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Genetic analysis of the “head top shape” quality
trait of Chinese cabbage and its association with
rosette leaf variation
Xiaoxue Sun 1, Ying Gao1, Yin Lu1, Xiaomeng Zhang1, Shuangxia Luo1, Xing Li1, Mengyang Liu1, Daling Feng1,
Aixia Gu1, Xueping Chen1, Shuxin Xuan1, Yanhua Wang1, Shuxing Shen1, Guusje Bonnema 1,2 and Jianjun Zhao1

Abstract
The agricultural and consumer quality of Chinese cabbage is determined by its shape. The shape is defined by the
folding of the heading leaves, which defines the head top shape (HTS). The overlapping HTS, in which the heading
leaves curve inward and overlap at the top, is the shape preferred by consumers. To understand the genetic regulation
of HTS, we generated a large segregating F2 population from a cross between pak choi and Chinese cabbage, with
phenotypes ranging from nonheading to heading with either outward curving or inward curving overlapping heading
leaves. HTS was correlated with plant height, outer/rosette leaf length, and petiole length. A high-density genetic map
was constructed. Quantitative trait locus (QTL) analysis resulted in the identification of 22 QTLs for leafy head-related
traits, which included five HTS QTLs. Bulked segregant analysis (BSA) was used to confirm HTS QTLs and identify
candidate genes based on informative single-nucleotide polymorphisms. Interestingly, the HTS QTLs colocalized with
QTLs for plant height, outer/rosette leaf, and petiole length, consistent with the observed phenotypic correlations.
Combined QTL analysis and BSA laid a foundation for molecular marker-assisted breeding of Chinese cabbage HTS
and directions for further research on the genetic regulation of this trait.

Introduction
Leafy heads are an important trait of leafy vegetable

crops, such as cabbage (Brassica oleracea), Chinese cab-
bage (Brassica rapa), and lettuce (Lactuca sativa). The
leafy head is composed of curving leaves, and these leaves
form various head shapes depending on the curvature of
the distal end, hereafter referred to as the tops of leaves:
leaves with outward curving tops, leaves with inward
curving tops that do not overlap, and inward curving

leaves with their tops overlapping or forming a spiral1.
Leaf morphology is determined by leaf cell division and
cell elongation rates along the main axes of the leaf2–4.
The heading leaves curve inward to form a leafy head at
the heading stage. The upward curvature of Chinese
cabbage heading leaves is facilitated by increased growth
of abaxial cells5. As a storage organ, the leafy head is an
important source of mineral nutrients, crude fiber, and
vitamins. Head traits include head weight (HWe), com-
pactness, size, and shape. The Chinese cabbage over-
lapping head type, in which the heading leaves curve
inward and overlap at the top, is the shape that current
consumers prefer6. However, the molecular mechanism of
leafy head formation and regulation of head shape is not
fully understood.
The vegetative growth of Chinese cabbage is divided

into four stages: seedling, rosette, folding, and heading
stages. The leaves in these four stages are different in
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shape, size, and physiological function7. The rosette
leaves are large and round with short petioles. These
Chinese cabbage rosette leaves provide the basis for
plant growth via photosynthesis8. A number of recent
studies have shown that rosette leaves supply products
for leafy head formation and that their size and shape
are related to the leafy head shape or size6,9,10. In a study
by Mao et al.6, the correlation between rosette leaves
and head shape was demonstrated by using 150
recombinant inbred lines (RILs): round heads with flat
rosette leaves, cylindrical heads with rosette leaves with
wavy margins, oblong heads with shrinking rosette
leaves, and cone-like heads with incurved rosette leaves.
In this paper, they also identified that allelic variation in
the TCP4 gene in the miR319a recognition sequence
modulated head shape by differentially arresting cell
division in different leaves. Sun et al.9 also showed the
correlation between rosette leaf traits, such as leaf
length (LL), width, and midvein length, with leafy head
traits in a diverse set of 152 Chinese cabbages. Although
the phenotypic correlation between rosette leaves and
leafy heads has been described, it is unclear how rosette
leaves influence leafy head growth and how this is
regulated at the molecular level.
Genetic information from quantitative trait loci (QTLs),

sequencing‐based bulked segregant analysis (Seq‐BSA),
and RNA-sequencing approaches provides clues for
understanding Chinese cabbage leaf and leafy head traits.
QTLs have been identified for Chinese cabbage heading
traits, such as head diameter, head height, and HWe,
which are all important components of head yield and
quality9,11–13. Seq-BSA revealed genomic regions enriched
with candidate genes related to plant hormones associated
with Chinese cabbage heading type and leafy head for-
mation14,15. In addition, several studies have described
gene expression profiles during Chinese cabbage devel-
opment and constructed rosette and inner leaf gene
expression networks16–19. Although these studies provide
insight into the general pathways involved in the forma-
tion of leafy heads in Chinese cabbage, they do not explain
the genetic control of the relation between rosette leaf
growth and leafy head formation.
In this study, we phenotyped an F2 population of B.

rapa derived from a cross between heading Chinese
cabbage and nonheading pak choi and analyzed the
association between rosette/heading leaves and several
heading traits, including the leafy head top shape (HTS).
In addition, a combined approach of BSA of pools with
contrasting head traits and QTL analysis was used to
study rosette leaf growth and the HTS trait at the genetic
level. Several colocalizing genomic regions for rosette leaf
traits and HTS were identified. Further investigation of
these regions resulted in candidate genes for the HTS trait
in Chinese cabbage.

Results
Phenotype analysis
At the heading stage, the leafy HTS was evaluated for all

1307 F2 plants. This resulted in 228 plants in class 4
(inward curving leaves that overlap at the top of the leafy
head), 389 plants in class 3 (inward curving leaves that do
not overlap at the top of the leafy head), 591 plants in
class 2 (with outward curving outer heading leaves), and
99 plants in class 1 (that did not form a leafy head). Based
on these four classes of the HTS trait, it was hypothesized
that the qualitative trait HTS was controlled by two major
genes with recessive epistasis (2MG-RecessiveI) based on
SEgregation Analysis (SEA) software analysis (Table S1A).
HTS was also scored in intermediate classes, which
resulted in the following scores: 1 (37 plants), 1+ (60
plants), 2− (63 plants), 2 (521 plants), 2+ (7 plants), 3− (47
plants), 3 (233 plants), 3+ (109 plants), 4− (28 plants), and
4 (200 plants). The scores of the parental genotypes were
PC-101= “1”, CC-48= “2”, and F1= “3”, Based on these
ten phenotypic classes, it was hypothesized that the qua-
litative trait HTS is controlled by four major genes with
additive and epistatic effects (4MG-AI) based on SEA
software analysis (TableS1B). From this population, 104
plants were selected to be phenotyped for additional leaf
and leafy head traits. Seventeen plants that did not form a
leafy head (N: nonheading) were selected, while from the
plants that formed a head, we selected equal numbers of
the most obviously different heading types, namely, the
OC (the shape of the leaf on the top of the head is out-
ward curving) and O (the shape of the leaf on the top of
the head is inward curving with an overlap) HTSs.
The HTS and the other 20 traits could be divided into

three clusters based on their correlation coefficients
(Fig. 1A). Significant phenotypic correlations were found
between HTS and all outer/rosette leaf traits (outer leaf
width (OLW), outer LL (OLL), outer leaf area length
(OLaL), outer leaf midvein length (OLvL), outer leaf area
(OLA), outer leaf petiole length (OLPL), outer leaf petiole
width, and outer leaf petiole area), plant height (PH), plant
width (PW), plant weight (PWe), and HWe at the 0.05
level. Among them, HTS and OLL had the highest cor-
relation coefficient of 0.65. However, HTS was not cor-
related with most of the head leaf traits (heading leaf
width, heading LL, heading leaf area length, heading leaf
area, heading leaf petiole width, and heading leaf petiole
area), except for head leaf petiole length (HLPL) at the
0.05 level and head leaf midvein length (HLvL) at the
0.01 level.
In nonheading plants (N), the outer/rosette leaf

dimensions (O) leaf width (LW), LL, leaf blade length
(LaL), leaf midvein length (LvL), LA, LPL, leaf petiole
width (LPW), and leaf petiole area (LPA), PH, and PWe
values were lower than those of both groups of heading
plants (both OC: outward curving heading plants and O:
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overlapping heading plants) (Fig. 1B). These differences
between nonheading plants and heading plants were sig-
nificant, except for the OLvL. The heading OC and O
plants differed only in two outer/rosette leaf traits (OLL
and OLPL) and one heading leaf trait (HLvL) and showed
no significant difference in other outer or heading leaf
traits (Table S2).

QTL analysis
Construction of the linkage map
The F2-104 genetic map consisted of ten linkage groups

and was constructed using 3194 bin markers (Fig. S1).

A recombination bin map and heat map of the recombi-
nation fraction were generated to evaluate and verify the
quality of the linkage map (Fig. S2). The total map length
was 1522.89 cM, with an average intermarker distance of
0.48 cM. The length of each linkage group ranged from
280.91 cM for A03 to 88.49 cM for A02, and the number
of markers ranged from 571 markers on A03 to 171
markers on A01 (Table S3). The syntenic map of adjacent
markers demonstrated that the distribution of single-
nucleotide polymorphism (SNP) markers on the genetic
map corresponds well with the reference physical map
(Fig. S3).

Fig. 1 Leaf and leafy head trait analysis of 104 F2 plants from the CC-48 × PC-101 cross. A Pearson’s correlation analysis for 21 traits in 104 F2
plants. The Hclust method was “complete” during analysis. Rectangles around the chart of correlations are based on the results of hierarchical
clustering; a p value > 0.01 is shown with a blank in the left figure; HTS as the main trait is marked with red. The correlation coefficient and p value
between HTS and the other traits are shown in the right table. The highest correlation coefficient value is highlighted in red. B Box plots of leaf and
leafy head traits for nonheading plants (N) and heading plants (OC and O). Traits that are significantly different between O and OC plants are marked
with red squares
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QTL regions and QTL colocalization
QTL analysis of leaf and leafy head traits was performed

for the F2-104 population using interval mapping (IM)
and composite IM (CIM) methods (Table 1).
By the IM analysis method, four QTLs (HTSQ1, 2, 3, and

4) for HTS were detected on A04, and three QTLs (HTSQ5,
6, and 7) were detected on A05. HTSQ1A4 and HTSQ7A5
had the highest logarithm of the odds (LOD) scores (4.833
and 4.895) and explained ~6.1% and 4% of the variation,
respectively. For leaf-related traits, three QTLs for OLL
(OLLQ1, 2, and 3) and two QTLs for OLPL (OLPLQ1 and
2) were detected on A05. Three QTLs for HLPL (HLPLQ1,
2, and 3) were detected on A09, and two QTLs for head leaf
vein length (HLvLQ1 and 2) were detected on A06. For
leafy head traits, a total of four QTLs (PHQ1, 2, 3, and 4) for
the PH traits were detected on A04, with LOD values
ranging from 3.879 to 4.622, and one QTL for the HWe
(HWeQ1A8) trait was detected on A08. By the CIM ana-
lysis method, two QTLs for HTS, namely, CIM_HTSQA4
and CIM_HTSQA5, were detected on A04 and A05, which
explained ~16.9% and 17.6%, respectively. Together, these
findings accounted for 34.5% of all the phenotypic variation
in the HTS trait. For the OLL, OLPL, and PH traits, single
QTLs were detected on A05 (CIM_OLLQA5 and
CIM_OLPLQA5) and A04 (CIM_PHQA4). The genes in
these QTL regions are shown in Table S4.
For all mapped QTLs of the Chinese cabbage leaf and

leafy head traits, overlapping genomic regions were
identified between HTS and PH and the outer/rosette leaf
traits OLL and OLPL (Fig. 2). HTS trait QTLs were
located on both A04 and A05. The head-type shape traits
HTSQ1, HTSQ2, HTSQ3, and HTSQ4 and PH traits
PHQ1, PHQ2, PHQ3, and PHQ4 were located at the
bottom part of A04 (145.321–184.724 cM). The bottom
part of A05 (131.781–164.042 cM) showed overlapping
QTLs for HTS, OLL, and OLPL: HTSQ5, HTSQ7,
OLLQ1, OLLQ2, OLLQ3, OLPLQ1, and OLPLQ2.

Candidate genes selected by BSA
We generated three independent plant DNA pools, each

representing different head-type shapes. In the bulks, the
plants were all barcoded, and SNP markers with different
allele frequencies between bulks with different pheno-
types were selected (p < 0.05).
We focused on SNPs that had significantly different

allele frequencies among pools in upstream, downstream,
intergenic, intron, and exon regions of genes. This
included 272 genes in the “N vs. O” pool comparison, 145
genes in the “N vs. OC” comparison, and 398 genes in the
“O vs. OC” comparison (Fig. 3A and Table S5). In the “N
vs. O” comparison, most candidate genes were mapped to
regions on A05 (60 genes), A06 (80 genes), and A08 (55
genes); in the “N vs. OC” comparison, the genes were
distributed on A08 (56 genes); and in the “O vs. OC”

comparison, they were distributed on A06 (152 genes)
and A08 (85 genes) (Fig. 3B). We investigated the Map-
Man functional categories to which these genes belonged
(Fig. 3A). In addition to the common top three categories
(not assigned, protein, and RNA), the cell and cell wall
and signaling categories were highly represented in these
three group comparisons. In the cell and cell wall func-
tional category, the majority of the genes were involved in
the cell organization subcategory. In the signaling cate-
gory, the majority of the genes were involved in the
receptor kinase subcategory. In total, 566 candidate genes
were included in these three pooled comparisons (Table
S5). Only two genes, namely, Bra001163 (embryo defec-
tive 2016: EMB2016) in the development category and
Bra016948 (glutamate synthase 2: GLU2) in the N-
metabolism category, were identified in all three com-
parisons (Fig. 3C).
As expected, some of the candidate genes with sig-

nificant allele frequency differences in the “N vs. O,” “N vs.
OC,” and “O vs. OC” comparisons colocalized with QTL
regions on A04, A05, A06, A08, and A09 (Fig. 2). For the
HTS trait, 15 candidate genes detected by BSA were
located in the CIM_QTL regions on A04 and A05.
According to the annotation information, five genes
(Bra017274, Bra029597, Bra029713, Bra039431, and
Bra039444) were in the protein category, four genes
(Bra039420, Bra039421, Bra039462, and Bra039446) were
in the cell and cell wall category, and two genes
(Bra020751 and Bra039445) were in the RNA category.
Among them, Bra017274 (F-box family protein;
A04:15735732..15736841), Bra029597 (RING/FYVE/PHD
zinc finger superfamily protein; A05:23809459..23812937),
and Bra039421 (PEM: plant invertase/pectin methylester-
ase inhibitor superfamily; A05:24250991..24253260)
included SNPs causing amino acid changes (Table S5).
Seventy-three common genes were identified in the “N vs.
O” and “N vs. OC” comparisons (Fig. 3C), and 59% (43) of
the genes were mapped to A08. Among these 43 genes, 16
colocalized with the HWeQ1A8 QTL. The cell organiza-
tion gene Bra014031 (A08:4344956..4347618) and cell wall
degradation gene Bra014180 (A08:2743942..2745200) with
SNPs causing amino acid changes were among these 16
genes in HWeQ1A8.

Discussion
The leafy head of Chinese cabbage is an important

agronomic trait associated with both yield and quality.
Compared to heading Chinese cabbage, nonheading
plants (such as pak choi) are generally smaller and pro-
duce less biomass (lower PWe or total leafy yield). For
heading Chinese cabbage, the head shapes include round,
oblong, cylindrical, and cone-like head shapes6. HTS
refers to the shape of the top of the leafy head, which is
affected by the shape, overlap, and curvature of the outer
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heading leaves. Currently, with the improvement in peo-
ple’s living standards, Chinese consumers, especially from
Northern China, prefer leafy heads of the overlap head-
type shape. For this reason, it is an important agronomic
trait for breeders to screen, and it is interesting for
researchers to study because it involves variation in leaf
curvature. Recently, several papers have been published
about QTL mapping of the Chinese cabbage leafy head.
Most of these studies analyzed leafy head formation (head
or nonhead), the heading degree (nonheading, inter-
mediate heading or heading), and the heading shape index
(head width diameter/length diameter)10,11,15. Only one
paper investigated HTS, based on a cross between two
heading Chinese cabbages14. Due to the different parental
genotypes used in their mapping study, a different can-
didate region on A06 was detected. This study provides
new insights into the HTS phenotype by combining
phenotypic observations and genetic analyses using a
large F2 progeny from a cross between Chinese cabbage
and pak choi.

Head-type shape is associated with the length of both the
leaf blade and petiole/midvein of the outer rosette leaves
HTS was judged based on the heading leaf top shape at

the heading stage. The F2 population was segregated into
various HTS types, and we tried to fit a genetic model to

the segregation data of the leafy head shape based on the
HTS phenotypes of the 1307 F2 plants. However,
regardless of whether we scored the HTS into four or ten
classes, we could not clearly select the most likely genetic
model. This was likely caused by the fact that the scored
phenotype is a combination of traits that are all under the
control of different genetic loci10,20. To reveal genetic
regulation, we should identify and score the subtraits that
make up the final head shape-type trait. These subtraits
include the curvature of the petiole, angle of the midvein
to the soil, head size and weight, LL, and curvature of the
distal end of the leaf blade.
We phenotyped many leaf traits, for both the outer

rosette leaves and the outer leafy head leaves, at the
heading stage. Interestingly, we showed that the traits
related to the shape and size of the outer rosette leaves
were correlated with HTS. Surprisingly, these same traits of
the heading leaf itself were not correlated with HTS. In
addition, when we compared the leaf traits of the over-
lapping “O” HTS group with those of the outward curving
“OC” HTS group, significant differences were detected
between their outer/rosette leaf and petiole traits (LL and
LPL), while the shapes of their heading leaves did not differ.
Normally, in Arabidopsis, outer (old) rosette leaf senes-
cence proceeds during plant growth to recycle nutrients
that become available for the actively growing parts21,22.
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Fig. 2 Quantitative trait locus hotspots for the F2-104 population from the CC-48 × PC-101 cross. Zoomed-in depiction of QTL hotspots of HTS
(green), PH (yellow), OLL (light blue), OLPL (gray), HLvL (purple), HWe (dark blue), and HLPL (orange) on A04, A05, A06, A08, and A09 by the IM
analysis method. QTL hotspots determined by the CIM analysis method are highlighted by the red color bar. SNPs with different (p < 0.05) allelic
polymorphisms between different phenotype bulk enrichment regions in linkage groups are marked by color diamonds
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However, in Chinese cabbage, rosette leaves remain active
until the leafy heads mature, likely performing photo-
synthesis in the fast-growing leafy head18. Both this study
and previous studies showed a correlation between the size
and shape of rosette leaves and leafy head shape6,9. HTS is
clearly associated with outer rosette LL and leaf petiole
length (LPL) (this study). These results indicate that the
outer leaves not only provide the products for leafy head
growth but also affect the shape of the head.
At the QTL level, we detected QTLs for rosette leaf-,

outer heading leaf-, and leafy head-related traits in this
study. We did not detect the same QTLs for rosette LL
and width or rosette LPL compared to the previous QTL
study9. In addition to environmental variation, in these
studies, the timing of phenotypic data collection differed:
we measured the rosette leaf traits at the heading stage in
this study, but phenotyped the growing rosette leaves at
rosette stages (30, 34, 37, 41, 44, and 48 days after sowing

(DAS)) in a previous QTL study. In a study by Sun et al.9,
QTLs for rosette LPL also varied over time (DAS), and
generally, LOD scores were lower when measured at later
stages. The phenotyping of the leafy heads was performed
at the same developmental stage in both studies, the
heading stage. In both studies, QTLs for the leafy head
trait “weight” (HWe) were detected at the top of A08 (Fig.
S4). Another QTL study using 150 RILs derived from a
cross between heading and nonheading Chinese cabbage
also identified QTLs for HWe in linkage group A08:
35.2–62.3 cM in 2010 and 27–34.5 cM in 201210. In the
smaller populations of the previous study, the HTS trait
was not scored9. In the present study, the F2 population
was larger, which allowed us to study a subpopulation
with balanced representation of the extreme phenotypes
in more detail. In addition, a high-density genetic map
was constructed for this subpopulation, and QTL analysis
was combined with a BSA approach. This made it possible

Fig. 3 Genes with significantly different SNP allele frequencies between different pools (N, OC, and O). A The number of candidate genes and
the percentage/number of genes that belong to MapMan functional categories in the three group comparisons (“N vs. O,” “N vs. OC,” and “O vs. OC”).
B The linkage group distribution of candidate genes with significantly different SNP allele frequencies between different pools (N, OC, and O). C A
four-way comparison of the total number of genes detected in the three BSA group comparisons and QTL regions for HTS, OLL, OLPL, HLvL, PH,
and HWe
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to highlight candidate genes with SNPs in the HWeQ1A8
QTL region.
The colocalized QTLs indicate the causal relationships

among the traits23. Colocalized QTLs for pod-related
traits (pod length, pod width, and hundred-pod weight)
have been identified on A05 and contribute to phenotypic
variation for these pod-related traits24. In rice, colocali-
zation between PH- and flowering time-related QTLs was
identified, and the major gene Ghd7, which has pleio-
tropic effects on PH and heading date, was identified23,25.
Here, we detected two QTLs for the HTS trait. Coloca-
lization of HTS with outer/rosette LL and rosette LPL
(OLL/OLPL) was identified on A05, and that of HTS with
PH was identified on A04. These results were consistent
with the phenotypic results: there were strong correla-
tions among outer/rosette LL, LPL, and HTS traits, and
significant differences existed in the OLPL, OLvL, and
HLvL traits between “O” and “OC” HTS plants. This
phenomenon was not unexpected and indicated pleio-
tropic effects of single genes or tight linkage. We identi-
fied an HTS QTL on A05. Interestingly, in an
independent study on an F2 population derived from a
cross between two Chinese cabbages with different HTSs,
BSA of the “O” and “OC” types identified significant SNPs
on A05 (21700337..24709181) overlapping with the QTL
region for HTS identified in this study (Fig. S5; unpub-
lished data). The colocalized QTLs provide a good foun-
dation for fine mapping and for researching HTS and
related traits at the molecular level.

Molecular pathways and candidate genes for the HTS trait
HTS is a complex trait that is controlled by endogenous

and environmental factors. In this study, we constructed
three pools, namely, one nonheading plant pool and two
pools of plants with different HTSs, for BSA to identify
genomic regions containing genetic loci affecting these
traits. In this study, the number of selected candidate
genes was higher in the “O vs. OC” comparison than in
the “N vs. O/OC” comparison, and most of the candidate
genes were colocalized with QTLs for head shape and leaf
traits. The expression patterns of these candidate genes
were checked in three different genotypes, namely, a
nonheading pak choi and two heading Chinese cabbages
(one with “OC” HTS and the other with “O” HTS), at the
seedling, rosette, and heading stages (Table S7). All can-
didate genes were expressed in leaves; however, only a few
candidate genes were differentially expressed between
these genotypes.
Leaf growth is strongly associated with leafy head for-

mation in Chinese cabbage and includes leaf primordium
initiation, leaf polarity formation, cell division, cell
expansion, and cell differentiation phases26. During these
phases, the arrangement of cells is indicative of changes in

leaf shape2,4. Our BSA results showed many candidate
genes in the cell wall and cell cycle category. In particular,
Bra039421 was mapped to the HTS QTL_CIM on A05.
The SNP (A/C) located in exon 1 (540 bp) of Bra039421
resulted in an amino acid change from “Gln” to “His.”
According to classic cell theory, changes in cellular
behavior are responsible for mutant morphology27. Thus,
the genes in these QTLs may have functions that play
roles in HTS formation in Chinese cabbage. Interestingly,
genes common between the “N vs. OC” and “N vs. O”
comparisons were mainly localized on A08 in the HWe
QTL. Heading Chinese cabbage plants were consistently
heavier than nonheading plants. We identified several
candidate genes for this heading/nonheading comparison
(N vs. OC/O), which were related to total PWe.
Bra014180 in the cell wall degradation functional category
encodes USPL1 (AT1G49320 in Arabidopsis) targeted to
protein storage vacuoles, which is particularly interesting
because it is closely related to seed development, protein
storage vacuoles, and lipid vesicle morphology and
behaves like a storage protein28. In addition, Bra014180
with an SNP (A/G) on exon 2 (444 bp) caused an amino
acid change (Ile/Met) and displayed higher transcript
abundance in pak choi than in two Chinese cabbage
varieties at early heading stages, with fold change >1.5 and
adjusted p value ≤ 0.01.
In conclusion, we phenotyped both leaf and leafy head

traits of an F2 population from a cross between a non-
heading pak choi and a heading Chinese cabbage and
identified correlations between HTS and other rosette leaf
traits. These correlations between rosette leaf traits and
head-type shape were confirmed by the colocalized QTLs
for these traits. This finding is a good foundation for
further research on the genetic regulation of the HTS trait
in Chinese cabbage and provides tools for molecular
marker-assisted selection of leafy head shape in Chinese
cabbage. In addition, by combining QTL and BSA results,
we identified a few genes with interesting annotations as
candidate genes for quantitative trait loci for leafy head
formation. These results will help us understand the
genetic control of head shape traits in cabbage.

Materials and methods
Plant materials
An F2 population was derived from a cross between a

heading Chinese cabbage (CC-48: CGN06867, origin
Soviet Union) and a nonheading pak choi (PC-101:
CGN13926, origin China) (Fig. 4A). The F2 population (n
= 1307) plus their parental lines were sown in seeding soil
in a greenhouse in September 2017, and 2 weeks later, the
plants were transplanted to an open field at Hebei Agri-
culture University (Baoding, Hebei, China) and grown
under short-day conditions until December 2017.
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Phenotyping and phenotypic data analysis
HTS, as the main trait to be studied in this research, was

classified on a 1–4 scale (1. nonheading shape; 2. the
shape of the leaf on the top of the head is outward cur-
ving; 3. the shape of the leaf on the top of the head is
inward curving without overlaps at the top, which we
identified as the intermediate phenotype between class 2
and 4; 4. the shape of the leaf on the top of the head is
inward curving and overlaps at the top) by visual obser-
vation at the heading stage for the F2 plants (n= 1307)
(Fig. 4A).
In addition, another 20 leaf and leafy head traits were

evaluated at the same time for 104 F2 plants that repre-
sented the different HTS classes (Fig. 4B and Table 2). For
leaf traits, the LL, LaL, LvL, LW, leaf area, LPL (here, we
measured the sum of leaf petiole and white midvein
length), LPW, and LPA were measured for the largest
outer leaf (O) and for the largest and most outward

curving heading leaf (H). For plant traits, PH and PW
were evaluated. For leafy head traits, we determined the
total PWe (including outer and heading leaves) and HWe
(after discarding the loose outer leaves).
The inheritance model analysis for a plant quantitative

trait (HTS) was analyzed by SEA software29. The pheno-
typic data were analyzed by Statistical Package for the
Social Sciences (SPSS, IBM) software, including the mean,
minimum, maximum, standard deviation, variance, and t
test, using p < 0.05. The correlation coefficients between
traits were analyzed using an R package (“corrplot”
package: http://www.R-project.org) with the Pearson’s
correlation coefficient.

Genotyping and SNP discovery
Genomic DNA from individual plants was extracted

from young leaves of parents and their F2 progeny plants
(n= 104) by the CTAB method. The genotyping-by-

Fig. 4 Construction and phenotype of the Chiense cabbage F2 population. A The strategy for constructing the Chinese cabbage F2 population
and the phenotype variation of the leafy head top shape (HTS) trait. N nonheading type, OC leafy head with outward curving top leaf without
overlap, and O leafy head with overlapping top leaf. B Description of the measurements of leaf traits
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sequencing (GBS) method was used to generate ApeKI-
associated DNA fragments for sequencing on the Illumina
HiSeq2000 platform at the Gene Denovo Company,
China, and SNP genotyping and evaluation were then
performed30. The “Chiifu” genome V1.5 was used as the
reference sequence for the alignment of sequenced reads
by the BWA software31. A total of 258,443 genetic var-
iations (234,421 SNPs and 24,022 indels), with indels
representing 9% of the total, were identified, and 71.8% of
these SNPs resided in intergenic regions. Among the
intergenic SNPs discovered, 11.3% were within 5 kb
upstream, and 10.5% were within 5 kb downstream, of an
open-reading frame. In addition, 14.9% of the SNPs were
observed in exonic regions and 13.2% in introns. For the
SNPs located in the coding region (exon), 56.9% were
synonymous (silent) mutations, and 40.4% resulted in a
change in amino acids (nonsynonymous substitutions) or
stop codons. For the SNPs located in introns, 162 SNPs
were observed at intron splicing sites that potentially alter
the function of these genes.
The 234,421 SNPs were filtered for those that showed

polymorphisms between parent lines (CC-48 and PC-101)

and had allele frequencies >60% in the F2 population.
After filtering, a set of 16,570 SNPs were discovered
through GBS, of which 8998 were “aa × bb”, 1165 were
“hk × hk”, 2612 were “lm × ll”, and 3795 were “nn × np”
segregation types32. As the F2 population was derived
from a cross between homozygous parents (DH lines),
8898 “aa × bb” parental markers that formed 5973 bins
were used as input data for “JoinMap” to construct the
genetic linkage map. After creating population nodes,
“ML mapping” was used to assign the markers into link-
age groups, and “Kosambi’s” mapping function was used
to construct genetic maps.

Identification of QTLs and BSA to identify candidate genes
for leafy head traits
Genetic map construction and QTL mapping
A total of 8998 polymorphic homozygous SNPs in both

parents (aa × bb) were used to generate a genetic map of
the F2 population. SNPs in the F2 population were only
used if the parental source of the alleles could be unam-
biguously assigned. The F2 plants (n= 104) were geno-
typed for a set of 8998 markers covering the ten linkage

Table 2 Schematic diagram and description of the evaluated phenotypic traits

Traits Abbreviation Description

Outer leaf length OLL Length of the largest outer leaf (cm)

Outer leaf area length OLaL Length of the largest outer leaf area (cm)

Outer leaf midvein length OLvL Length of the largest outer leaf midvein (cm)

Outer leaf width OLW Width of the largest outer leaf (cm)

Outer leaf area OLA Area of the largest outer leaf (cm2)

Outer leaf petiole length OLPL Length of the largest outer leaf petiole (cm)

Outer leaf petiole width OLPW Width of the largest outer leaf petiole (cm)

Outer leaf petiole area OLPA Area of the largest outer leaf petiole (cm2)

Heading leaf length HLL Length of the largest curling heading leaf (cm)

Heading leaf area length HLaL Length of the largest curling heading leaf area (cm)

Heading leaf midvein length HLvL Length of the largest curling heading leaf midvein (cm)

Heading leaf width HLW Width of the largest curling heading leaf (cm)

Heading leaf area HLA Area of the largest curling heading leaf (cm2)

Heading leaf petiole length HLPL Length of the largest curling heading leaf petiole (cm)

Heading leaf petiole width HLPW Width of the largest curling heading leaf petiole (cm)

Heading leaf petiole area HLPA Area of the largest curling heading leaf petiole (cm2)

Plant height PH Length of the plant with external outer leaves (cm)

Plant width PW Width of the plant with external outer leaves (cm)

Plant weight PWe Length of the leafy head without external leaves (cm)

Head weight HWe Weight of the leafy head without external leaves (g)

Head top shape HTS Overlap degree of the top of heading leaf
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groups. A subset of 3194 specific SNP markers was used
to construct the F2 genetic linkage map in this study.
Genetic mapping was performed using an R package33,34.
Based on the genetic map, QTL regions for the pheno-
typed traits were identified by IM analysis with the R/qtl
package35. The LOD critical values (Table S6) for
accepting the presence of potential QTLs were deter-
mined by permutation analyses (p < 0.05)36.

Sequencing‐based bulked segregant analysis
In addition, a BSA approach was used to identify

genomic regions linked to the leaf blade top curvature
trait. Four leafy head phenotypes were distinguished: no
leafy head, with leaves that do not form a leafy head and
are fully curved outward (N: 17 plants). Three groups of
30 plants with different heading types were selected
(outward curve (OC): 30; intermediate phenotype: 30; and
overlapping (O): 30). For BSA, we divided 77 F2 plants
into three bulks (N: 17 nonheading plants, with the two
most different heading phenotypes; OC: 30 outward
curving heading plants; O: 30 overlapping heading plants)
corresponding to the different leafy head shapes. These
three bulks were genotyped with the 8998 selected SNP
markers. Markers showing allelic polymorphisms between
different phenotype bulks for leafy head shape were
selected based on allele frequency. We selected subsets of
polymorphic SNPs by comparing different bulks (N vs. O,
N vs. OC, and O vs. OC).
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