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The diverse roles of cytokinins in regulating leaf
development
Wenqi Wu1, Kang Du1,2,3, Xiangyang Kang 1,2,3 and Hairong Wei 4

Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important
functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized.
Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their
signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide
stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well
as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf,
especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a
leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and
increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During
leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf
photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the
whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf
developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light
on the molecular mechanisms underlying leaf development.

Introduction
In the late 1950s, a substance that promoted plant cell

division was discovered in autoclaved herring sperm DNA
and was called kinetin1. A few years later, a class of
phytohormones with similar molecular structures,
including 6-(γ,γ-dimethylallylamino)-purine, 6-benzyla-
denines, and zeatin, referred to as cytokinins2, were found
to play important regulatory roles in cell division. Since
then, the biosynthesis, metabolism, distribution, signaling
pathways, and functions of cytokinins have been intensely
investigated and characterized.
The main genes currently known to be involved in

the cytokinin biosynthesis pathway encode the

ISOPENTENYL TRANSFERASE (IPT) and LONELY
GUY (LOG) enzymes3,4. The initial step of cytokinin
biosynthesis in higher plants is the formation of cytokinin
nucleotides, namely, isopentenyladenosine 5′-tri-, di-, or
monophosphate (iPRTP, iPRDP, or iPRMP, respectively),
from ATP, ADP, or AMP and dimethylallyl pyropho-
sphate (DMAPP) by IPTs5. LOGs, which encode
phosphoribohydrolase-activating enzymes, directly con-
vert a cytokinin nucleotide to an active free-base form of
cytokinins in the final step of cytokinin biosynthesis3

(Fig. 1). The levels of active cytokinins can be modulated
via irreversible cleavage by CYTOKININ OXIDASE
(CKX) enzymes6,7 or through conjugation to glucose by
cytokinin glycosyltransferases8,9 (Fig. 1). Plants regulate
the concentration of active cytokinins through reversible
and irreversible metabolism processes. Therefore, the
precise maintenance of the homeostasis of cytokinins
through these synthesis and inactivation enzymes is
essential for plant development and adaptation to
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complex and changing environments. Recent studies have
indicated that cytokinin biosynthesis varies with tissue
and cell type10,11. However, as they are mobile signals,
cytokinins rely on PURINE PERMEASES (PUP)12,13,
EQUILIBRATIVE NUCLEOSIDE TRANSPORTERS
(ENT)12, and G SUBFAMILY ATP-BINDING CAS-
SETTE (ABCG)14 for short- and long-distance transport
between roots and shoots (Fig. 1). In Arabidopsis, cyto-
kinin signal transduction begins when cytokinins are
received by sensor histidine kinases, HISTIDINE KINASE
(HK2, HK3, and HK4), which initiate a phosphorylation
signaling cascade in the endoplasmic reticulum15,16. After
cytokinin binding, the phosphoryl group is transferred

from HKs onto HISTIDINE-CONTAINING PHOS-
PHOTRANSMITTER (HPT) proteins17. HPTs then
translocate from the cytoplasm to the nucleus and activate
the transcription of ARABIDOPSIS RESPONSE REG-
ULATORS (ARRs), which are categorized as type A
transcriptional repressors18–20 or type B activators20–22,
and CYTOKININ RESPONSE FACTOR (CRF)20,23 (Fig. 1).
Through this signal transmission, cytokinins influence
many aspects of biological processes that affect plant
growth and development, such as cell division, apical
dominance, shoot initiation and growth, phyllotaxis, vas-
cular bundles, leaf senescence, branching and nodulation,
seed germination, nutrient uptake, and biotic and abiotic
stress responses20,24,25.
The development of plant leaves, which are the pri-

mary organs in plants for capturing light energy and
perceiving diverse environmental conditions, is a
dynamic process that can be divided into four different
phases: the initiation of leaf primordia, the establishment
of polarity (EP), the establishment of leaf size and mor-
phology26,27, and leaf senescence28. First, cells at the
peripheral zone of the shoot apical meristem (SAM)
differentiate into a leaf primordium, whose position is
regulated by phyllotactic patterning29. Second, the three
growth axes, the adaxial–abaxial, proximal-distal, and
mediolateral axes, are determined in the leaf pri-
mordium30,31. Even before the EP is completed, leaf
primordium cells begin to divide and proliferate, which
results in exponential increases in both leaf area and cell
number. After the leaf blade and the petiole clearly
separate, growth occurs throughout the entire leaf along
the mediolateral axis, which results in the formation of
the final shape of the leaf. After a growing season,
flowering, nutrient deficiency, or unfavorable environ-
mental conditions such as inadequate light or certain
abiotic/biotic stresses, leaf senescence is initiated, which
constitutes the final stage of the leaf lifespan preceding
its death. However, these leaf developmental stages are
not completely independent, as they are continuous and
interconnected26,27,29.
In plants, cytokinins are essential regulators that are

involved in almost every aspect of plant growth and
development. During the various stages of leaf develop-
ment, cytokinins play essential roles by regulating the
transcriptional expression of downstream genes. Cytoki-
nin homeostasis is modulated by certain transcription
factors or by modulators during leaf development.
Therefore, studies of the relationships among cytokinin
signal transduction, gene regulation, and cytokinin mod-
ulation during various stages of leaf development help to
reveal the underlying molecular mechanisms and advance
our understanding in order to open novel avenues for
improving agricultural and forestry yields. In this review,
we focus on cytokinin homeostasis, signal transduction,

Fig. 1 Schematic model of cytokinin (CK) biosynthesis,
metabolism, degradation, and signal transduction. The names of
the genes in up panels are shown in ovals, and in low panel are
shown in the capsule shapes (see the text for further details). DMAPP:
dimethylallyl pyrophosphate; iPRMP: isopentenyladenosine-5-
monophosphate; tZRMP, trans-zeatin riboside 5′-monophosphate;
cZRMP, cis-zeatin riboside 5′-monophosphate; iP, N6-(Δ2-isopentenyl)
adenine; tZ: trans-zeatin; cZ: cis-zeatin; Ade: adenine; IPT,
isopentenyltransferases; tRNA-IPT, tRNA-isopentenyltransferase;
CYP735A, cytochrome P450 monooxygenase; LOG, LONELY GUY; GT,
glycosyltransferase; CKX, cytokinin oxidase/dehydrogenase; ABCG, g
subfamily ATP-binding cassette; PUP, purine permeases; ENT,
equilibrative nucleoside transporters; HKs, histidine kinase; HPTs,
histidine phosphotransfer proteins; ARR, response regulator, CRF,
cytokinin response factor. Other abbreviations are as defined in
the text
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and gene regulation as well as their regulatory roles in leaf
development.

The complex roles of cytokinins in leaf initiation
SAMs located at the shoot apexes are highly organized

tissues containing pluripotent stem cells that can be
divided into different functional zones, including the
central zone (CZ), peripheral zone (PZ), and rib zone
(RZ). SAMs generate nearly all the aerial organs and tis-
sues of plants during postembryonic growth. Generally,
cells in the CZ at the summit of the SAM divide slowly
and maintain their pluripotency. The RZ below the CZ is
responsible for generating stems. Some of the daughter
cells produced by the CZ exhibit an accelerated cell
division rate when they emerge in the PZ and eventually
lead to the formation of lateral organs such as leaves and
flowers (Fig. 2)32,33. Leaf primordia are initiated from the
PZ, where cells become responsive to differentiation. Leaf
primordia in the PZ are generated in a temporally and
spatially controlled manner; this process is referred to as
phyllotaxy34. The SAM is anatomically divided into three
well-defined cell layers: The epidermal (L1) and sub-
epidermal (L2) layers, known as the tunica, and an inner
layer (L3) that is referred to as the corpus32,35. L1 and L2
are single-cell sheets with anticlinal cell division planes
that form the epidermis of the plant tissue surface. The
cells within L3 divide in all directions and form vascular

tissues (Fig. 2)26. In response to plant hormones and
external cues, the dynamic balance of cell division and
differentiation can be perfectly controlled and maintained
in the different subdomains of the SAM by cytokinin and
auxin interactions as well as their homeostasis and spatial
signaling.
Phytohormones, such as auxins and cytokinins, play

indispensable but distinct roles during SAM development
and maintenance. Auxins are required for leaf formation
and organogenesis; in contrast, cytokinins promote mer-
istem maintenance. However, these phytohormones do
not exist and function independently; recent studies have
shown that auxins and cytokinins function together in
multiple cells, tissues, and organs with both antagonistic
and synergistic actions36–38. The formation of new leaves
in the apical meristem is initiated by the accumulation of
auxin36. Unlike those of auxins, the primary functions of
cytokinins in maintaining the size and structure of SAMs
have been fully demonstrated in multiple experiments25.
For instance, a reduction in the concentration of or sen-
sitivity to cytokinins via mutation of IPT39, the over-
expression of CKX40, or the modulation of signal
transporter genes41 results in a decrease in SAM size and
activity. Therefore, cytokinins play a central role in sti-
mulating SAM activity and size through synergistic or
antagonistic interactions with auxin. At the same time,
many other regulators contribute to modulating cytokinin

Fig. 2 Schematic diagram of cytokinin (CK) regulation of leaf primordium initiation. Cells in the shoot apical meristem (SAM) are arranged into
the L1, L2, and L3 layers and four distinct zones: the central zone (CZ), peripheral zone (PZ), organizing center (OC), and rib zone (RZ). KNOX is
expressed in almost the entire SAM. KNOX positively regulates the synthesis of cytokinins and keeps their levels high. Cytokinins promote the
expression of WUS through signal transduction and transcription factors, which maintain a high cell division rate in the OC. ERECTA blocks the effect
of cytokinins and promotes the transport of auxin. In areas with higher auxin concentrations, the leaf primordium begins to form. In the early stage of
leaf development, KNOX, which is highly expressed in the marginal blastozone, changes the leaf morphology by promoting cytokinin synthesis to
form compound leaves. Solid lines indicate direct relationships that have been confirmed; dashed lines represent potential mechanisms. The
abbreviations are as defined in the text
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and auxin concentrations and gradients in different zones
of the SAM.
Several regulators have been shown to play important

roles in modulating the concentrations and activities of
cytokinins. Transcription factor class I KNOTTED-LIKE
homeobox (KNOX I) family genes42, including SHOOT-
MERISTEMLESS (STM), kn1-like in Arabidopsis thali-
ana1 (KNAT1), KNAT2, and KNAT6, are essential for
establishing and maintaining meristem development by
increasing cytokinin levels or sensitivity while simulta-
neously repressing GA. The expression patterns of KNOX
I are primarily limited to the SAM, and KNOX I expres-
sion is absent in leaf primordia43,44. In Arabidopsis, STM
activates the expression of IPT7 in the SAM to promote
cytokinin biosynthesis (Fig. 2). stm mutants, which exhibit
shoot meristem loss, can be partially rescued through the
application of exogenous cytokinins45,46. In addition,
endogenous cytokinin overproduction significantly
increases the mRNA levels of the KNOX I genes, which
indicates that there may be a positive feedback loop
between KNOX I genes and cytokinins in the SAM47.
Another enzyme, LOG4, is expressed in the L1 layer and
produces active cytokinins that move to the lower cell
layer and form a diffusion gradient within the SAM48,49.
Thus, KNOX I and LOG4 provide a high level of cytokinin
accumulation and activation in the SAM to sustain SAM
growth and activity (Fig. 2).
The functions and effects of cytokinins in various cells

in different zones are determined not only by their con-
centrations but also by their spatial signal transduction.
Some genes regulate the size of the SAM by regulating the
cytokinin signaling pathway to modulate the sensitivity of
cytokinins. The main response genes involved in cytoki-
nin signaling, type-B ARRs (ARR1, 10, and 12), directly
bind and activate the homeodomain transcription factor
WUSCHEL (WUS), which positively governs cell pro-
liferation in the organizing center (OC) under a very high
concentration of cytokinins50,51. In the peripheral area
where WUS is expressed, multiple feedback systems
mediated by hormonal components and transcription
factors act in parallel to control the fate of meristems.
WUS represses the type-A ARRs ARR7 and 15 to posi-
tively strengthen cytokinin response sensitivity in the
plant (Fig. 2)52. CLAVATA3 (CLV3), together with CLV1
and CLV2, forms a receptor complex that can also
determine the size of the meristem by limiting the
expression of WUS. In addition, WUS directly activates
the expression of CLV3 in the CZ, forming a negative-
regulation feedback loop53. This local WUS–CLV3 feed-
back loop ensures a constant number of stem cells in the
SAM (Fig. 2)54,55. Furthermore, a signaling pathway
composed of ERECTA family receptors and epidermal
characteristic factor-like ligands can limit the width of the
SAM and promote leaf initiation by inhibiting the

expression of CLV3 and WUS56,57. Compared with wild-
type Arabidopsis seedlings, mutant seedlings lacking all
members of the ERECTA family are more sensitive to
cytokinin treatment and exhibit increased SAM size and
drastic changes in WUS and CLV3 expression; this may
occur because the buffer mechanism that maintains stem
cell homeostasis against an increase in cytokinins is
severely impaired56. Thus, the establishment of cytokinin
homeostasis and the cytokinin gradient, as well as spatial
signal transduction by cytokinins, play key roles in
maintaining the structure of SAMs and their ability to
continuously divide and grow.
The spatiotemporal pattern of lateral organ initiation at

the SAM is controlled by both auxins and cytokinins58.
Changing the auxin/cytokinin ratio requires additional
feedback loops that stabilize phyllotaxis. During the
initiation of leaf primordia, ERECTA family receptors not
only inhibit the effect of cytokinins but also promote the
formation of leaf primordia by increasing the expression
of PIN-FORMED 1 (PIN1), which increases polar auxin
transport59. Auxins acting through MONOPTEROS
(MP), an auxin-responsive transcription factor, activate
the cytokinin signaling inhibitor ARABIDOPSIS HISTI-
DINE PHOSPHOTRANSFER PROTEIN 6 (AHP6) to block
the cytokinin signaling pathway (Fig. 2)60. AHP6 is not
uniformly distributed in the SAM, resulting in different
active regions of cytokinins within the SAM. This small
spatial difference causes changes in the ratio of auxins to
cytokinins that maintain the orderly production of leaf
primordia60,61. However, studies have shown that cytoki-
nins are a prerequisite for leaf initiation. Leaf initiation in
tomato shoot apexes ceases in darkness but resumes
under light or under cytokinin (zeatin) application to the
summit of the meristem62. Cytokinins play two roles in
this process: (1) promoting the growth of meristems to
provide a source of stem cells as a prerequisite for leaf
initiation and (2) affecting the establishment of the auxin
gradient by regulating auxin biosynthesis and trans-
port62,63. In monocotyledons, altered phyllotactic patterns
are observed in the maize mutant aberrant phyllotaxy1
(abph1)64 and the rice mutant decussate (dec)65. Both
ABPH1 and DEC encode proteins that function in cyto-
kinin signaling, and the abph1 and dec mutants have
enlarged SAMs. However, mutants with disrupted cyto-
kinin signal transduction pathways do not exhibit a
phyllotactic shift22. In the abph1 mutant, maize PIN1
expression and auxins at the incipient leaf primordium
are greatly reduced, as cytokinin specifically promotes the
expression of maize PIN1 in the incipient leaf pri-
mordium66. Collectively, these studies indicate that the
phyllotactic shift may be a result of a delay in the initiation
of lateral organs stemming from the change in the auxin/
cytokinin ratio. In the initial stage of leaf development, the
functions of cytokinins are contradictory; they delay the
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initiation of the leaf development process and suppress
the formation of leaf primordia by inhibiting stem cell
differentiation. However, cytokinins not only maintain the
existence of the SAM but also provide cells for plant
apical growth, which is a prerequisite for lateral organ
formation and leaf primordium initiation.

Cytokinins control leaf shape
The leaves of most plants have a flat and broad structure

to support photosynthesis and gas exchange. Given their
adaptations to different natural habitats, leaf forms can be
broadly grouped into two categories: simple leaves, which
consist of one entire unit with a single lamina, and
compound leaves, which consist of multiple subunits
called leaflets, each resembling a simple leaf67. Generally,
the final shape of leaves has been shown to be determined
by two biological processes: primary morphogenesis (PM),
which determines the basic leaf form and structures, such
as leaflets, lobes, and leaf margins, and secondary mor-
phogenesis (SM), which includes most leaf expansion and
differentiation and involves the production of cell types
that are typical in mature leaves33. The development of a
compound leaf requires the maintenance of tempor-
ospatial morphogenetic activity in the early stage of leaf
development. For example, at the leaf margin, a region
called the marginal blastozone (MB) is responsible for the
organogenesis of structures such as lobes in simple leaves
or leaflets in compound leaves68. In this case, the mer-
istematic or stem cell identity in the MB or the marginal
regions of leaflets needs to be maintained longer than that
in the sinus regions to support compound leaf formation.
For prolonged activity in the MB and leaflet formation,

cytokinins are involved in the maintenance of extended
morphogenetic activity69. Increasing or decreasing endo-
genous cytokinin levels or readjusting cytokinin sensitivity
in the developing leaf marginal meristem alters leaf
complexity70. This change has been linked to the timely
maintenance of morphogenetic capacity and regulation of
cell proliferation by cytokinins along the margins of
developing leaves69,71. During the formation of compound
leaves, cytokinins also interact with auxins. The discrete
distribution of the auxin response in the leaf margin is the
key factor in the formation of compound leaves70. Both
the local application of auxin in the developing leaf pri-
mordium and the increase in auxin sensitivity inhibit the
supercompound leaf phenotype, which develops owing to
an increased cytokinin concentration69.
In monocotyledons and dicotyledons, various mechan-

isms of compound leaf formation have been identified;
some of them are common in both types of plants,
whereas others have not been observed in dicotyledons.
Previous studies have shown that the mechanisms reg-
ulating compound leaf development in dicotyledonous
plant species, such as tomato, pea, Cardamine, and

Medicago, are not entirely consistent. During simple leaf
development, the downregulation of the KNOX I gene in
leaf primordia is permanent. Unlike in the development
process for simple leaves, KNOX I expression during
compound leaf development is upregulated in the leaf
primordium after leaf initiation, which leads to leaflet
development; KNOX I expression eventually ceases, which
leads to the acceleration of leaf maturation72,73. Over-
expression or silencing KNOX I results in increased or
decreased leaflet numbers in alfalfa74 and tomato
plants19,75, respectively. During PM, KNOX I promotes
cytokinin biosynthesis, similar to its effect in SAMs69,76.
The reductions in cytokinin levels suppress the effect of
KNOX I on leaf shape, and cytokinins can substitute for
KNOX I activity at the leaf margin. Thus, cytokinins act
downstream of KNOX I in the leaf margin (Fig. 2)69.
Similar regulatory mechanisms that involve elevated
cytokinins have also been shown to give rise to dissected
or deeply lobed leaf morphogenesis in Araceae, a mono-
cotyledonous family.
Increasing sensitivity to cytokinins has a similar effect

on leaf morphology in dicots as elevating the level of
cytokinins. One study has indicated that a change in the
sensitivity of cytokinin signal transduction can affect leaf
shape in tomato77. The CIN-TCP transcription factor
family affects leaf shape by promoting differentiation.
Overexpression of the CIN-TCP family gene LANCEO-
LATE (LA) in tomato leads to premature leaf differ-
entiation and the production of smaller leaflets77. CIN-
TCP in Arabidopsis inhibits cytokinin signal transduction
and advances leaf cells to the expansion stage78. The
decrease in MB activity in tomato may be mediated by the
same mechanism of CIN-TCP regulation as in Arabi-
dopsis. This mechanism has not been reported in Car-
damine, pea, or Medicago. However, UNIFOLIATA
(UNI)79 and SINGLE LEAFLET1 (SGL1)80, which are
homologs of LEAFY (LFY) in Arabidopsis that promote
the cytokinin effect by inhibiting type-A ARR7 expres-
sion81, have been reported to affect leaf shapes in pea and
Medicago, respectively. UNI is expressed in the leaf blas-
tozone and plays an active role in maintaining the blas-
tozone. Both pea uni79 and Medicago sgl180 mutants
exhibited reduced leaf complexity because of the pre-
viously initiated differentiation of leaf cells. Therefore,
UNI and SGL1 may regulate compound leaf development
by altering cytokinin signaling. In tomato, other genes
have been found to alter leaf morphology through cyto-
kinin signaling. For example, the CLAUSA (CLAU) gene
encodes an MYB transcription factor that regulates var-
ious aspects of tomato plant development. The tomato
clau mutant is characterized by ectopic meristematic
activity in leaves, which are highly complex and have
many more secondary leaflets than wild-type tomato
leaves82. Recent research has shown that CLAU
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attenuates cytokinin signaling by upregulating the
expression of type-A ARRs, which negatively regulate the
cytokinin response71. CLAU is of particular spatio-
temporal relevance in compound leaves with regard to the
cytokinin signaling pathway (Fig. 2). The HAIRY MER-
ISTEM (HAM) gene encodes a GRAS family transcription
factor that functions in meristem maintenance in com-
pound leaf primordia83,84. In tomato, ham mutants exhi-
bit overproliferation of meristematic cells in the
compound leaf rachis; this phenomenon resembles the
response to the elevation of cytokinin levels or sensitivity,
leading to the proliferation of the ectopic shoot on the
adaxial side of the compound leaf rachis83. The reduction
in cytokinin levels in the ham mutant leaves completely
suppresses the overproliferation phenotype. Thus, HAM,
along with cytokinins, is required for the proper mor-
phogenesis of the compound leaf (Fig. 2)83. In short, the
final morphological development of leaves is likely
accomplished through multiple concurrent regulatory
mechanisms, and the temporospatial elevation of cytoki-
nins and the altered sensitivities of their signal pathways
in different leaf areas likely contribute greatly to com-
pound leaf formation.
There are also other regulatory mechanisms related to

compound leaf formation in monocotyledons. For
instance, it has been reported that in the transition from
cell division to cell expansion, the palm leaf primordium
undergoes the second stage of leaflet separation, in which
the number of cells on the folds of the ridge decreases. As
a result, when the leaflets expand, mechanical force
eventually separates them, resulting in the development of
pinnate compound leaves85. In the other case, pro-
grammed cell death (PCD) has been suggested to play a
role in the dissection of Monstera leaves; specifically, PCD
causes perforations between two adjacent lateral veins
during the early period of leaf expansion, and these per-
forations become enlarged as the leaf grows86. In brief,
simple leaves subdivide into compound leaves through
three mechanisms: (1) controlling marginal growth, which
occurs in both dicotyledons and monocotyledons; (2)
tissue abscission, which occurs in monocotyledons; and
(3) PCD, which also occurs in monocotyledons. At pre-
sent, cytokinins are known to be involved in controlling
leaf marginal growth but not in leaf dissection through
tissue abscission or PCD.
Recent studies have shown that cytokinins can affect the

morphological development of simple leaves in mono-
cotyledons. The leaf of a monocotyledon is composed of a
leaf blade, ligule, auricle, and leaf sheath. In maize, the
semidominant HAIRY SHEATH FRAYED1 (Hsf1) muta-
tion displays a mutant leaf phenotype that resembles the
leaf pattern at the sheath-blade boundary, with out-
growths consisting of an organized auricle/ligule and a
sheath emanating from the distal blade margin. Analysis

of three independent Hsf1 alleles revealed gain-of-
function missense mutations in the maize cytokinin
receptor ZEA MAYS HISTIDINE KINASE1 (ZmHK1); the
mutated residues near the cytokinin binding pocket
enhance the cytokinin binding affinity and thus cause
changes in the leaf pattern. Treating wild-type seedlings
with exogenous cytokinins gives rise to the leaf phenotype
of the Hsf1 mutant87. Thus, cytokinins can influence the
specifications of leaf patterning and alter leaf develop-
mental programs in monocotyledons.
Among the various regulatory mechanisms that have

been found to change leaf morphology, most increase the
cytokinin concentration or cytokinin sensitivity to pro-
mote cell division activity in some leaf areas and ulti-
mately result in dissected or altered leaf morphology in
leaves. However, how these mechanisms function coor-
dinately in through space and time and adapt to different
environmental cues needs to be studied in greater detail.

The relationship between cytokinins and leaf size
The size of a mature leaf is largely determined by the

leaf cell numbers and cell sizes. After a leaf primordium
emerges from the PZ as a rod-shaped protrusion at the
flanking region of the SAM, all leaf cells undergo two
biological processes, cell division and cell expansion,
which determine cell numbers and cell sizes, respec-
tively88,89. In addition, the timing of the transition
between cell division and cell expansion indirectly affects
leaf size90. In dicotyledonous plants, such as the model
plant Arabidopsis thaliana, leaf growth is most often
described as being influenced temporally by cell division.
When the leaf primordium attains a certain size and
position, leaf cell division begins to arrest at the distal tip
of the leaf, which is termed the arrest front88. The arrest
front boundary then moves downwards; when it reaches a
certain point in the midleaf area, it stops for some time
(generally a few days) before moving to the bottom of the
leaf base91,92. After that, all leaf blade cells rapidly become
committed to cell expansion92 (Fig. 3). In contrast, leaf
development in monocotyledons is often seen as spatially
regulated; that is, cell division occurs primarily at the base
of a leaf, cell expansion in the middle of the leaf, and cell
maturation at the tip of the leaf93. Therefore, the tem-
porospatial distribution of cytokinins and their functional
loci during leaf development may be quite different and
determine the final leaf size.
Cytokinins control leaf size by regulating both leaf cell

division and expansion; this has been known for many
years94–97. During the leaf cell division phase, cytokinins,
together with auxin, activate cell proliferation (Fig. 3)98,99.
For instance, a cell culture study with cells in suspension
showed that cell division arrests without auxin and that the
addition of auxin to the arrested cell culture restores cell
division activity99, suggesting that auxin provides the
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necessary signal that allows cells to enter the cell cycle100–102.
However, cytokinins shorten the transition between any two
adjacent cell cycle phases103 and extend the period of cell
proliferation by delaying the onset of cell differentiation.
Conversely, the onset of cell differentiation is brought about
by cytokinin degradation caused by the upregulation of
CKX3, which slows cell proliferation but expedites the onset
of cell expansion104,105. After leaf development enters the cell
expansion period, an excess of cytokinins stimulates cell
expansion, resulting in plants with larger leaves that consist
of larger cells, which leads to higher shoot biomass104,106,107.
During leaf cell expansion, cytokinins are responsible for cell
wall elongation108, turgor pressure increases104, and endor-
eduplication109. Endoreduplication, also known as endor-
eplication, gives rise to cells with extra copies of genomic
DNA110 and contributes to the sizes of some specific types of
cells in certain plant species during leaf expansion. Fur-
thermore, auxin is also involved in cell expansion. Auxins are

known to promote cell wall loosening and endoreduplica-
tion; this topic has been reviewed by Tsukaya111 and Perrot-
Rechenmann99. In other tissues, such as roots, cell expansion
is probably and mainly determined by the crosstalk between
cytokinins and auxins112. However, how the temporospatial
distribution and interaction of cytokinins and auxins change
during the expansion phase of leaf cells remains largely
unknown. In shaded environments, which significantly
decrease the cytokinin contents in young, fully developed,
and mature leaves, leaf size growth is impeded by a lack of
cell expansion. Shaded environments reduce leaf expansion;
however, when shaded leaves are treated with exogenous
cytokinins, they achieve the same size as leaves grown under
normal light conditions113. Defects in cytokinin signaling
also result in reduced cell expansion. The sizes of the coty-
ledons of the triple crf1,2,5 mutant are much smaller than
those of the wild type, by nearly 96%; this is due primarily to
the decline in cell expansion114. In conclusion, multifaceted
cytokinin activities at distinct phases of leaf development
shape the ultimate sizes of leaves. Recent studies have begun
to unveil the underlying mechanisms by which cytokinins
regulate cell division and expansion.
In the cell division phase, one of the mechanisms by

which cytokinins control cell mitosis in leaf development
is by modulating the expression of D3-TYPE CYCLINS
(CycD3)115, CYCLIN-DEPENDENT KINASES (CDKs),
and AINTEGUMENTA (ANT); CycD3, CDKs, and ANT
encode a cell cycle regulatory protein116, serine/threonine
kinases103, and a transcription factor117, respectively.
During the cell proliferation stage of leaf development,
cytokinins control cell division, which activates the G1/S
and G2/M transitions in the cell cycle by promoting the
expression of CycD398 and CDKs103, respectively (Fig. 3).
The more rapid transition from the G1 phase of the cell
cycle to the S phase is crucial for the upregulation of
eukaryotic cell proliferation118. CycD3 is a cell cycle reg-
ulatory protein that binds and activates CDK. The over-
expression of CycD3 is sufficient to induce cytokinin-
independent shoot formation in the calli98, and the loss of
CycD3 activity reduces the ability of exogenous cytokinins
to induce shoot formation115. CycD3 promotes mitotic
cell division and inhibits endoreduplication and cell dif-
ferentiation. Therefore, CycD3 is considered the main
means by which cytokinins interact with cell cycle control
mechanisms. ANT is required for normal cell prolifera-
tion but not cell growth119. In situ hybridization experi-
ments have shown that ANT mRNA accumulates in the
primordia of all lateral bud organs. Shortly after the
appearance of the primordium, ANT mRNA is localized
in the growing regions of immature organs and func-
tions120. The overexpression of ANT results in an increase
in leaf and flower size, while loss-of-function ant mutants
produce smaller leaves119. In response to exogenous
cytokinins, ANT transcript levels increased relative to

Fig. 3 Schematic diagram of cytokinin functions in different
stages of leaf development. The gray dashed lines divide the three
stages of leaf development; the bright green area represents cells in
the proliferation stage; the green area represents cells in the
expansion stage; and the yellow-green area represents the
senescence stage. The terms inside the red rounded rectangles are
biological functions; the genes in the blue box are involved in
chlorophyll synthesis. The solid arrows and blocked bars indicate
activation and suppression, respectively
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those in untreated plants (Fig. 3)117. Cytokinin deficiency
in CKX-overexpression lines or in ipt mutants leads to a
reduction in ANT transcript levels during root secondary
growth or early leaf proliferation104,117. Some genes con-
trol leaf size by regulating cytokinin accumulation or
signaling pathways to change the number of leaf cells and
ultimately change the size of the leaves. GROWTH-
REGULATING FACTORs (GRFs) are a gene family of
transcription factors that regulate various aspects of plant
growth and development. In a variety of plant species, the
overexpression of most GRF genes leads to the enlarge-
ment of lateral organs. In A. thaliana, the number of leaf
cells in transgenic plants with GRF5 overexpression
increased, and the leaves became larger. The expression of
CRF2, which is a gene downstream of GRF5, is sig-
nificantly upregulated, and the corresponding sensitivity
of cytokinins is increased121. In poplar, GRF5-1 can bind
to the promoter of CKX1 and inhibit its expression. The
cytokinin concentration in the apical buds and immature
leaves of GRF5-1-overexpressing transgenic plants
increased, which increased the number of mesophyll cells
and leaf area122. In brief, during the leaf cell proliferation
stage, cytokinins increase the number of leaf cells by
promoting the mitotic replication cycle and accelerating
cell division in different facets, thereby regulating leaf size.
Cytokinins are also involved in the cellular state tran-

sition from cell division to cell expansion. The TEO-
SINTE BRANCHED1/CYCLOIDEA/PCF transcription
factor family (TCP), which targets growth-related genes, is
composed of two classes that antagonistically control leaf
growth in a spatially restricted manner78,123. TCP4,
belonged to class II proteins (also known as CIN-TCPs),
promotes the change from leaf cell division to leaf
expansion by activating cell differentiation and accel-
erating the progression of the cell cycle arrest front78,107.
CIN-TCPs recruit BRAHMA, a component of the SWI/
SNF chromatin remodeling complex, to bind the pro-
moter of ARABIDOPSIS RESPONSE REGULATOR16
(ARR16), which is a type-A negative regulator of cytokinin
response, and activate the expression of ARR16107. Thus,
the reduction in sensitivity to cytokinins due to the
expression of ARR16 is thought to be associated with
differentiation in leaf growth (Fig. 3). CIN-TCP genes
control cell division arrest in the early stage of leaf
development and thereby ensure that the leaves remain
flat. A reduction in CIN-TCPs expression results in
delayed basal node progression and increased cell pro-
liferation before ultimately blocking mitosis78. In short,
the blockage of cytokinin signaling is critical to the for-
mation of the arrest front boundary.
In the cell expansion phase, cytokinins are shown to

be involved in at least three mechanisms that contribute
to the final cell size. During this phase, cell walls
undergo loosening, remodeling, and biosynthesis124.

Growing plant cells characteristically exhibit faster cell
elongation under acidic conditions, which are induced
by auxin through the stimulation of plasma membrane
H+-ATPase proton pump activity125,126. Expansins are
cell wall proteins that induce pH-dependent wall
extension and stress relaxation and comprise a large
superfamily with at least two major branches (identified
as α-expansins (EXPA) and β-expansins (EXPB))127.
The interplay between cytokinins and expansins in cell
growth has been reported in a few plant species, such as
Arabidopsis128, Melilotus108, soybean129, Rosa130, and
poplar131. In poplar trees, the highest levels of EXPA3
mRNA are observed in young leaves that will expand in
size. Furthermore, the expression of EXPA3 is inducible
by exogenous cytokinins131. In addition, a recent study
showed that CKX2 activation induces the expression of
EXPA5 within 3 h (Fig. 3)104. In Arabidopsis, con-
stitutive overexpression of CKX1 leads to a decrease in
the number of leaf cells but an increase in leaf cell
size40; these responses might be a compensatory
mechanism related to the enhancement of postmitotic
cell expansion in response to a decrease in cell number
during lateral organ development132. In the root growth
zone of Arabidopsis, both cytokinins and auxins can
induce the expression of certain expansin genes133.
Presumably, this is true in leaves as well, and the
underlying activation mechanisms are worth investi-
gating. Proteome profiling of leaves with excessive
cytokinin during the cell expansion phase revealed that
carbohydrate metabolism and energy-associated pro-
cesses were stimulated. These processes result in sig-
nificantly increased contents of major soluble sugars
and starch in response to an excess of cytokinins104,
which increases turgor pressure and is required for the
biochemical loosening of the cell wall (Fig. 3)127.
Endoreduplication, the increase in ploidy by chromo-
some replication without subsequent cell division, is
also often involved in the process of increasing cell
sizes134. In Arabidopsis, type-B ARR2 binds to and
activates the CCS52A1 gene (null function alleles of
which reduce endoreduplication expansion in leaf
cells109) and promotes the onset of the endocycle135. In
cytokinin receptor mutants, CCS52A1 expression was
reduced136; consequently, reduced cell endoreduplica-
tion was observed135 (Fig. 3). In summary, cytokinins
increase cell size in plants by promoting cell wall
elongation, increasing turgor pressure, and enhancing
endoreduplication.
In conclusion, cytokinins regulate the rate of cell divi-

sion, the time of transition, and the extent of cell
expansion, thereby affecting the numbers and sizes of cells
and eventually the leaf size. However, the modes of action
of cytokinins during the above processes remain largely
unclear or unknown, and further research should focus on
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the molecular and biochemical mechanisms underlying
these processes.

Cytokinins delay leaf senescence
The final stage of leaf development is senescence, which

can significantly affect the survival, health, and pro-
ductivity of plants during the growing season. Senescence
is characterized by color changes in both perennial and
annual plants in the late summer and throughout autumn.
In this phase, the most perceptible phenotypic change
that embodies senescence is the appearance of variegated
leaves, which develop due to the disassembly of chlor-
oplasts and the degradation of proteins, lipids, nucleic
acids, and pigments111,137. The nutrients that are gener-
ated from the degradation of senescing leaves are trans-
ported to developing seeds and fruits in annual plants or
to new leaves or flowers in perennial trees, resulting in the
death of the senescing leaves137,138. Therefore, although
leaf senescence is an adverse process for leaf organs, it
represents an altruistic death that plays a vital role in
maintaining plant adaptability by ensuring the production
of fit offspring and improving plant survival with a given
spatiotemporal ecological niche139. Leaf senescence is
influenced by various endogenous signals (plant hor-
mones and age) and environmental signals (darkness,
shading by other plants, UV-B or ozone exposure, nutri-
ent limitation, extreme temperatures, drought, high sali-
nity, and pathogen attacks)137,140,141. Under most
environmental conditions, leaf senescence is initiated and
develops due primarily to leaf age. Various plants shed
their old leaves at different times during the growing
season. Abiotic and biotic stresses can also enhance this
process and may reduce plant biomass accumulation.
Leaf senescence is not a passive, unregulated degen-

eration process. Phytohormones, especially cytokinins142

and ethylene143, have been reported to affect leaf senes-
cence; specifically, cytokinins are thought to delay leaf
senescence, whereas ethylene is thought to induce it.
Cytokinins are believed to serve as negative regulators of
leaf senescence in a variety of monocotyledonous144–147

and dicotyledonous148–151 species. A reduction in cyto-
kinin levels before the onset of senescence is believed to
be a key signal for the initiation of senescence142. The
exogenous application of cytokinins or the transgenic
expression of cytokinin biosynthesis genes prevents the
degradation of chlorophyll, photosynthetic proteins, and
RNA, resulting in delayed senescence (Fig. 3)142,147,152,153.
For example, transgenic tobacco with a senescence-
specific gene (SAG12) promoter fused with the IPT gene
significantly impedes leaf shedding and other symptoms
of senescence142. Moreover, because of the prolongation
of photosynthetic activity, the biomass of the transgenic
plants and their seed productivity were greatly aug-
mented. In tomato, overexpression of the IPT gene

(pSAG12::IPT and pSAG13::IPT) inhibits leaf senescence,
promotes earlier flowering, and increases fruit weight and
total soluble solids154. The increase in biomass accumu-
lation is to a large extent due to the extended photo-
synthetic period and nutrient transport in senescent
leaves. In contrast, cytokinin biosynthesis mutants have a
shorter leaf life span148,155. miRNAs are important post-
transcriptional regulators of plant growth and develop-
ment that participate in the process of leaf senescence by
modulating cytokinins. Recent studies have shown that a
newly identified microRNA (miR208) in tomato that
reduces cytokinin biosynthesis by regulating IPT2 and
IPT4 post-transcriptionally promotes leaf senescence (Fig.
3)148. Cytokinins can postpone leaf aging processes caused
by unfavorable or adverse environmental conditions (such
as drought or darkness) and delay the occurrence of leaf
senescence146,156. Various experiments on different genes
in many plant species have consistently shown that the
levels of cytokinins play a major role in both single-leaf
and whole-plant senescence.
Although the senescence-delaying effects of cytokinins

have been well established, the mechanisms behind this
phenomenon remain largely unknown. However, recent
research on cytokinin signal transduction has shed new
light on the underlying mechanisms. Cytokinin signal
transduction genes such as AHK3, type-B ARR2, and CRFs
are closely associated with the development of leaf senes-
cence157,158. In Arabidopsis, the overexpression of either
AHK3 or ARR2 leads to a delay in leaf senescence. How-
ever, the overexpression of ARR2 without the AHK3
phosphorylation site does not lead to phenotypic changes.
This result suggests that AHK3 plays a major role in
controlling cytokinin-mediated leaf longevity through the
specific phosphorylation of the response regulator ARR2
(Fig. 3)157. Additional research has shown that in the
akh2,3 double mutant, the expression levels of chlorophyll
synthesis genes HEMA1, GUN4, GUN5, and CHLM were
reduced, which suggests that cytokinins can increase
chlorophyll content and delay leaf senescence (Fig. 3)159.
CRFs, which encode cytokinin signal transduction tran-
scription factor family genes, are induced by cytokinins and
exhibit different biological functions during the process of
leaf senescence regulation. In dark-induced excised-leaf
assays, leaves overexpressing CRF6 retain more chlorophyll
than the wild type leaves without exogenous cytokinins,
indicating that CRF6 negatively regulates leaf senes-
cence158. However, the growth phenotype of the crf6
mutant line did not differ from that of the wild type, and no
premature senescence was observed. In contrast, leaves of
CRF1-, CRF3-, and CRF5-overexpressing transgenic lines
developed senescence earlier than the wild type leaves,
while the crf1,3,5,6 and crf1/CRF1,2,5,6 mutants exhibited
delayed leaf senescence160. These results may be caused by
differences in the regulation of plant development by
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cytokinins in different environments. Sucrose accumula-
tion is an important signal for the induction of leaf
senescence137. During plant development, young leaves (a
substantial sink) need the hexoses provided by old leaves (a
source) as energy until the young leaves are mature enough
to supply themselves with energy through photosynthesis.
After the demand from other organs decreases, sucrose
then gradually accumulates in the old leaves and induces
senescence140. Cytokinins have long been shown to accel-
erate nutrient mobilization during the establishment of
new source-sink relationships161. Cytokinins are known to
increase the activity of cell wall invertase (CWINV), which
plays a key role in regulating the source-sink relationship
and is considered one of the main modulators of sink
activity162–165. The CWINV enzyme catalyzes the cleavage
of sucrose into hexose monomers on the cell wall and
transports them to sink organs. The increase in CWINV
activity reduces the accumulation of sucrose in old leaves,
which delays leaf senescence. Restricting the activity of
CWINV has been shown to block the function of cytoki-
nins in inhibiting leaf senescence162. However, the inter-
relationship between cytokinins and CWINV with regard
to leaf senescence can be complicated by other factors;
thus, more experiments are needed to characterize their
effects on leaf senescence. In conclusion, cytokinin signal
transduction genes delay the biological process of leaf
senescence by increasing the chlorophyll content and
reducing sucrose accumulation in leaves.

Concluding remarks
Given the urgent demand for renewable energy and the

increased interest in bioenergy, understanding the bio-
chemical and molecular mechanisms underlying leaf
development has become increasingly important; such
studies can help scientists find a way to increase plant
growth and biomass in various agricultural crops and
woody plant species. In this review, we summarized the
roles of cytokinins in various leaf developmental stages. At
the initial stage of leaf development, cytokinins sustain the
growth of SAMs and provide sufficient stem cells for the
leaf primordium to protrude. Cytokinins then regulate the
synthesis and transport of auxin to promote the emergence
of leaf primordia. At later stages, cytokinins promote cell
proliferation, which increases the number of leaf cells in a
short period and represses the transition of leaf cells into
the expansion stage. The development of leaves from simple
to compound morphology is a complicated process that is
still not fully understood. Nevertheless, it is clear that
cytokinins play a role in this process by maintaining the
activity of leaf margin meristems. After leaf cells develop
and grow into the expansion stage, cytokinins promote cell
expansion by promoting cell wall elongation, increasing
turgor pressure, and enhancing endoreduplication. In the
final stage of leaf development, cytokinins maintain

chlorophyll synthesis while slowing the process of leaf
senescence. Thus, cytokinins play an important role during
the entire process of leaf development. However, as most of
the underlying molecular mechanisms remain unclear,
there is a need for more work to be done to advance our
understanding of these mechanisms. Cytokinins shorten the
cell replication cycle by activating the transcription of
CycD3, but little is known about the factors that mediate
between cytokinins and CycD3. ARR and CRF genes, which
can activate or inhibit the transcription of downstream
genes, belong to large gene families, and which of these
genes are regulated by these transcription factors at differ-
ent stages of leaf development remains to be determined.
Excessive cytokinins can change the leaf morphology of
both monocotyledons and dicotyledons, but whether the
leaves of these two types of plants are regulated by the same
molecular mechanism requires further study. Plant hor-
mones such as cytokinin, auxin, ethylene, brassinosteroid,
gibberellins, abscisic acid, jasmonic acid, and others interact
with each other and affect all stages of leaf development.
Understanding the relationships between the ratio of these
hormones and leaf development will benefit plant tissue
culture and provide new insights into plant development.
Therefore, more focused studies on the mechanisms of
action of cytokinins and their synergistic interactions with
other hormones are needed to advance our understanding
of leaf development.
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