops4.
The collection of information from orchards or groves

has been increasingly facilitated in the past few decades
owing to the advancement of various types of sensors in
the range of digital horticulture3. Modern techniques,
including remote sensing, which is implemented by
means of unmanned aerial vehicles (UAVs), planes and
satellites; the Internet of Things (IoT); thermal and near-
infrared cameras; and X-ray imaging technology, have
been widely used to collect different kinds of digital
information from horticultural crops3,5. Based on the
collected data, researchers have built models and have
applied them to actual production processes. For example,
when the growth of horticultural crops is monitored, the
growth status of crops can be judged by the established
model so that optimal management decisions can be
made to optimize the growth process.
However, with the rapid increase in the capability,

miniaturization, and sophistication of imaging sensors, a
large amount of digital horticultural information has been
collected3,5,6; therefore, the horticultural science com-
munity is facing inundation by a large amount of data, and
the data themselves contain various irrelevant and
redundant information6,7. Thus, creating suitable analy-
tical technologies for such data is extremely important,
and the need to deal with and to extract useful features
from such uncleaned data is urgent. It is also a practical
challenge to convert these technologies into real-world
applications.
To date, different kinds of data analysis approaches,

including machine-learning approaches, such as partial
least squares (PLS)8, artificial neural networks (ANNs)9,
support vector machines (SVMs)10, random forests
(RFs)11, and k-nearest neighbors (KNNs)1,12–14, have been
developed to tackle the challenges caused by the large
amount of heterogeneous data. These approaches have
shown great value in processing big data. As a subset of the
machine-learning approaches, deep learning has also been
widely employed, and has attracted more attention from
various domains, such as agricultural production15–17,
food science7,18, robotics19,20, and human action and
speech recognition21,22. As an emerging versatile tool for
assimilating large amounts of heterogeneous data, deep
learning is able to provide reliable prediction results for
complex and uncertain phenomena6. In contrast to tra-
ditional machine-learning approaches, deep learning con-
tains “deeper” layers in its network structures that provide
hierarchical representations for the data by means of
various convolutions16,23. Deep-learning approaches have
shown significant advantages in processing different kinds

of big data collected by digital cameras and spectroscopy
and have achieved better performance and higher preci-
sion than other machine-learning approaches.
Presently, deep learning has already been introduced to

horticultural sectors to analyze RGB and spectral images
collected from horticultural crops9,11. The authors were
encouraged to prepare this survey because deep learning
has been applied in horticultural science with promising
results in ~70 studies. Moreover, since understanding the
principles and practical applications of deep learning is
not an easy task for researchers and workers in horti-
cultural sectors, many studies are still in development.
The aim of this survey is to comprehensively present an
overview of the most recent research advances in the
application of deep learning to horticultural sciences and
provide overall guidance for researchers in this field.

Brief overview of deep learning
Machine learning is a promising tool for data proces-

sing24. However, traditional machine-learning methods
often require manual feature extraction. With the increase
in the amount of large datasets and the advent of graphics
processing units (GPUs), algorithmic techniques and
methods have been steadily improved. Deep learning was
extended from classical machine learning by adding some
“deeper” (more complex) structures to models to auto-
matically achieve feature extraction from raw data and has
shown better performance than traditional machine
learning for some classification and prediction pro-
blems24. By applying different levels of abstraction layers,
various nonlinear functions can be applied to allow data
to be represented in a hierarchical way16,25,26. This char-
acteristic has proven useful in improving the modeling
performance for many large-scale data analysis tasks27.
Deep learning is essentially a kind of nonlinear infor-

mation processing technique based on representation
learning and pattern analysis. Typically, deep-learning
models are built to refine multilevel representations with
multilayer neural networks. Neural networks are generally
composed of multiple neurons arranged in layers. Two
adjacent layers are connected by neurons in terms of
weights that need to be trained to learn maps, which are
usually complex, from inputs, which are generally pre-
extracted and processed data or features, to outputs or
labels. Neurons that essentially represent various non-
linear functions and transformations are used to build
complex models. By connecting more layers of neurons to
form more complicated models that allow massive parallel
connections, deep learning can solve complex real-world
problems in a rapid and effective way16,28.
The property of a highly hierarchical structure along

with the massive learning capability of deep-learning
models enables them to carry out predictions and classi-
fications particularly well with good flexibility and
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adaptability to a wide range of highly complicated data
analysis tasks28. With the robust capability of automatic
feature learning, many complex problems in the field of
horticultural science can be solved in an effective and
rapid way by utilizing deep-learning methods, including
various recognition29–31, yield estimation32,33, quality
detection27,34, stress phenotyping detection35,36, growth
monitoring37,38, and other applications39,40. In the next
section, we introduce these applications in detail.
Convolutional neural networks (CNNs) and their

derived models are considered key deep-learning
approaches in the field of artificial intelligence and have
led to breakthroughs in image processing and analysis.
CNNs are a family of multilayered neural networks con-
stituting a class of deep, feed-forward artificial neural
networks (ANNs) that have been successfully applied to
computer vision applications5,25,26. CNNs are currently
recognized as one of the most significant machine-
learning approaches for big data analysis in a large vari-
ety of research areas28. Of our surveyed papers, the
application of CNNs and their derivatives in horticulture
accounts for a large proportion (65 papers, 92.86%).
CNNs typically contain a number of common compo-
nents, including convolution, pooling and fully connected
layers, in different configurations that are connected
successively to perform some complex-learning tasks.
A typical deep CNN (DCNN) architecture is shown in

Fig. 1. To correctly classify different species of flower
images, by acquiring previous knowledge from LeCun
et al.24, Prasad et al.29 proposed a multistage CNN

architecture composed of one input layer, four convolu-
tional layers with various window sizes, five rectified lin-
ear unit (ReLU) components, two stochastic pooling
layers, one densely connected layer and one layer of
softmax regression output29. The input of a typical CNN
is generally two-dimensional image data. The convolution
layers are the core of a whole CNN and are composed of
2-dimensional kernels with varied weights that are moved
over the image and perform feature extraction. In Fig. 1,
the sizes of the four convolution kernels are set to 16*16,
9*9, 5*5, and 5*5. After convolution, a pooling layer may
be used to compress the amount of information by
reducing the dimensionality of the inputs to avoid over-
fitting. This process is achieved by substituting multiple
neurons within a subsampling window with a single
output neuron. In Fig. 1, 2*2 stochastic pooling is used in
which every 2*2 neuron in the original layer is substituted
by only one random value taken from the neuron in the
new layer, which reduces the number of neurons in the
new layer by a factor of 4 and makes the calculation
converge quickly. Finally, these features are fed to some
fully connected layers for classification.
Generally, the choice of hyperparameters in training

deep-learning models to a large extent determines the
performance of the trained model. Important hyperpara-
meters include the network architecture (such as the
numbers of neurons in hidden layers, the structures of
convolution and pooling layers and the number of layers),
and contain the learning rate, weight initialization
and activation function17. Although self-established

Fig. 1 A DCNN architecture. The model contains one input layer, four convolutional layers, four ReLU components, two stochastic pooling layers,
two fully connected layers and one softmax regression output layer. Source: ref. 29
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architectures may be innovative and groundbreaking, they
usually require a high level of computer literacy that is
difficult for normal horticultural researchers to use. Thus,
researchers often begin with a pretrained architecture that
has been shown to perform well across a large variety of
data structures and problems and adapt it to the problem
considered, which has been demonstrated as a reliable and
feasible common practice17,31. As Fig. 2 shows, feature
extractors were created by the pretrained network for
chrysanthemum recognition31, the classifier consisted of
two fully connected layers (each having 4096 hidden
neurons), batch normalization units were used to increase
DCNN performance and stability, a global averaging
pooling layer was adapted to images with different input
sizes, and a dropout layer was used to prevent the CNN
model from overfitting.
Examples of CNN architectures that have been used for

classification or regression tasks include LeNet36,41,
AlexNet30,42, VGGNet43–45, GoogLeNet46, and
ResNet47,48 (the typical CNNs and corresponding para-
meters are shown in Table 1). For instance, Fig. 3 shows
visual examples of flower images after each step of the
Visual Geometry Group Network 16 (VGG-16) process
for chrysanthemum cultivar recognition31. The network
was composed of five convolutional layers, each of which
was followed by one pooling layer. The convolution layers
were used as filters to extract features from the input
images, and the output from each convolution layer was
downsampled by a pooling layer for dimensionality
reduction. After the processes of five successively con-
nected convolution and pooling layers were performed,
two fully connected layers were used as a classifier to
exploit the learned highly abstract features to classify the
input images into predefined categories or to conduct

some numerical predictions7,16. The parameters (the
number of channels, activation functions, kernel size,
padding strides, etc.) inside the convolution layers and the
selection of the applicable models should be optimized
according to the particular problem7. For example, when
the VGG network was created, it was the deepest network
available and showed competitive performance with only
3*3 stacked convolution kernels, which is better than
using a large convolution kernel. In addition, the residual
network (ResNet) incorporated local residual connections
that not only improve its learning speed but also allow the
network to become significantly deeper for extracting
more high-level features, which enable ResNet to have a
higher predictive power.
Another deep-learning model widely used for proces-

sing sequential or time-series data is the recurrent neural
network (RNN)39,49, which has been extensively applied in
price prediction49, natural language processing50, speech
recognition51, and other fields52. The basic principle
behind an RNN is that previous information can be
memorized by a network and utilized to calculate the
current output. To do this, the input of the hidden layer
comprises both the output from the hidden layer at the
last moment, which represents the memorized previous
information, and the output of the current input layer39.
The tanh activation function is normally adapted in hid-
den neurons, while for output neurons, the activation
function is generally selected according to the problem to
be solved49. The feedback from the output neurons to the
hidden neurons is the only loop in the RNN. The diagram
of the RNN structure used for forecasting horticultural
product prices is displayed in Fig. 4.
Figure 5 shows another deep-learning architecture named

SAE-FNN, which is composed of a stacked autoencoder

Fig. 2 A DCNN framework. The performance and stability are improved by the batch normalization layer. Overfitting is prevented by the dropout
layer. Global average pooling can adapt to different input image sizes. Source: ref. 31
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(SAE)53 and a fully connected feed-forward neural network
(FNN). The network was used to predict the soluble solid
content (SSC) and the firmness of a pear27. SAE uses an
unsupervised approach with a basic structure consisting of
an autoencoder, which is used for extracting features from
the input data by the nonlinear processing of deep neural
networks27,53. As Fig. 5a shows, the input was encoded into a
lower dimensional vector, which was then extended again by
a decoder to reconstruct the original input. Therefore, the
vector, in which the decoding part is removed and the
encoding part is retained, is used as the extracted feature of
the input. The extracted features output from the trained
network are fed to the FNN to form an SAE-FNN network
for prediction tasks (shown in Fig. 5c).

In addition to being used for classification and regres-
sion tasks, deep-learning techniques have also been used
for image segmentation tasks. The R-CNN method is a
two-stage deep-learning object detection method (a
computer vision technique for locating instances of
objects in images or videos) that combines a CNN with
the region proposal method. At present, the Mask R-CNN
(mask region-based CNN) is the state-of-the-art R-CNN
method in the field of image segmentation. By adding a
branch, Mask R-CNN extends Faster R-CNN in order to
exactly generate a high-quality segmentation mask on
each region of interest (RoI)54,55. Figure 6 shows the
architecture of the Mask R-CNN, which consists of two
parts: the backbone (a feature pyramid network (FPN),

Fig. 4 Structure of an RNN. The information of the RNN propagates upwards from the initial input state. The only feedback of data is from the
output neurons to the hidden neurons. The activation functions for the hidden and output neurons are the hyperbolic tangent and pure linear
functions, respectively. Source: ref. 39

Fig. 3 VGG-16 model for image recognition. a The input images. b Visualization of the feature extraction results after each convolution (conv),
pooling (pool) or fully connected (fc) layer. c The top-k prediction results. Source: ref. 31
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which is a fully convolutional network) for feature
extraction and the network head (a small network sliding
over the feature map) for bounding-box (a compact rec-
tangular box that contains the object) recognition and
mask prediction. In this figure, the Mask R-CNN model
can detect and segment fruit automatically, and the mask
images of the fruit are output from the model with
bounding boxes. Moreover, Mask R-CNN can extract
object regions from the background at the pixel level.
From the brief introduction of several commonly used

models described above, we know that deep-learning tech-
nology has a powerful role in image classification, regression
and segmentation. Furthermore, there are also many other
kinds of network structures that are applied, such as single
shot multibox detection (SSD)56, long short-term memory
(LSTM)32, you only look once (YOLO, source code is
available at: http://pjreddie.com/yolo/)57, regions-CNN (R-
CNN)58, fast region-based CNNs (Fast R-CNN, source code

is available at: https://arxiv.org/abs/1504.08083)33, faster
region-based CNNs (Faster-RCNN, source code is available
at: https://github.com/shaoqingren/faster_rcnn (in
MATLAB) and at https://github.com/rbgirshick/py-faster-
rcnn (in Python))44,59,60, and so on. In addition, the pro-
cessed data types are not simply limited to RGB images but
can also include any other data forms, such as video,
hyperspectral images, and spectral data.
Finally, it is helpful to introduce and describe some of

the evaluation metrics used to examine network perfor-
mance. Some performance metrics that were used in our
reviewed papers are defined as follows:

Classification accuracy (CA): This is a measure of the
number of correctly classified images/classes over the
total number of images/classes for classification results.
For multiclass classification problems, CA is averaged
over all the classes.

Fig. 5 The SAE-FNN architecture. a The autoencoder structure, b SAE is pretrained in an unsupervised manner with random pixel spectra, c SAE-
FNN is fine-tuned in a supervised manner with mean spectra and firmness (or SSC). Source: ref. 27

Fig. 6 The Mask R-CNN architecture. The architecture consists of two parts: the backbone and the network head. Source: ref. 68
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Precision: The fraction of true positives (TP) over the
sum of the TP and false positives (FP). P= TP/(TP+ FP).
Recall: The fraction of TPs over the sum of the TPs and
false negatives (FN). R= TP/(TP+ FN).
F1-score (F1): The harmonic mean (the weighted
average) of precision and recall. The F1-score varies
between 0 (worst) and 1 (best). F1= 2 * (TP * FP)/(TP+
FP).
Root-mean square error (RMSE): Root-mean square of
the differences between the predicted values and
observed values.

Applications of deep learning in horticulture crops
Deep-learning technologies have been successfully

applied in the horticultural domain with promising
results. The application fields of deep-learning approaches
in horticultural sectors include variety recognition, yield
estimation, quality detection, stress phenotyping detec-
tion, growth monitoring and others. In this section of the
paper, we review the specific problems addressed in the
literature, the architectures and models implemented, the
sources of data employed, the overall performance
achieved on the basis of the metrics adopted, the com-
parisons with other methods, and the links to or sources
for the original code for some examples. However, it is
difficult to compare different studies because the datasets
and performance metrics used in different studies gen-
erally vary. Thus, in this section of the paper, we focus
only on comparisons of techniques applied on the same
dataset within the same research paper so that the same
metrics are used. Some other evaluations and compar-
isons among different technologies from different papers
can be found in “Summary and discussions” subsection.

Recognition and classification of horticultural crops
Automatic recognition and classification of horticultural

crops according to different features are the major chal-
lenges in horticultural research. The recognition of hor-
ticultural crops is a challenging task due to the great
variety of crop types. There are at least 91 species of fruit-
bearing plants, >200 vegetable plants, and >6000 orna-
mental cultivars, and many cultivars are created and dis-
appear each year2. Moreover, horticultural crops can
mutate in many ways, resulting in a large amount of
intraclass variation. For example, similar features can be
shared within flower classes, i.e., different species of
flowers can share similar shapes, colors and appearances.
Therefore, classifying horticultural crops is a multi-
classification problem. Even though it is feasible to con-
duct manual classification, it is generally very time
consuming and error prone when dealing with a large
number of samples43. Therefore, the application of deep-
learning methods to species or cultivar recognition and
classification will be an unprecedented breakthrough in

horticultural research due to their high speed and robust
recognition performance31.
Currently, due to the successful application of CNNs,

the accuracy of image classification and event prediction
has been greatly improved. With ImageNet, which is an
open data resource (http://www.image-net.org/), five
categories of vegetables, including broccoli, pumpkin,
cauliflower, mushrooms and cucumber30, were used to
train a DCNN (the AlexNet model). The experimental
results showed that the accuracy rate of this DCNN model
on the vegetable image dataset reached 92.1%, which was
a significant improvement compared with the SVM clas-
sifier (80.5%) and the back propagation (BP) neural net-
work (78%) methods. Prasad et al.29 utilized 9500 images
from the KLUFD and OUFD flower datasets to train a
CNN model with a system architecture of four convolu-
tion layers with different filtering window sizes and
employed a stochastic pooling technique for classification
(see Fig. 1). The average flower recognition accuracy rate
was 97.78% for the proposed CNN model, which is higher
than those of other advanced classifiers. For flower species
classification, Cıbuk et al.61 employed the concatenated
AlexNet and VGG-16 models to extract features, which
were then used as the input to the minimum redundancy
maximum relevance (mRMR) method for selecting some
higher abstract features. The selected abstract features
were fed into the SVM classifier that was combined with a
radial base function (RBF) kernel to obtain the final
classification results. They attained a 96.39% accuracy
value on Flower17, and the average accuracy was 95.70%
on Flower102. Hiary et al.43 built an excellent two-step
deep-learning-based model also aimed at flower type
identification. The robust classifier contained two steps:
an FCN (fully convolutional network) method, which was
initialized by the VGG-16 model to segment the flower
regions, and a CNN method, which was initialized by
segmenting the FCN to classify the flower classes. Com-
pared with other approaches, the proposed model
achieved better learning performance and simplified the
flower classification task, with classification accuracies of
98.5%, 97.1%, and 99.0% on Oxford 17, Oxford 102, and
Zou–Nagy, respectively.
At present, several open-access image datasets with

different kinds of horticultural crops, such as ImageNet
and OUFD, have been collected by researchers. These
large-scale image datasets are widely used and provide
plenty of feature information for training deep neural
network models for horticultural crop recognition.
However, since horticultural crop recognition systems are
still in the development stage and have not been estab-
lished on a large scale, most researchers prefer to
experiment with their own collected image sets. Liu
et al.31 proposed a deep-learning model with a VGG-16
network to recognize large-flowered chrysanthemums
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from two datasets collected by their own group. Dataset A
comprised 14,000 images collected from 103 cultivars by
an automatic image acquisition device in 2017 and was
utilized to train a model and to determine the model’s
calibration accuracy (the top-5 rate, which is the fraction
of test images for which the correct label is within the five
labels considered most likely by the model, was over 98%).
Dataset B contained 197 images of the same cultivars as in
dataset A and were obtained with a digital camera in
2008–2010 and 2016; the images were imported into the
established classifier to test the model’s generalization
ability (the top-5 rate is above 78%). In other applications,
different models for classifying three different plum62

varieties (Angelino, BlackSplendor and Owent), six differ-
ent grape63 varieties (Tinta Roriz, Tinta Amarela, Tinta
Barroca, Tinto Cão, Touriga Nacional and Touriga
Franca) and seven different olive64 varieties (Arbequina,
Changlot Real, Arbosana, Picual, Lechín de Sevilla, Ocal
and Verdial de Huévar) were proposed and used DCNNs.
The experimental results showed that the proposed sys-
tem achieved remarkable behavior, with an accuracy rate
ranging from 91 to 97% in plum variety classification. The
highest accuracy was 95.91% when applying the
Inception-ResNet-V2 architecture to classify olive vari-
eties from 2800 fruits, and the network modified from
AlexNet for grape variety identification achieved a test
accuracy of 77.30%. In addition to using RGB images,
Fernandes et al.65 used spectral information to separate
the two main grapevine varieties (Touriga Franca (TFvar)
and Touriga Nacional (TNvar)). Datasets with a total
number of 35,833 spectra from 64 varieties and 626 plants
were collected to establish the classification model. The
results showed that each model had its own merits: for
TNvar, the SVM model achieved better experimental
results than the CNN, and 81.9% of the TNvar spectra and
63.0% of the non-TNvar spectra were correctly classified.
For TFvar, the CNN achieved the best results, and the
correct classification percentages of the TFvar and the
non-TFvar spectra were 93.8% and 91.6%, respectively.
In addition to variety identification, deep learning has

also been widely used in the automatic detection of
orchard fruits. The development of a reliable and accurate
fruit detection system is the first step in creating an
autonomous harvesting system that is a promising pro-
spect of future agricultural applications. To develop effi-
cient and robust fruit detection systems for orchards,
many researchers have performed related studies to
address some complex conditions, such as illumination
variation, leaf shading, and changing appearance47,66, in
working environments.
To conduct robust and efficient detection and seg-

mentation of fruits and branches in apple orchards, Kang
and his team proposed a series of neural network fra-
meworks based on deep learning, such as LedNet (a

network that utilized a FPN combined with atrous spatial
pyramid pooling (ASPP) to improve the model’s detection
performance) with ResNet-10167 (a lightweight back-
bone), the DaSNet model (a network, which adopted a
gated feature pyramid network (GFPN) combined with
ASPP to enhance the feature extraction capability of the
model) with ResNet-10166, the DaSNet model with
ResNet-5066, the DaSNet-V2 model with ResNet-10147,
and the DaSNet-V2 model with ResNet-1847 (source
code: https://github.com/tensorflow/models/tree/master/
research/slim)66. The experimental results showed that
LedNet with ResNet-101 achieved an accuracy of 86.4%,
an F1 score of 0.849 and a recall score of 84.1% for the
detection of apples in orchards, and DaSNet with ResNet-
101 reached 77.2% and 87.6% for the semantic segmen-
tation of branches and apples67.
Semantic segmentation in computer vision is the seg-

mentation of different objects at the pixel level where each
pixel is uniquely assigned to one object category of the
image. In an instance segmentation task, all pixels asso-
ciated with every object in the image should be dis-
tinguished and annotated. Instance segmentation on each
fruit is necessary because it can provide abundant geo-
metric property information (such as size and shape), and
such parameters can be utilized to identify the poses of
the fruits, especially for overlapped or shaded fruits. Then,
they proposed an improved deep neural network called
DaSNet-V247. The DaSNet-V2 model with ResNet-101
obtained a recall score of 86.8%, a precision score of 88%,
a branch segmentation accuracy of 79.4%, and an apple
segmentation accuracy of 87.3%. DaSNet-V2 can effi-
ciently and robustly perform visual sensing for automatic
harvesting in apple orchards. Furthermore, Gené-Mola
et al.68 performed a study on apple 2D detection with
Mask R-CNN and 3D location utilizing structure-from-
motion (SfM) photogrammetry. By testing 11 normally
grown Fuji apple trees comprising a total number of 1455
apples, the system achieved encouraging performance
with an F1-score that increased from 0.816 for 2D
detection to 0.881 for 3D detection and location.
Since fruits and vegetables have different shapes and

colors, some scientists have conducted further experi-
ments with specific horticultural products and tried to
extend models to the identification and classification of
other products.
Mao et al.69 proposed an automatic cucumber recog-

nition model that combined a multipath CNN (MPCNN)
with a SVM and color component selection69. The
detection results showed that the truly classified rate (the
rate of pixels correctly classified as true cucumber pixels)
for cucumber images was above 90% and the falsely
classified rate (the rate of pixels misclassified as true
cucumber pixels) was <22%. Quiroz et al.70 proposed a
model built on a CNN to recognize blueberry plants, and
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the detection results of the proposed model were as fol-
lows: 86% accuracy, 86% precision, 88% recall, and 0.86
F1 score. In another study, Mask R-CNN was applied to
improve the detection accuracy of fruits by realizing
instance segmentation and the picking point for a straw-
berry harvesting robot54. The detection results from 100
test strawberry images were obtained and are as follows:
95.41% recall, 95.78% precision, and 89.85% mean inter-
section over union (MIoU). For automatic localization
and pose estimation, Giefer et al.56 presented an SSD
model, named Deep-6DPose (an end-to-end deep-
learning framework that recovers a 6D object pose from
a single RGB image), that was applied to objects with
irregular shapes to establish an automatic fruit grading
and packing system.
To acquire accurate and rapid phenotypic trait data,

Csillik et al.71 and Ampatzidis et al.72 combined UAV
multispectral imagery with deep-learning methods to
detect citrus. The combination of a CNN workflow that
utilizes the Google TensorFlow API (https://www.
tensorflow.org/api_docs) with a simple linear iterative
clustering (SLIC) algorithm was employed by Csillik
et al.71 and achieved a 96.24% accuracy; the YOLO-V3
model (source code: https://github.com/mystic123/
tensorflow-yolo-v3) was used by Ampatzidis et al.72 and
achieved a 99.8% accuracy. There is another study on
methods for classifying cluster crops. As a feature of
horticultural products, some products are clustered and
should be classified collectively rather than individually.
Therefore, a noninvasive DNN classification model for
clustered bananas was developed by Le et al.55 as a pio-
neering study based on deep learning for classifying
clustered fruits. With the Mask R-CNN model, the pro-
posed deep-learning model reached an overall classifica-
tion accuracy of 96.5% with only a single side banana
image as the input feature.
The techniques for horticultural crop cultivation are

somewhat different from those for cultivating other
common crops. Regular pruning of crops is needed, and it
is also necessary to thin out flowers and fruits to maintain
strong trees and to produce higher yields with better
quality fruit. Segmenting branches, trunks, flowers and
fruits is a key step in automating horticultural cultivation
technology. Majeed et al.20 adopted a CNN-based
semantic segmentation network (SegNet) to detect
branch, trunk, and trellis wire to achieve automated tree
trimming in an apple orchard. In another study, Sun
et al.73 used a CNN based on the original Faster R-CNN
algorithm to detect and identify flowers and mature (red)
and immature (green) fruits of tomatoes. Hu et al.60

introduced a method that combined intuitionistic fuzzy
set (IFS) theory with the Faster R-CNN model to detect
individual ripe tomatoes. The ripe tomato image dataset,
which includes adjacent, separated, leaf-shaded, and

overlapped images, was used to obtain exact values of the
height and width, and these data were then analyzed to
evaluate the overall performance of the proposed detec-
tion model. Based on the proposed recognition methods,
the RMSE results of tomato height and width were 3.306
pixels and 2.996 pixels, respectively.
Although many researchers have conducted a large

amount of research on the identification and classification
of horticultural products and the proposed methods have
high detection performance, modern popular deep neural
networks generally require high-performance computing
machines for reasoning, which is unrealistic for ordinary
farms and orchards.
To reduce the computational cost of networks and meet

the computational requirements of real-time devices with
low-power-consumption terminal processors, Shi et al.74

proposed a generalized attribution method for pruning
unnecessary connections in a channel from a well-
designed large-scale network to accurately detect man-
gos in a channel (the source code is available at https://
github.com/GlowingHorse/Fast-Mango-Detection). The
proposed pruning method can compute the convolutional
kernel attributions and fine-tune the network by retaining
the important pretrained parameters to extract special
mango features. Compared to the YOLO-based network
without pruning, the computational cost of the proposed
network was reduced by 83.4%, with only an ~2.4% loss in
accuracy.
In the examples of the application of machine vision to

horticultural crops given above, it can be seen that deep-
learning methods have been applied to all aspects of
horticultural research, including variety or species classi-
fication, key organ classification, and location detection.
We also find that researchers’ efforts to apply deep-
learning technology to actual production have achieved
exciting results in terms of improving performance and
detection speed. Table 2 summarizes the technical details
of the studies mentioned in this subsection, including the
target problems, the compositions of the datasets, the
preprocessing methods, the models and frameworks, and
the performance comparisons with other algorithms.

Yield estimate of horticultural crops
An early and accurate estimation of the preharvest

yields for horticultural products is generally required by
both producers and agricultural companies to guide har-
vesting and marketing processes for effective and efficient
decision making and forward planning. A yield estimation
can actually be attributed to the object counting problem
in computer vision, which has demonstrated good per-
formance in crowd counting problems75 and other plant-
related counting problems76. In current studies, such yield
estimation methods have been adopted for horticultural
crops. To estimate a citrus yield, Apolo-Apolo et al.77
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developed a methodology based on the Faster R-CNN
model to detect the existence, count the number and
measure the size of citrus fruits and established a network
based on LSTM to estimate yields of citrus fruits. The
results showed that the average standard error (SE) was
only 6.59% when the manual counting result was com-
pared with the proposed model’s detection result. Fur-
thermore, when comparing the actual yields with the
estimated yields per tree, the SE was 4.53%, and the
standard deviation (SD) was 0.97 kg.
Rebortera et al.32 built a deep multifaceted system that

incorporated a number of LSTM layers to forecast banana
harvest yields. The dataset contained 35,000 observations
of banana harvest yields from approximately 2014 to
2018. The enhanced model achieved better performance,
which is as follows: the RMSE was 34.805, and the error
rates were decreased by 44.95% and 43.5% when com-
pared to models that applied multiple LSTM layers and a
single LSTM layer, respectively. In another study, Neu-
pane et al.78 developed a deep-learning algorithm (the
Faster R-CNN Inception-V2 model) to accurately detect
and count bananas in high-resolution RGB images
acquired with a UAV78. The results showed that 75.8%,
85.1% and 96.4% of bananas were correctly detected on
the datasets collected from 60, 50 and 40 meters above
ground, respectively, on the same farm, and the recall rate
reached 99% when combining the results detected from
the 40- and 50-meter datasets. Moreover, as the single-
view images from one side of the fruit tree would
underestimate the fruit yield since fruit can be hidden by
leaves or fruits, a method that applied a video tracking
system was proposed and combined MangoYOLO and
Kalman filters with the Hungarian algorithm for the
detection, tracking, and counting of mango fruits on a
tree79. Compared to manual counting methods, the pro-
posed video-based tracking model, which added addi-
tional imaging perspectives, detected 2050 fruits (62% of
the total harvested fruits) with a bias-corrected RMSE of
18.0 fruits per tree, while the two-sided dual-view image
model (which also employed MangoYOLO) detected 1322
fruits (40%) with a bias-corrected RMSE of 21.7 fruits per
tree. Preharvest yield prediction is also very important for
vegetable production. Chen et al.33 developed an auto-
matic strawberry flower detection method for predicting
yield with a small UAV equipped with an RGB camera.
With this system, the mean average precision (mAP) of all
detected objects was 83% at 2 m above the ground, and
the average accuracy of counting was 84.1%. Rahne-
moonfar et al.80 proposed a simulated learning method for
crop yield estimation by counting fruits based on syn-
thetic tomato images. To capture features on multiple
scales, they employed a modified Inception-ResNet
model. The detection results showed that the average
accuracy was 91% on real images and 93% on synthetic

images. In another study, Afonso81 adopted the Mask R-
CNN model to detect tomatoes in a total of 123 images
taken in a greenhouse; the model achieved a better per-
formance than the classical segmentation method. The
detection results of the Mask R-CNN model with a
ResNeXt-101 architecture showed that the overall preci-
sion was 96%, the recall score was 95% and the F1 score
was 0.95 for single fruit detection, whereas when the
classical segmentation method was used, these parameters
were 60%, 80% and 0.69, respectively.
From the above examples of applications in estimating

the preharvest yields for horticultural products, we can
see that researchers have obtained some good results.
With the efforts of scientists, these techniques will be
applied to actual production to guide planting plans,
harvesting plans and marketing decisions in the future.
The technical details of the studies mentioned in this
subsection are summarized in Table 3.

Quality detection of horticultural crops
With improvements in living standards, people have

increasingly higher expectations for the quality of daily
fruits and vegetables. However, fruits and vegetables are
susceptible to diseases, insect pests, mechanical damage
and improper postharvest treatment during production,
planting, storage, transportation, marketing, and other
procedures. Both the edible and economic values of
horticultural products can be reduced when damage
occurs. Therefore, quality detection for horticultural
products, especially for fruits and vegetables, is currently a
challenging and hot field. In more recent studies, deep-
learning methods combined with RGB images or spec-
trographic techniques have been widely employed as
effective and noninvasive horticultural product quality
detection approaches to tackle practical problems,
including postharvest grading classification, maturity
detection, bruise detection, and nutrient content predic-
tion7. Compared to traditional machine-learning approa-
ches, deep learning was approaches have been applied to
analyze and process image data, spectral data or sound
data and have been proven to have better classification
performance82.
Nasiri et al.45 presented a method for discriminating

defective dates from healthy dates based on RGB images
with a VGG-16 architecture45. The introduced CNN
model reached a classification accuracy of 96.98%. In
another study, Rosanna et al.83 explored the application of
a deep-learning approach with image processing to clas-
sify banana grades and achieved above 90% accuracy. The
grading classification of dates and bananas is determined
primarily by visible surface defects, and the features can
be expressly revealed in RGB image data. However,
internal or subdermal damage and the edible quality of
fruits and vegetables cannot be recognized visually1.
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Nondestructive testing technologies, such as near-
infrared spectrographs84, hyperspectral imagers85,86 and
thermal imagers36, which can detect the internal state of
an object without destroying it, have been considered
feasible solutions to traditional detection and analysis
techniques82. Processing large amounts of hyperspectral
image data rapidly and accurately is a great challenge.
Deep learning, as one of the popular machine-learning
methods, has been applied to process complex, massive
amounts of data. Wang et al.82 focused on the internal
and invisible mechanical damage of blueberries utilizing
deep-learning technology in combination with hyper-
spectral transmittance data. The ResNet architecture was
chosen for the CNN model. Moreover, five traditional
machine-learning algorithms, i.e., linear regression (LR),
sequential minimal optimization (SMO), bagging and
multilayer perceptron (BMP), and RF algorithms were
used for comparison. The fine-tuned ResNet obtained an
average accuracy of 88.0% and an F1-score of 0.90. The
deep-learning framework has great potential for detecting
internal mechanical damage in fruits. In another study,
Zhang et al.85 applied the deep-learning-based FCN
model to the tasks of segmentation and combined it with
hyperspectral transmittance images (HSTIs) to accurately
detect internal bruising in blueberries. The FCN method
achieved better performance than the SVM classifier in
both unbruised and bruised fruit prediction. The new full-
wavelength method combined with random initialization
achieved the best accuracy of 81.2% on the whole test
dataset and could be utilized to investigate the resistance
of blueberries to mechanical damage and other damage
(the source code is available at https://github.com/UGA-
BSAIL/BlueberryFCN.git)85. Feng et al.87 used hyper-
spectral imaging to detect some minor bruises on winter
jujubes. LR, SVM, and CNN models were used for
quantitative analyses. The CNN method obtained the
highest detection performance, with most of the accura-
cies exceeding 85%, and the prediction time was also the
shortest. The overall performance results revealed the
promising and meaningful potential for the detection of
minor bruises on winter jujube by utilizing deep-learning
methods to analyze the pixelwise NIR spectra and visible
and near-infrared (Vis/NIR) spectra collected from
hyperspectral imaging systems (the pseudocode of the
method was given in the original paper). Liu et al.86

developed a novel classification method by applying the
combination of a stacked sparse autoencoder (SSAE) with
a CNN to detect defects in pickling cucumbers with a
hyperspectral imaging-based dataset. The results showed
that, compared with the SSAE model, the CNN-SSAE
method improved the performance of a six-class classifi-
cation task and achieved overall accuracies of 88.3% and
91.1% at conveyor speeds of 165 and 85mm s-1,
respectively.

SSC and firmness are the most significant properties of
edible quality in horticultural products and directly
influence consumer satisfaction27. The Vis/NIR hyper-
spectral imaging technique has been used for the non-
destructive detection of the internal quality attributes and
the chemical composition in fruits due to its high sensi-
tivity and accuracy. The principle behind the spectral
detection method is to measure the spectrum of reflected
or transmitted missions from fruit and to construct a
relationship between the measured spectrum and the
chemical composition of the fruit. The received spectrum
can then be used to indicate the SSC and/or firmness by
referring to some chemometric methods27.
Bai et al.84 focused on the accurate prediction of SSC in

apples collected from a number of geographical origins. A
multiorigin SSC prediction method for apples was
developed by the combination of NIR analysis, spectral
fingerprint feature extraction, optimal wavelength selec-
tion, model search strategies, origin recognition, and
multivariate regression analysis with deep learning. The
correlation coefficients of prediction (RP) and RMSEs of
prediction (RMSEP) values of 99.0% and 27.4%, respec-
tively, were obtained by the proposed model. In another
study, Yu et al.27 developed a deep-learning method
consisting of SAE and FNN coupled with a hyperspectral
imaging technique for the prediction of SSC and the
firmness of postharvest pears. The proposed model
obtained reasonable prediction performance with coeffi-
cients of determination of the prediction set (R2P)=
92.1%, the RMSEP= 0.22% and the ratio of the prediction
to the deviation of the prediction set (RPDP)= 3.68 for
SSC, and R2

P= 89.0%, RMSEP= 1.81 N and RPDP= 3.05
for firmness.
The laser backscattering method is another optical

technique that can be used for the nondestructive detec-
tion of fruit samples. Wu et al.34 constructed an AlexNet
model with an 11-layer structure, identified the defect,
normal, stem and calyx regions of apples with laser-
induced light backscattering imaging, and achieved a
higher recognition rate of 92.5% and an accuracy better
than those obtained by conventional machine-learning
algorithms.
In addition to spectroscopy technology, acoustic sensing

is also a reliable method for the nondestructive detection
of horticultural products. Lashgari et al.88 applied acoustic
and deep-learning techniques to detect mealy and non-
mealy apples. VGGNet and AlexNet, which are both
famous pretrained CNN models, were used to classify the
apples. The accuracies of VGGNet and AlexNet for
classifying mealy and nonmealy apples were 86.94% and
91.11%, respectively. Although VGGNet is deeper and
performed better on ImageNet (see Table 1), in combi-
nation with an acoustic sensing system, AlexNet had a
superior ability in terms of classification accuracy, training
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and classification speed compared to VGGNet in this
particular work.
In commercial orchards, it is important to monitor the

maturity of fruit during the whole development period to
determine the optimal time to harvest. Automated
machine vision techniques are widely used to detect and
identify the growth and maturity stages. Wendel et al.8

proposed a novel approach that utilized a LIDAR sensor, a
hyperspectral camera and a navigation system fixed to a
ground vehicle for predicting the dry matter (DM) con-
tent of individual fruit from a commercial mango orchard.
A cross-validation R2CV= 64% and RMSECV= 1.08% w/w
were achieved by the CNN for fruit on trees, while a R2

CV

= 58% and RMSECV= 1.17% w/w were achieved by PLS.
In another study, a CNN was used to evaluate citrus
maturity by utilizing a fluorescent spectrum signal89. They
adopted fluorescence spectroscopy to estimate the Brix/
acid ratio. As a result, the absolute error of the Brix/acid
ratio was 2.48, which was significantly better than the
values achieved by other previous methods.
These investigations showed that some physical and

chemical properties of fruits and vegetables (including
nutrient content, hardness, degree of damage, degree of
disease, and degree of maturity) can be revealed through
RGB images, sample spectral information and acoustic
spectral information. Better prediction and classification
effects can be achieved through deep-learning model
training. In Table 4, we summarize the technical details of
the studies mentioned in this subsection.

Detection of biotic/abiotic stress in horticultural crops
Singh et al.6 reviewed the application of deep-learning

methods to plant stress phenotypes in 2018. According to
their summary, deep learning can be applied to the
identification, classification, quantification, and prediction
(also called the ICQP paradigm) of plant stress pheno-
typing6. In this section, we comprehensively outline the
publications that employ deep learning for the stress
phenotyping of horticultural plants (Table 5). The tradi-
tional identification and classification of plant stress have
always relied on the recognition of visual symptoms by
human experts as a means of categorization, which is
inevitably subjective and error prone90. Computer vision
coupled with machine-learning technology has the cap-
ability of automatic identification and classification and
enables accurate, scalable and high-throughput pheno-
typing. Among the machine-learning methods, deep
learning has been considered one of the most effective
approaches for improving the overall performance of
object detection and recognition processes6,91.
To identify various biotic and abiotic stresses in toma-

toes, efforts have been made with different kinds of deep-
learning approaches. Fuentes et al.91 combined three
deep-learning meta-architectures, namely the Faster R-

CNN, region-based FCN (R-FCN), and SSD, with two
deep feature extractors (ResNet and VGGNet) to detect
pests and diseases in tomatoes. To detect diseases in
tomatoes, Karthik et al.92 proposed a model to apply an
attention gating mechanism in a residual CNN with the
PlantVillage dataset, which contains three kinds of dis-
eases in tomatoes, namely, leaf mold, early blight, and late
blight, for disease detection. An overall accuracy of 98%
was achieved with the proposed model on the validation
datasets by adopting a fivefold cross-validation method, in
which the original sample was randomly divided into five
subsets of equal size and one subset was used as the
validation data and the other four for training the model.
The cross-validation process was then repeated five times,
and the results from the five iterations were averaged (or
otherwise combined) to produce a single estimation. In
another study, images of tomatoes were acquired from the
open PlantVillage database; the images included various
bacterial (bacterial spot), viral (tomato mosaic virus and
yellow leaf curl virus), and fungal (leaf mold, target spot,
early blight, and late blight) diseases and pests (such as
spider mites). The proposed framework reached an
accuracy of 99.18% with GoogLeNet, while AlexNet had
an accuracy of 98.66%46.
For the identification of various diseases in cucumbers

(diseases such as anthracnose, powdery mildew, downy
mildew, gray mold, target leaf spots and black spot), a
deep-learning approach was also used. Lin et al.35 pre-
sented a semantic segmentation method based on a CNN
to identify powdery mildew on cucumber leaves and
achieved the following results: the average pixel
accuracy was 96.08%, the Dice accuracy was 83.45% and
the intersection over union was 72.11% (the source
code is available at https://github.com/ChrisLinSJTU/
segmentation-of-powdery-mildew)35. In another study
on a recognition model for cucumber diseases, the DCNN
model achieved an accuracy of 93.4%93.
In another application, AlexNet and VGG-16 were

proposed to classify five eggplant diseases (little leaf,
epilachna beetle infestation, cercospora leaf spot, tobacco
mosaic virus (TMV) and two-spotted spider mite) and
healthy plants with images acquired from smartphones.
They used the modified VGG-16 model to achieve an
accuracy of 93.33%94. Another novel deep-learning
architecture with a global pooling dilated CNN
(GPDCNN) was presented for cucumber leaf disease (gray
mold, powdery mildew, anthracnose, downy mildew,
black spot, and angular leaf spot) recognition by the
combination of a dilated convolutional neural network
with global pooling95. The results showed that GPDCNN
had a higher recognition accuracy and shorter training
time than the DCNNs and AlexNet95.
In a recent study, an image-based field monitoring

system combined with a weakly supervised training
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method was developed for automatic onion disease
detection and growth monitoring in real-time. The results
showed that the mAP (mean Average Precision) score at
an IoU (Intersection of Union) criteria of 50%, which
indicates a 50% overlap, was the highest among all the
existing models and was between 74.1 and 87.296. In
another study, a CNN was trained to classify diseased
potato tubers into five classes, including four disease
classes and a healthy class, with an accuracy of 96%97.
Alruwaili et al.98 proposed an enhanced CNN model
named AlexNet for detecting and classifying olive dis-
eases. The proposed method achieved overall accuracy,
recall, precision, and F1 scores of 99.11%, 99.11%, 99.49%,
and 0.9929%, respectively. In another application, three
methods, including regression, multilabel classification
and a focus loss function based on the DenseNet-121
DCNN, were proposed to detect diseases on apple
leaves99. The proposed three methods obtained accuracies
of 93.5%, 93.3%, and 93.7% on the test dataset, which are
better than those obtained by the traditional multi-
classification approach.
With the goal of automating disease identification and

classification, a multilayer CNN (MCNN) was proposed
for classifying mango leaves infected by anthracnose
fungal disease with an accuracy of 97.13%42. The LeNet
architecture was applied to classify and identify banana
leaf diseases41. The Faster R-CNN architecture was pro-
posed to automatically detect the Tulip Breaking Virus
(TBV) and reached an efficiency of 0.13 s per image59. A
deep belief network (DBN) model based on 494 features
was developed to classify peach samples with slightly
decayed, moderately decayed and severely decayed
diseases. The results showed that the highest classification
accuracies for the three kinds of peach diseases
mentioned above were 82.5%, 92.5%, and 100%,
respectively100.
The early and accurate detection of plant diseases is

considered an effective method to maintain and improve
crop quality and minimize production losses. As a result,
deep-learning approaches have received wide recognition
worldwide because of their accurate and efficient detec-
tion of plant diseases in the field. In Table 5, we sum-
marize the technical details of the studies mentioned in
this subsection.

Growth monitoring in horticultural crops
Crop traits are important to plant breeders and pro-

ducers for plant production management, as well as for
making intelligent decisions about excellent genotype
selection when yield traits or quality traits are used. The
automatic intelligent collection of horticultural crop
growth information in advance provides a good basis for
planters to monitor growth and plan the harvesting
timeline during the maturation of fruits and

vegetables37,48. Lu and his team have proposed methods
to localize mushrooms and track their growth37,57. Lu
et al.57 adopted the YOLO algorithm to localize
mushrooms in an image and proposed a positioning
correction method to modify the localization result.
After the mushrooms had been precisely localized, Lu
et al.37 developed an image measurement system to
record the diameter of the mushroom caps during the
maturation period. The proposed algorithm (the
YOLO-V3+ SP algorithm) was used to calculate the
mushroom circles based on the images captured by a
camera continuously and then to record the growth
information of the mushroom caps; the method out-
performed the current circle Hough transform method
(OpenCV’s implementation)37.
Automatic detection and identification of fruits and

flowers at various growth stages is important for the
automatic and intelligent management of orchards. Tian
et al.101 proposed an instance segmentation model by
improving the mask scoring R-CNN with a U-Net back-
bone (MASU R-CNN) to detect and segment apple
flowers at three different stages: bud, semiopen and fully
open. Furthermore, Tian et al.102 proposed an improved
YOLO-V3 model to detect apples at various growth
stages, i.e., young, expanding, and ripe apples, in orchards
with complex backgrounds. The detection performance of
the proposed YOLO-V3-dense model was better than that
of the original YOLO-V3 and the Faster R-CNN with
VGG-16 net models. Wang et al.48 also developed an
automated growth monitoring system in an apple orchard
to monitor apple growth during the period of fruit thin-
ning and fruit ripening. They used the fused convolutional
features (FCF) model to segment apple images. The mean
average absolute error of an apples’ horizontal diameter
obtained by the method was 0.90 mm. In another study,
Tu et al.44 developed a machine vision model for detecting
passion fruits and identifying their maturity by utilizing
natural outdoor RGB-D images combined with the DSIFT
(dense scale invariant features transform) algorithm and
the LLC (locality-constrained linear coding) method.
Finally, the features collected by RGB-DSIFT-LLC were
fed into a SVM classifier for the identification of fruit
maturity at five different levels: young (Y), near-young
(NY), near-mature (NM), mature (M), and after-mature
(AM). The proposed method achieved an accuracy of
92.7% for detection and 91.5% for maturity classification.
Ni et al.38 adopted another deep-learning method based
on the Mask R-CNN model and an iterative annotation
strategy to detect and segment blueberry fruit to monitor
the maturity of the blueberry fruit. The proposed model
obtained reasonable prediction performance, with a
coefficient of determination (R2) for the detected berry
number with respect to the ground truth of 88.6% and a
RMSE of 1.484.
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It is important to recognize the different sizes of the
panicle-associated image area and the number of panicles as
indices of flowering. Wang et al.103 developed a machine
vision assessment system to detect flower panicles on mango
plants at different stages of growth, from green to light
yellow, light pink, and then brown-red, which correspond to
panicle development ranging from the early to late stages. In
another study, Koirala et al.104 proposed four architectures
based on a deep-learning method for mango panicle stage
classification at three different stages: panicles with flowers
not fully opened (whitish in color), panicles with opened
flowers and panicles displaying flower drop and fruit set.
While the YOLO-V3-rotated model had a higher accuracy
in terms of the total number of panicles, the R2CNN-upright
model was superior for the classification of panicle stages
(the source code for the R2CNN method is available at:
https://github.com/DetectionTeamUCAS/R2CNN_Faster-
RCNN_Tensorflow)104. To extract growth and quantity
information from the large-scale aerial images collected
from a lettuce field, Bauer et al.105 proposed the AirSurf-
Lettuce platform, which applied a CNN-based-learning
model (the source code is available at https://github.com/
Crop-Phenomics-Group/AirSurf-Lettuce). The AirSurf-
Lettuce can automatically measure in-field iceberg lettuces
with a focus on yield-related traits, such as field size dis-
tribution, lettuce size categories, number of plants, and GPS-
tagged harvest regions, and has great potential to support
smart and precise crop surveillance.
From the investigations given above, it is known that

deep-learning methods have been applied to growth
monitoring in horticultural crops and have achieved
better prediction and classification effects, the technical
details of which are summarized in Table 6.

Other applications
Genomic prediction (GP) is the process in which

untested good genetic attributes are predicted by
employing genome-wide marker information40. Recently,
deep-learning technologies have been applied as powerful
machine-learning tools to quantitatively predict pheno-
types without intrudation to analyze the increasing
amount of available genetic and genomic data. Although
numerous examples of GP have been widely utilized to
improve the breeding efficiency of plants and ani-
mals40,106, applications to horticultural crops are still in
the preliminary stage. Zingaretti et al.40 evaluated the
genomic prediction performance of a deep-learning
method for two common and important horticultural
fruits: the autotetraploid blueberry and allooctoploid
strawberry. The two datasets included a total of 1802
autopolyploid blueberry (2n= 4x= 48) and 1358 allopo-
lyploid strawberry (2n= 8x= 112) individuals genotyped
to create 73,045 and 9908 single-nucleotide polymorph-
ism (SNP) markers, respectively, and phenotyped by five

distinctive agronomic traits, including fruit size, firmness,
picking scars, weight, and yield. A potential superiority of
deep learning for GP over some standard linear approa-
ches is that deep learning can potentially consider all
possible genetic interactions, including epistasis and
dominance, which are considered to be particularly rele-
vant in most polyploids.
The sale of horticultural products is an essential part of

the product supply chain. Owing to the asymmetry
between a farmer’s production and the real marketing
information and the asymmetry between the social signal
of product supply and demand, the prices of horticultural
products fluctuate greatly. Therefore, it is very important
to forecast the prices of horticultural products when
creating a planting plan39. Weng et al.39 adopted the
autoregressive integrated moving average (ARIMA), BP
and RNN methods to forecast the daily, weekly, and
monthly average prices of different horticultural products
(cucumbers, tomatoes, and eggplants). With web crawler
technology, a large amount of data on horticultural pro-
duct prices were gathered from the website. The results
indicated that neural network methods including the BP
and RNN methods had a higher accuracy in price fore-
casting than that of the ARIMA model. They considered
that deep-learning methods would serve as the main-
stream method for price forecasting of horticultural pro-
ducts in the near future.

The advantages and disadvantages of deep-
learning technology
The most notable advantages of deep-learning tech-

nologies lie in their automatic feature extraction, classi-
fication and prediction processes7. The handcrafted
extraction of features and the design of feature descriptors
are generally very difficult and time consuming and are no
longer required for deep-learning technologies through
automated feature extraction. Generally, the prediction
accuracy of deep-learning models improves as the number
of model layers increases, which is accompanied by
increased computational complexity. In addition, it is not
an easy task to build a good feature extractor. In fact, a
great deal of the aforementioned studies for the prediction
and classification of horticultural plants, including flowers
or fruits, used existing models or made only a minor
adjustment to them, and the main contributors were also
mostly scholars from computer science and image pro-
cessing sectors. Therefore, higher attention was given to
the techniques for general feature extraction and classi-
fication of images rather than the specific features of a
horticultural product. For instance, in the applications of
crop yield estimation, the manual extraction of features
that may significantly affect crop growth was nearly
impossible. Thus, it is important to design deep-learning
models that specifically focus on such feature extraction

Yang and Xu Horticulture Research           (2021) 8:123 Page 23 of 31

https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow
https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce
https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce


Ta
b
le

6
A
p
p
lic
at
io
n
s
of

d
ee

p
le
ar
n
in
g
in

g
ro
w
th

m
on

it
or
in
g
of

h
or
ti
cu

lt
ur
al

cr
op

s

N
o.

St
ud

y
D
at
a

M
od

el
us
ed

Pe
rf
or
m
an

ce
m
et
ri
c

an
d
va

lu
e

C
om

p
ar
is
on

w
it
h
ot
he

r

m
et
ho

d
s

So
ur
ce

co
d
e

Re
fe
re
nc

es

1
M
ea
su
re
m
en
t
th
e
ci
rc
le

di
am

et
er

of
co
m
m
on

m
us
hr
oo

m
ca
ps

Th
e
im

ag
e
m
ea
su
re
m
en

t
sy
st
em

au
to
m
at
ic
al
ly
m
ea
su
re
s
th
e

gr
ow

th
of

th
e
co
m
m
on

m
us
hr
oo

m
s
an
d
ca
lc
ul
at
ed

th
e

da
ta

ev
er
y
ho

ur

YO
LO

-V
3
+
SP

al
go

rit
hm

(T
he

pr
op

os
ed

al
go

rit
hm

em
pl
oy
ed

YO
LO

-V
3
fo
r

im
ag
e
po

si
tio

ni
ng

an
d
SP

al
go

rit
hm

to
es
tim

at
e

co
m
m
on

m
us
hr
oo

m

ci
rc
le
s)

Th
e
av
er
ag
e
va
lu
e
of

O
p

(L
ar
ge

r
O
p
m
ea
ns

hi
gh

er

ac
cu
ra
cy

of
th
e
ci
rc
le
in

th
e

ro
un

d
m
us
hr
oo

m
ca
ps
)
is

82
.7
%
,O

q
(re

pr
es
en

ts
th
e

de
vi
at
io
n
of

th
e
al
go

rit
hm

in
ci
rc
le

de
te
ct
io
n)

is
4.
4%

CH
T
m
et
ho

d
(O
pe

nC
V’
s

im
pl
em

en
ta
tio

n)
:O

p
(a
ve
ra
ge

43
.8
%
),
O
q
(a
ve
ra
ge

19
.1
%
)

N
ot

av
ai
la
bl
e

37

2
To

m
ea
su
re

th
e
m
us
hr
oo

m

si
ze

an
d
to

co
un

t
th
e

nu
m
be

r
of

m
us
hr
oo

m
s.

A
sm

ar
t
m
us
hr
oo

m

m
ea
su
re
m
en

t
sy
st
em

YO
LO

-V
3

Th
e
av
er
ag
e
er
ro
r
of

es
tim

at
ed

an
d
kn
ow

n

ha
rv
es
t
tim

e
w
as

3.
7
h.

N
A

ht
tp
://
pj
re
dd

ie
.c
om

/y
ol
o/

57

3
A
ut
om

at
ic
de

te
ct
io
n
of

ap
pl
e
fl
ow

er
s
an
d
fru

its
at

di
ffe
re
nt

gr
ow

th
st
ag
es

Th
e
ap
pl
e
fl
ow

er
im

ag
es

w
er
e

co
lle
ct
ed

in
an

or
ch
ar
d
(a

to
ta
l

of
60
0
im

ag
es
)

M
A
SU

R-
C
N
N

Pr
ec
is
io
n:

96
.4
3%

,

Re
ca
ll:
95
.3
7%

,

F1
:0
.9
59
0,

m
A
P:
59
.4
%

CN
N
+
SV
M
:9
2.
7%

(P
re
ci
si
on

),

92
.0
%

(R
ec
al
l),
0.
93
4
(F
1)

N
ot

av
ai
la
bl
e

10
1

4
D
et
ec
tin

g
ap
pl
es

du
rin

g

di
ffe
re
nt

gr
ow

th
st
ag
es

in

or
ch
ar
ds

Im
ag
e
ac
qu

is
iti
on

w
as

co
nd

uc
te
d
w
ith

a
ca
m
er
a
du

rin
g

di
ffe
re
nt

gr
ow

th
st
ag
es

(a
to
ta
l

of
48
0
im

ag
es
)

YO
LO

-V
3-
de

ns
e

F1
:0
.8
17
,

Th
e
av
er
ag
e
de

te
ct
io
n
tim

e

is
0.
30
4
s
pe

r
fra
m
e.

YO
LO

-V
2:
0.
73
8
(F
1)
,0
.2
73

s

(d
et
ec
tio

n
tim

e)

YO
LO

-V
3:
0.
79
3
(F
1)
,0
.2
96

s

(d
et
ec
tio

n
tim

e)

Fa
st
er

R-
C
N
N
(V
G
G
-1
6)
:0
.8
01

(F
1)
,2
.4
2
s
(d
et
ec
tio

n
tim

e)

N
ot

av
ai
la
bl
e

10
2

5
D
et
ec
tio

n
to

re
m
ot
el
y

m
on

ito
r
ap
pl
e
gr
ow

th

Im
ag
es

ca
pt
ur
ed

by
th
e
re
m
ot
e

ap
pl
e
gr
ow

th
m
on

ito
rin

g
sy
st
em

(A
to
ta
lo

f
21

ap
pl
es

w
er
e

m
on

ito
re
d)

FC
F
ne

tw
or
k
(b
as
ed

on

Re
sN
et
-5
0)

F1
:0
.5
31

Th
e
av
er
ag
e
G
PU

ru
nn

in
g

tim
e
w
as

0.
07
5
s
pe

r
im

ag
e

Th
e
m
ea
n
av
er
ag
e
A
E
of

th
e

ap
pl
es
’h

or
iz
on

ta
ld

ia
m
et
er
s
is

0.
90

m
m
,w

hi
ch

de
cr
ea
se
d
by

67
.9
%

co
m
pa
rin

g
to

th
e
ci
rc
le

fi
tt
in
g-
ba
se
d
m
et
ho

d

(2
.8
m
m
)

N
ot

av
ai
la
bl
e

48

6
M
at
ur
ity

cl
as
si
fi
ca
tio

n
of

pa
ss
io
n
fru

its
fro

m
fi
ve

ca
te
go

rie
s:
yo
un

g
(Y
),
ne

ar
-

yo
un

g
(N
Y)
,n

ea
r-
m
at
ur
e

(N
M
),
m
at
ur
e
(M

)
an
d
af
te
r-

m
at
ur
e
(A
M
).

RG
B-
D
im

ag
es

w
er
e
ob

ta
in
ed

fro
m

a
pa
ss
io
n
fru

it
fa
rm

by
a

Ki
ne

ct
V2
.0
de

vi
ce

(o
ve
ra
ll
40
00

im
ag
es
)

Fa
st
er

R-
C
N
N
(V
G
G
-1
6)

fo
r
de

te
ct
io
n

SV
M

fo
r
cl
as
si
fi
ca
tio

n

RG
B-
D
SI
FT
-L
LC

fo
rf
ea
tu
re

ex
tr
ac
tio

n

Re
ca
ll:
84
.4
9%

C
A
:9
1.
52
%

Re
d-
D
SI
FT
:(
78
.4
%

C
A
)

G
re
en

-D
SI
FT
:(
82
.5
2%

CA
)

Bl
ue
-D
SI
FT
:(
76
.9
%

C
A
)

RG
-D
SI
FT
:(
87
.6
%

C
A
)

ht
tp
s:/
/g
ith

ub
.c
om

/

sh
ao
qi
ng

re
n/
fa
st
er
_r
cn
n

44

Yang and Xu Horticulture Research           (2021) 8:123 Page 24 of 31

http://pjreddie.com/yolo/
https://github.com/shaoqingren/faster_rcnn
https://github.com/shaoqingren/faster_rcnn


Ta
b
le

6
co
nt
in
ue

d

N
o.

St
ud

y
D
at
a

M
od

el
us
ed

Pe
rf
or
m
an

ce
m
et
ri
c

an
d
va

lu
e

C
om

p
ar
is
on

w
it
h
ot
he

r

m
et
ho

d
s

So
ur
ce

co
d
e

Re
fe
re
nc

es

7
Pa
ni
cl
e
st
ag
e
cl
as
si
fi
ca
tio

n

of
m
an
go

s

Th
e
im

ag
e
se
t
of

99
4
tr
ee
s
fro

m

or
ch
ar
d
A
an
d
24

tr
ee
s
fro

m

or
ch
ar
d
B
by

RG
B
ca
m
er
a

YO
LO

-V
3-
ro
ta
te
d
(fo

r

pa
ni
cl
e
co
un

t)
an
d

R2
C
N
N
-u
pr
ig
ht

(fo
r

pa
ni
cl
e
st
ag
e

cl
as
si
fi
ca
tio

n)

YO
LO

-V
3-

ro
ta
te
d:

15
.4

(R
M
SE
s)
,6
5.
0%

(m
A
P)
,

0.
74
9
(F
1)

R2
C
N
N
-u
pr
ig
ht
:3
2.
3

(R
M
SE
s)
,7
0.
9%

(m
A
P)
,

0.
82
0
(F
1)

M
an
go

YO
LO

(u
pr
ig
ht
):
25
.6

(R
M
SE
s)
,7
2.
2%

(m
A
P)
,

0.
76
5
(F
1)

M
an
go

YO
LO

-r
ot
at
ed

:1
6.
0

(R
M
SE
s)
,6
9.
1%

(m
A
P)
,

0.
76
1
(F
1)

R2
C
N
N
(ro

ta
te
d)
:2
5.
8
(R
M
SE
s)
,

62
.5
%

(m
A
P)
,0
.7
40

(F
1)

ht
tp
s:/
/g
ith

ub
.c
om

/

D
et
ec
tio

nT
ea
m
U
C
A
S/

R2
C
N
N
_F
as
te
r-

RC
N
N
_T
en

so
rF
lo
w

10
4

8
A
ss
es
sm

en
t
of

m
an
go

or
ch
ar
d
fl
ow

er
in
g

Im
ag
er
y
of

m
an
go

tr
ee

ca
no

pi
es

w
as

ac
qu

ire
d
fro

m
tw

o

co
m
m
er
ci
al
or
ch
ar
ds

by
tw

o

im
ag
in
g
pl
at
fo
rm

s

Fa
st
er

R-
C
N
N

R2
:8
6%

RM
SE
:3
0.
1
be

tw
ee
n
tw

o

re
pl
ic
at
e
hu

m
an

co
un

ts
of

pa
ni
cl
es

pe
r
tr
ee
s

Th
e
hi
gh

es
t
co
rr
el
at
io
n
w
as

ac
hi
ev
ed

ag
ai
ns
t
m
an
ua
l

co
un

ts
.

N
ot

av
ai
la
bl
e

10
3

9
M
on

ito
r
le
tt
uc
e
gr
ow

th

fro
m

la
rg
e-
sc
al
e
ae
ria
l

im
ag
es

co
lle
ct
ed

fro
m

th
e
fi
el
d

Th
e
ul
tr
al
ar
ge

ae
ria
lN

D
VI

im
ag
er
y
w
as

ac
qu

ire
d

CN
N
-b
as
ed

C
A
:>

98
%

Th
e
co
rr
el
at
io
n
be

tw
ee
n
th
e

hu
m
an

an
d
au
to
m
at
ic

co
un

tin
g
is
~
2%

(R
2
=
0.
97
8)

fo
rt
he

sm
al
lr
eg

io
ns
,a
nd

0.
8%

(R
2
=
0.
98
8)

fo
r
th
e
la
rg
e

re
gi
on

s

ht
tp
s:/
/g
ith

ub
.c
om

/C
ro
p-

Ph
en

om
ic
s-
G
ro
up

/A
irS
ur
f-

Le
tt
uc
e

10
5

10
Co

un
t
be

rr
ie
s,
m
ea
su
re

m
at
ur
ity
,a
nd

ev
al
ua
te

co
m
pa
ct
ne

ss
of

bl
ue
be

rr
ie
s

Th
e
Bl
ue
be

rr
y
im

ag
es

w
er
e

ob
ta
in
ed

un
de

r
th
re
e
di
ffe
re
nt

lig
ht
in
g
co
nd

iti
on

s
an
d

ba
ck
gr
ou

nd
s
(a

to
ta
lo

f
66
9

im
ag
es
)

M
as
k
R-
C
N
N

m
A
P:
78
.3
%

fo
r
th
e

va
lid
at
io
n
an
d
71
.6
%

fo
r

te
st
da
ta
se
t
un

de
r
0.
5
Io
U

th
re
sh
ol
d
an
d

co
rr
es
po

nd
in
g
m
as
k

ac
cu
ra
cy
:9
0.
6%

fo
r
th
e

va
lid
at
io
n
an
d
90
.4
%

fo
r

te
st
da
ta
se
t

Th
e
R2

va
lu
e
be

tw
ee
n
th
e

de
te
ct
ed

be
rr
y
nu

m
be

r
an
d

th
e
gr
ou

nd
tr
ut
h
is
0.
88
6
w
ith

a
ro
ot
-m

ea
n
sq
ua
re

er
ro
r

(R
M
SE
)
of

1.
48
4

N
ot

av
ai
la
bl
e

38

Yang and Xu Horticulture Research           (2021) 8:123 Page 25 of 31

https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_TensorFlow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_TensorFlow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_TensorFlow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_TensorFlow
https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce
https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce
https://github.com/Crop-Phenomics-Group/AirSurf-Lettuce


processes to more efficiently and cost-effectively apply
deep-learning models to horticultural sciences. For-
tunately, deep learning has another useful characteristic:
its transfer learning ability28. With this technique,
researchers can make use of the existing models already
trained by a large amount of source data to solve similar
problems. By doing so, they generally need to adjust some
layers and use only the target data (the data they are going
to learn) to fine-tune the already trained model. Through
fine-tuning, the efficiency and performance in modeling
subsequent tasks is improved. For example, in the studies
mentioned above, some examples exploited predesigned
networks (e.g., VGGNet or AlexNet) based on a large
dataset (such as ImageNet) and applied them to their
specific learning task that required a much smaller
dataset through fine-tuning to achieve better-than-before
results.
As deep-learning contains more complex model struc-

tures and requires higher computational efforts, its
development and applications are somewhat limited for
noncomputer experts7. Fortunately, contributors, such as
computer scientists and deep-learning enthusiasts,
around the world have developed many software and
hardware tools to help nonexpert researchers to easily and
quickly develop deep-learning technology. For software
support, some popular models and their variations have
been designed to reduce programming difficulties so that
nonexpert researchers can build required networks
quickly. The aforementioned models, such as AlexNet,
CNN-SSAE, DaSNet, LedNet, and VGGNet, are just a
few. Apart from these ready-to-use models, there are also
a number of websites from which researchers in horti-
culture sectors can learn to improve their deep-learning
skills and build their own models. For example, https://
www.fast.ai/ provides online courses that are free and
have no ads, https://www.deeplearning.ai/ provides spe-
cialized deep-learning techniques; AI for everyone, Ten-
sorFlow specialization, and https://mlcourse.ai/ provide
open machine-learning courses. For hardware support, a
GPU combined with the compute unified device archi-
tecture (CUDA) toolkit developed by NVIDIA is a good
candidate to accelerate deep-learning computation. There
is also some specialized hardware designed for accelerat-
ing deep-learning processes, among which the Tensor
Processing Unit (TPU) developed by Google, the AI
Processors, Vision Processing Units (VPUs) and the
Neural Compute Stick 2 (NCS 2) by Intel, the Efficient
Inference Engine (EIE) by Stanford, and the Energy-
Efficient Reconfigurable Accelerator for DCNNs (Eyeriss)
by MIT are some useful tools. The proposed network
frameworks and hardware acceleration tools can be used
together, can greatly reduce the computational time and
have the potential to perform prediction and/or

classification well to meet the needs of real-time appli-
cations in data processing.
Nevertheless, it cannot be denied that deep learning

has its own shortcomings. First, the optimization tasks
are sometimes quite complicated and very time con-
suming due to the large datasets and large numbers of
weights to be tuned; additionally, there are some hard-
ware restrictions and numerous hyperparameters, which
are highly complex, that need to be tuned in the models
mentioned in Section “Brief overview of deep learning”.
Furthermore, to replicate a given study and compare it
with others, the source codes/algorithms and the model
parameters must be reported, and the evaluation metrics
for the performance measures should be standardized.
From the reported studies, regarding the methods used
in the different research works, various performance
metrics have been employed by the authors. For exam-
ple, we noted that performance metrics, such as accu-
racy, precision, recall, F1-score, mAP, RMSE and IoU,
were employed in the literature to report model per-
formance. However, to compare a reported model and
to improve model performance in the existing studies,
the use of performance metrics should be unified and
standardized in future research. Additionally, different
models, learning algorithms, hyperparameters or vali-
dation processes have been applied and vary from spe-
cies to species or object to object. Such specificity limits
the widespread application of the proposed technologies
outside of the given research domain. Further work
should be done to standardize the proposed technolo-
gies and overcome the bottleneck to build robust and
easy-to-use models. Noncomputer experts, such as
horticulture scientists, will be able to find and use such
user-friendly models for practical applications in the
future.
Another limitation lies in the fact that the collection of a

large and reliable dataset along with clear data annotation
is inevitably tedious work, which make completing tasks
more complicated for researchers. The success of deep
learning cannot be realized without the availability of
annotated data107. Data collection and annotation is
crucial and time consuming; therefore, data collection
efforts should be made by researchers worldwide. More-
over, since the collection ability of data by individuals,
research teams, or even institutions is limited, the col-
lected data should be uploaded to open-access databases
to lower the entry barrier and to accelerate the availability
of of data for researchers. On the other hand, a number of
ongoing examples of code sharing are now available on
GitHub and other Git-like platforms developed by some
enthusiasts for nonexperts to share models and check
data1. Therefore, a combined effort by both horticulture
and computer scientists is necessary to make significant
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contributions to meet challenges in intelligent horti-
culture fields.

Summary, discussions, and future perspectives
Summary and discussions
Through a careful examination of existing studies, we

found that the major research focus was on the develop-
ment of deep-learning models and their potential appli-
cations in various horticultural studies. The application of
deep-learning techniques in horticultural sectors is still in
its nascent stage but is also in a period of rapid devel-
opment. From 2016 until now, there have been 71 rele-
vant publications focusing on the applications of deep-
learning methods to species identification and variety
classification (33.80%), quality detection (18.31%), yield
prediction (9.86%), pest and disease management
(21.13%), and growth monitoring (14.08%) in the field of
horticultural crops in addition to some review papers
(2.82%). Among the surveyed papers, the number of
publications in 2019 was 130% more than that in 2018 (30
in 2019 versus 13 in 2018). Since most of the works were
based on image processing, CNNs and their variants were
chosen in most cases (92.96% among the surveyed lit-
erature). From our reviewed work (Tables 2–6), 56 out of
the 71 papers (78.87%) performed valid, correct and direct
comparisons between the proposed approach and other
state-of-the-art techniques with respect to the same pro-
blem. The results of these studies indicate that deep
learning has better performance in many aspects com-
pared to traditional machine learning for many agri-
cultural tasks23.
In terms of evaluating model performance, various

performance metrics were employed by the original
author(s), and each metric was associated with the model
used in each study. At the end of Section “Brief overview
of deep learning”, some performance metrics, their defi-
nitions/descriptions, and the abbreviations we used in this
paper are described. For some studies, where the author(s)
directly used accuracy/correct recognition rate without
providing its definition, we assumed that they referred to
CA. From Tables 2–6, we can see that CA was the most
popular metric used (43 papers, 60.56%), followed by F1
(18 papers, 25.35%). Some papers included the RMSE (8
papers), R2 (3 papers) or other metrics. Twenty-seven of
the 71 studies (38.03%) used a combination of perfor-
mance metrics to evaluate their results. Usually, in com-
bination with CA, F1, precision, recall, or IoU was also
used to evaluate the prediction performance of the
models.
As each paper adopted different datasets, performance

metrics, preprocessing techniques, models and para-
meters, it is difficult to compare and generalize the results
from different papers. Therefore, our comparisons and
generalizations would generally be strictly limited to the

results from a single paper. However, in this section, we
still tried to make some evaluations and comparisons
among different technologies, but the readers should take
our comments with caution, as the datasets and other
parameters used by different authors might not be the
same. In 43 of the 71 papers that used CA as a metric,
most of the accuracy was higher than 90%, indicating
good performance. The highest CA results had values
higher than 98%, constituting remarkable results, which
were obtained by Amara et al.41 (99.72% with a LeNet
model), Feng et al.87 (99.62-100% with a CNN), Zeng
et al.36 (99.25% with a modified LeNet model), Brahimi
et al.46 (99.18% with GoogLeNet and 98.66% with Alex-
Net), Alruwaili et al.98 (99.11% with a modified AlexNet
model), Neupane et al.78 (98.7% with the Faster R-CNN
Inception-V2 model), Giefer et al.56 (98.36% with the
VGG-16 model), Karthik et al.92 (98% with a residual
CNN), Bauer et al.105 (higher than 98% with a CNN), and
Sun et al.100 (93.3%–100% with a DBN). Of the surveyed
papers, the results obtained by Zhang et al.85 had the
lowest CA (77.8%–84.5% with an FCN model); however,
the SVM model used in this particular task (the detection
of internal bruises in blueberries) also obtained a low CA
(22.5%–67.9%). Additionally, in Zhu et al.30, the AlexNet
model (92.1%) obtained CA results that were 14.1% and
11.6% better than the results of the BP neural network
(78%) and SVM (80.5%), showing a significant improve-
ment. On the other hand, among the 43 papers that used
CA as the metric, AlexNet was the most adopted model
(10 papers, 23.2%), followed by VGGNet (8 papers, 18.6%)
and ResNet (5 papers, 11.6%). From the 18 papers that
used F1 as a metric, 6 papers obtained values above 0.90
and the highest values, which were observed by Ampat-
zidis et al.72 (0.998 with the YOLO-V3 model), Amara
et al.41 (0.9971 with the LeNet model), and Alruwaili
et al.98 (0.9929 with a modified AlexNet model), were
above 0.99, indicating excellent performance. The results
obtained by Wang et al.48 had the lowest F1 score (0.531
with an FCF model), but the average running time in the
GPU was greatly reduced and was 0.075 s per image.

Future perspectives of deep learning in the horticulture
domain
With the progress of scientific research, deep-learning

methods and applications will have a great impact on the
horticultural industry and the potential to overcome
various challenges (such as productivity challenges,
environmental changes, food security and sustainability)
in the agricultural industry5,16,108. Tables 2–6, which lists
a variety of existing applications of deep-learning methods
in horticultural science, show that attempts to classify
species, detect quality, predict yield and manage pests
have been implemented. For example, precise fruit/
flower/vegetable detection with deep-learning technology
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allows the generation of yield maps to provide real-time
information on spatial variation from which agronomic
decisions can be based to form efficient and precise har-
vesting strategies for increasing marketable yield2,105. This
technology would take the place of farmers or gardeners
and could solve the current problem of relying heavily on
personal experience, which is time consuming, inaccurate
and unreliable. Another promising example is the early
detection of plant stress6,90. Combining deep learning
with digital image data or spectral data has shown great
potential in improving the speed, accuracy, reliability and
scalability of early detection, classification and quantifi-
cation of plant stress and/or disease6,16. In addition,
because of the availability of inexpensive digital imaging
devices, IoT capabilities, and computing and data storage
capabilities, more varieties of horticultural crop informa-
tion can be used to train deep-learning models and to
address some valuable specific issues in the
horticultural field.
Although deep learning has superior performance in

most of the studies, it is not easy for a reader to quickly
choose the right model for a specific task. This difficulty
comes not only from the selection of a deep-learning
model but also from the hardware and software conditions,
weight initialization, learning algorithms, learning rates,
activation functions, hyperparameters, validation processes,
data sources and data preprocessing methods. Therefore,
deep learning can be considered more of an art that relies
heavily on personal experience than science. If an estab-
lished model is to be widely applied to ordinary farms and
orchards, it would be necessary to accept that the detection
accuracy may be reduced. Since most of the studies used
deep learning for image object detection, a CNN was
chosen to be successfully applied for the recognition and
yield estimation of horticultural plants/products.
There are three main types of CNN-based object

detection methods. The first includes some main CNN
structures for object recognition, such as LeNet36,41,
AlexNet30,62,63, VGGNet43,91, GoogLeNet46, and
ResNet31,48. On the basis of the first type, the second type
of method realizes two-stage deep-learning object detec-
tion combined with the region proposal method to
achieve an improvement in the detection rate and an
acceleration in the detection speed; this method type
mainly includes the R-CNN33,73, Faster R-CNN44,59,60,77

and Mask R-CNN38,54. The third type includes end-to-
end, single-stage deep-learning object detection algo-
rithms, which can directly return the categories and
position borders of multiple objects, such as the
YOLO37,72,74 and SSD56 methods. Based on these models,
fruit yield can be automatically estimated32,54,68, flower
and fruitlet thinning and other gardening operations can
be automatically conducted48,101, and the early detection
of plant stress can be accomplished6,90.

However, for the quality detection of horticultural
products and stress detection of horticultural plants, such
as some invisible quality indicators or early bruising
detection, a visual analysis method is less effective. From
Tables 4 and 5, the authors not only adopted regular CNN
methods but also employed other networks, such as the
SAE-FNN27, CNN-SSAE86, DBN100 methods, to achieve
accurate and rapid feature extraction from a large number
of hyperspectral image data and to detect fruit quality
(such as SSC and hardness) and plant stress (such as early
bruising detection and disease identification). In addition,
as Vis/NIR hyperspectral imaging may allow for early
detection of plant stress/internal bruising of fruit before
symptoms are visible to human eyes, deep-learning
approaches would also be promising in this domain.
Therefore, deep-learning technology should be combined
with these rapid nondestructive testing technologies to
explore its great potential in effective feature extraction
for direct defect detection. In addition, RNN or LSTM
models combined with high-performance regression
algorithms or classifiers are promising options that can be
used in future horticultural research, especially in yield
and price predictions of horticultural products. One
example was given in this review that applied LSTM to
forecast a banana harvest yield for effective and efficient
decision making and forward planning32.
Moreover, owing to the advancement of hardware

computing capabilities and hardware supply, training
processes can be accomplished in much shorter amounts
of time. We believe that with the commercialization and
widespread use of the Qualcomm Neural Processing SDK
(Software Development Kit) for AI and other mobile
platforms, handheld smart devices and mobile deep-
learning applications will be available for ordinary farms
and orchards in the near future. Some of the successful
cases deploying deep-learning concepts for plant science
applications, such as image recognition and the quality
evaluation of horticultural products, early detection sys-
tems for plant stress, and yield prediction, can be further
transformed for practical application in horticulture5,16,23.
According to the surveyed papers, some authors20,58,109

further integrated tree trunk, branch or fruit recognition
algorithms into mobile devices after the model was
trained. However, to truly achieve deep learning on
mobile devices, some difficulties and problems need to be
addressed, such as how to embed a model into mobile
devices and how to realize the miniaturization of sensing
equipment. Thus, more research is needed to achieve
this goal.
Currently, deep-learning technology has been able to

open the door to intelligent horticulture for difficult
gardening jobs. Based on these precise phenotypic data,
we can accurately monitor crop growth features at dif-
ferent critical stages and key yield-related traits and
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implement precise agricultural decision management.
As shown in Table 1, the performance of deep learning
combined with image data has steadily improved, and
these models have also been successfully applied in
horticultural science. However, as was described before,
it is a difficult task to choose the most suitable model
among the various techniques that have been proposed
to date for a specific application in horticultural science.
In addition, there is also an urgent need to build large
datasets containing plant images to create robust mod-
els. When collecting plant phenotypic data, we strongly
recommend the use of in-field real condition imaging
data (i.e., with varying shade, light, and mutual occlu-
sion conditions) to create training datasets. Correct
labeling and the open-source use of these datasets can
avoid the duplication of data collection. With the
increasing amount of collaborative research and the
joint effort among horticulturalists and computer sci-
entists, we are confident that deep-learning technology
has great potential to support the horticulture
industry more intelligently and accurately to improve
yield and quality and to better detect plant stress and
diseases.

Conclusion
With the rapid explosion of data in horticultural sci-

ences, deep-learning technology has become a hot
research focus and has opened a new area in artificial
intelligence. Deep-learning methods provide a powerful
tool to assimilate data and have proven to hold promise
for overcoming the existing challenges to record plant
growth objectively, judge plant status accurately and
detect the quality of products quickly in horticultural
science. A key element for the successful large-scale
application of deep-learning technology lies in the joint
effort of scientists from both computer and horticulture
sectors and the seamless integration of data collection
along with an effective curation pipeline14. Such efforts
would allow for the formation of a computational eco-
system that might provide tremendous opportunities to
facilitate planting, promote intelligent orchard manage-
ment and tackle other problems. Some of the solutions
discussed in this paper also have potential for commer-
cialization in the near future. For example, automatic
robots incorporated with a faster region-based CNN
could be used in transplanting, fruit picking or yield
estimation. The aim of this review is to introduce this
relatively new and effective tool so that researchers and
workers in horticulture sectors can manage the massive
amounts of data they might collect in their research and
to encourage researchers to use or improve data to solve
their problems to gradually to move towards a smart
horticulture industry.
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