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Abstract
Growth-related traits, such as aboveground biomass and leaf area, are critical indicators to characterize the growth of
greenhouse lettuce. Currently, nondestructive methods for estimating growth-related traits are subject to limitations in
that the methods are susceptible to noise and heavily rely on manually designed features. In this study, a method for
monitoring the growth of greenhouse lettuce was proposed by using digital images and a convolutional neural
network (CNN). Taking lettuce images as the input, a CNN model was trained to learn the relationship between images
and the corresponding growth-related traits, i.e., leaf fresh weight (LFW), leaf dry weight (LDW), and leaf area (LA). To
compare the results of the CNN model, widely adopted methods were also used. The results showed that the values
estimated by CNN had good agreement with the actual measurements, with R2 values of 0.8938, 0.8910, and 0.9156
and normalized root mean square error (NRMSE) values of 26.00, 22.07, and 19.94%, outperforming the compared
methods for all three growth-related traits. The obtained results showed that the CNN demonstrated superior
estimation performance for the flat-type cultivars of Flandria and Tiberius compared with the curled-type cultivar of
Locarno. Generalization tests were conducted by using images of Tiberius from another growing season. The results
showed that the CNN was still capable of achieving accurate estimation of the growth-related traits, with R2 values of
0.9277, 0.9126, and 0.9251 and NRMSE values of 22.96, 37.29, and 27.60%. The results indicated that a CNN with digital
images is a robust tool for the monitoring of the growth of greenhouse lettuce.

Introduction
Growth monitoring is essential for optimizing man-

agement and maximizing the production of greenhouse
lettuce. Leaf fresh weight (LFW), leaf dry weight (LDW),
and leaf area (LA) are critical indicators for characterizing
growth1,2. Monitoring the growth of greenhouse lettuce
by accurately obtaining growth-related traits (LFW, LDW,
and LA) is of great practical significance for improving the
yield and quality of lettuce3. The traditional methods for
measuring growth-related traits, which are relatively
straightforward, can achieve relatively accurate results4.
However, the methods require destructive sampling, thus
making it time-consuming and laborious5–7.

In recent years, nondestructive monitoring approaches
have become a hot research topic. With the development
of computer vision technology, image-based approaches
have been widely applied to the nondestructive monitor-
ing of crop growth6,8–10. Specifically, the image-based
approaches extract low-level features from digital images
and establish the relationship between the low-level fea-
tures and manually measured growth-related traits, such
as LA, LFW, and LDW. Based on this relationship, the
image-derived features can estimate the growth-related
traits, thus achieving nondestructive growth monitoring.
For example, Chen et al.6 proposed method for the esti-
mation of barley biomass. The authors extracted structure
properties, color-related features, near-infrared (NIR)
signals, and fluorescence-based features from images.
Based on the above features, they built multiple models,
i.e., support vector regression (SVR), random forest (RF),
multivariate linear regression (MLR), and multivariate
adaptive regression splines, to estimate barley biomass.
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The results showed that the RF model was able to accu-
rately estimate the biomass of barley and better quantify
the relationship between image-based features and barley
biomass than the other methods. Tackenberg et al.11

proposed a method for estimating the growth-related
traits of grass based on digital image analysis. Image fea-
tures, such as the projected area (PA) and proportion of
greenish pixels, were extracted, which were then fitted to
the actual measured values of the aboveground fresh
biomass, oven-dried biomass, and dry matter content by
linear regression (LR). The results showed that all the
determined coefficients of the constructed models were
higher than 0.85, indicating that these features exhibited
good linear relationship with growth-related traits. Casa-
desús and Villegas5 used color-based image features to
estimate the leaf area index (LAI), green area index (GAI),
and crop dry weight biomass (CDW) of two genotypes of
barley. The image features included the H component of
the HSI color space, the a* component of the CIEL*a*b*
color space, and the U components of the CIELUV color
space. In addition, the green fraction and greener fraction
were also extracted. The features were linearly fitted to
the measured values of LAI, GAI, and CDW at different
growth stages. The results showed that the image features
based on color had strong correlations with growth-
related traits. Fan et al.12 developed a simple visible and
NIR (near-infrared) camera system to capture time-series
images of Italian ryegrass. Based on the digital number
values of the R, G, and NIR channels of the raw images,
MLR models for LAI estimation were built. The results
showed that the image features derived from segmented
images yielded better accuracy than those from non-
segmented images, with an R2 value of 0.79 for LAI esti-
mation. Liu and Pattey13 extracted the vertical gap frac-
tion from digital images captured from nadir to estimate
the LAI of corn, soybean, and wheat. Prior to the
extraction of the canopy vertical gap fraction, the authors
adopted the histogram-based threshold method to seg-
ment the green vegetative pixels. The results showed that
the LAI estimated by the digital images before canopy
closure was correlated with the field measurements.
Sakamoto et al.14 used vegetation indices derived from
digital images, i.e., the visible atmospherically resistant
index (VARI) and excess green (ExG), to estimate the
biophysical characteristics of maize during the daytime.
The results showed that the VARI could accurately esti-
mate the green LAI, and the ExG was able to accurately
estimate the total LAI.
Although computer vision-based methods for estimat-

ing growth-related traits have achieved promising results,
they are subject to two issues. First, the methods are
susceptible to noise. Since the images are captured under
field conditions, noise caused by uneven illumination and
cluttered backgrounds is inevitable, which will affect

image segmentation and feature extraction, thus poten-
tially reducing the accuracy15. Second, the methods
greatly rely on manually designed image features, which
have large computational complexity. Moreover, the
generalization ability of the extracted low-level image
features is poor16,17. Therefore, a more feasible and robust
approach should be explored.
Convolutional neural networks (CNNs), which is a

state-of-the-art deep learning approach, can directly take
images as input to automatically learn complex feature
representations18,19. With a sufficient amount of data,
CNNs can achieve better precision than conventional
methods20,21. Therefore, CNNs have been used in a wide
range of agricultural applications, such as weed and crop
recognition19,22,23, plant disease diagnosis24–28, and plant
organ detection and counting21,29. However, despite its
extensive use in classification tasks, CNNs have rarely
been applied to regression applications, and there are few
reports on how CNNs have been used for the estimation
of growth-related traits of greenhouse lettuce. Inspired by
Ma et al.18, who accurately estimated the aboveground
biomass of winter wheat at early growth stages by using a
deep CNN, which is a CNN with a deep network struc-
ture, this study intended to adopt a CNN to construct an
estimation model for growth monitoring of greenhouse
lettuce based on digital images and to compare the results
with conventional methods that have been widely adopted
to estimate growth-related traits.
The objective of this study is to achieve accurate esti-

mations of growth-related traits for greenhouse lettuce. A
CNN is used to model the relationship between an RGB
image of greenhouse lettuce and the corresponding
growth-related traits (LFW, LDW, and LA). By following
the proposed framework, including lettuce image pre-
processing, image augmentation, and CNN construction,
this study will investigate the potential of using CNNs
with digital images to estimate the growth-related traits of
greenhouse lettuce throughout the entire growing season,
thus exploring a feasible and robust approach for growth
monitoring.

Material and methods
Greenhouse lettuce image collection and preprocessing
The experiment was conducted at the experimental

greenhouse of the Institute of Environment and Sustain-
able Development in Agriculture, Chinese Academy of
Agricultural Sciences, Beijing, China (N39°57′, E116°19′).
Three cultivars of greenhouse lettuce, i.e., Flandria,
Tiberius, and Locarno, were grown under controlled cli-
mate conditions with 29/24 °C day/night temperatures
and an average relative humidity of 58%. During the
experiment, natural light was used for illumination, and a
nutrient solution was circulated twice a day. The experi-
ment was performed from April 22, 2019, to June 1, 2019.
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Six shelves were adopted in the experiment. Each shelf
had a size of 3.48 × 0.6 m, and each lettuce cultivar
occupied two shelves.
The number of plants for each lettuce cultivar was 96,

which were sequentially labeled. Image collection was
performed using a low-cost Kinect 2.0 depth sensor30.
During the image collection, the sensor was mounted on a
tripod at a distance of 78 cm to the ground and was
oriented vertically downwards over the lettuce canopy to
capture digital images and depth images. The original
pixel resolutions of the digital images and depth images
were 1920 × 1080 and 512 × 424, respectively. The digital
images were stored in JPG format, while the depth images
were stored in PNG format. The image collection was
performed seven times 1 week after transplanting between
9:00 a.m. and 12:00 a.m. Finally, two image datasets were
constructed, i.e., a digital image dataset containing 286
digital images and a depth image dataset containing 286
depth images. The number of digital images for Flandria,
Tiberius, and Locarno was 96, 94 (two plants did not
survive), and 96, respectively, and the number of depth
images for the three cultivars was the same.
Since the original digital images of greenhouse lettuce

contained an excess of background pixels, this study
manually cropped images to eliminate the extra back-
ground pixels, after which images were uniformly adjus-
ted to 900 × 900 pixel resolution. Figure 1 shows examples
of the cropped digital images for the three cultivars. Prior
to the construction of the CNN model, the original digital
image dataset was divided into two datasets in a ratio of
8:2, i.e., a training dataset and a test dataset. The two
datasets both covered all three cultivars and sampling
intervals. The number of images for the training dataset
was 229, where 20% of the images were randomly selected
for the validation dataset. The test dataset contained 57
digital images. To enhance data diversity and prevent
overfitting, a data augmentation method was used to

enlarge the training dataset (Fig. 2). The augmentations
were as follows: first, the images were rotated by 90°, 180°,
and 270°, and then flipped horizontally and vertically. To
adapt the CNN model to the changing illumination of the
greenhouse, the images in the training dataset were con-
verted to the HSV color space, and the brightness of the
images was adjusted by changing the V channel31. The
brightness of the images was adjusted to 0.8, 0.9, 1.1, and
1.2 times that of the original images to simulate the
change in daylight. In total, the training dataset was
enlarged by 26 times, resulting in 5954 digital images.

Measurement of greenhouse lettuce growth-related traits
Field measurements of LFW, LDW, and LA were per-

formed simultaneously with image collection. These
measurements were conducted at an interval of seven
days, specifically on April 29, May 6, May 13, May 20, May
27, May 31, and June 1 of 2019. For the first six mea-
surements, ten plants of greenhouse lettuce were ran-
domly sampled each time for each cultivar. The
measurements were obtained using a destructive sampling
method. The sample was placed on a balance with a
precision of 0.01 g after root removal, and the LFW was
measured. The LA of the corresponding sample was
obtained by a LA meter (LI-3100 AREA METER; LI-COR
Inc. Lincoln, Nebraska, USA). Given the relatively large
leaves of lettuce during the late growing season, the
sample was sealed in an envelope and oven-dried at 80 °C
for 72 h, after which the sample was weighed to obtain the
LDW. For the last measurement, all the remaining lettuce
plants were harvested, and the measurements were
obtained by using the same method.

Construction of the CNN
The architecture of the CNN model is shown in Fig. 3.

The CNN model consisted of five convolutional layers,
four pooling layers, and one fully connected layer. The

Fig. 1 Examples of the digital images for the three cultivars. a, b, and c shows the cultivar of Flandria, Tiberius, and Locarno
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input to the CNN model was digital images of greenhouse
lettuce with a size of 128 × 128 × 3 (width × height (H) ×
channel). The convolutional layers adopted kernels with a
size of 5 × 5 to extract features. The number of kernels in
the five convolutional layers were 32, 64, 128, 216, and
512. To keep the size of the feature maps as an integer,
zero-padding was employed in the second and third
convolutional layers. The kernels in the pooling layers had
a size of 2 × 2 and a stride of 2, which was able to reduce
the size of feature maps by a factor of two. The average
pooling function was adopted in the pooling layers instead
of the max pooling function. The number of hidden
neurons in the fully connected layer was three, corre-
sponding to the three outputs of the model, i.e., the LFW,
LDW, and LA. Therefore, the CNN model could estimate
the three growth-related traits simultaneously. Dropout

was used, and the rate was 0.5. In this study, the CNN
model used stochastic gradient descent to optimize the
network weights. The initial learning rate of the model
was set to 0.001 and dropped every 20 epochs by a drop
factor of 0.1. The mini-batch size was set to 128, and the
maximum number of epochs for training was set to 300.

Performance evaluation
To evaluate the performance of the CNN model, tests

were performed with the widely adopted estimation
methods. Two shallow machine learning classifiers, i.e.,
SVR32,33 and RF34, were adopted to estimate the growth-
related traits of greenhouse lettuce since these two
methods have been reported to achieve good performance
in crop growth monitoring. According to “Greenhouse
lettuce image collection and preprocessing,” there was a

Fig. 2 Image augmentation scheme

Fig. 3 Architecture of the CNN model
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large number of background pixels in the captured images
of greenhouse lettuce. Therefore, it was necessary to
conduct image segmentation to extract the lettuce pixels,
thus ensuring that the extracted features in the following
step were presenting the lettuce plants. For the digital
images of the greenhouse lettuce, since the color contrast
between the lettuce plant and the background was very
obvious, image segmentation was achieved by using the
adaptive threshold method for the color information.
Some segmentation results are shown in Fig. 4.
To build the shallow machine learning classifiers, fea-

ture extraction was performed on the segmented images
of greenhouse lettuce. According to the characteristics of
the three cultivars of greenhouse lettuce, low-level image
features, including color, texture, and shape features, were
extracted35. The color features included the average and
standard deviation of 15 color components of five color
spaces (RGB, HSV, CIEL*a*b, YCbCr, and HSI)36. Based
on the color components, the gray level co-occurrence
matrix37 was combined to extract the texture features.
The texture features included the contrast, correlation,
energy, and homogeneity of the 15 color components.
The shape features of the greenhouse lettuce that were

extracted were area and perimeter in this study. The area
was the area enclosed by the outline, and the perimeter
was the total length of the blade outline. After extracting
the image features, the Pearson coefficient was used to
perform correlation analysis between the extracted fea-
tures and the actual values of the LFW, LDW, and LA of
greenhouse lettuce. The features with relatively high
correlation values were used to build the shallow machine
learning classifiers.
In addition to the above image features, structural fea-

tures derived from the depth images, including H, PA, and
digital volume (V), were also used to estimate the growth-
related traits of the greenhouse lettuce8,38–40. Three LR
models using H, PA, and V as the predictor variables (LR-
H, LR-PA, and LR-V) were also used for comparison.
Similar to the processing of digital images, image seg-
mentation was also conducted on the depth images, which
was achieved by the entropy rate superpixel segmentation
method41. The lettuce plant could be extracted using the
Euclidean distance to find the superpixel that was closest
to the center of the image (Fig. 5). Once the lettuce plant
was obtained, the structural features could be calculated
(Fig. 6). Since the pixel value of the depth image was the

Fig. 4 Image segmentation results of the three cultivars of greenhouse lettuce. a–c shows the original images of greenhouse lettuce, and d–f
shows the corresponding segmentation results
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actual distance from the sensor to the object, it reflected
the depth information. Therefore, PA could be obtained
by counting the number of pixels in the lettuce plant area.
H could be obtained by averaging the H of the pixels in
the lettuce plant area, which was obtained by using the H
of the sensor minus the pixel values in the lettuce plant
area. V could be obtained by multiplying PA by H.
In this study, the coefficient of determination (R2) and

the normalized root mean square error (NRMSE) were
used as the criteria for evaluating the performances of all
the estimation models.

Results
In this study, the construction of the estimation models

and image preprocessing were implemented using
MATLAB 2018b (MathWorks Inc., USA). The software
environment was Windows 10 Professional Edition, the
hardware environment was an Intel i7 processor, CPU

3.20 GHz, with 8 GB memory, and the GPU was NVIDIA
GeForce GTX1060.

Estimation results of the CNN model
When the training process finished, the test dataset was

used to test the performance of the CNN model. The
performance of the CNN model evaluated over the test
dataset is shown in Fig. 7. The results showed strong
correlations between the actual measurements of the
growth-related traits and those estimated by the CNN
model. It can also be seen that the CNN model demon-
strated the best performance on the estimation of LA,
achieving the highest R2 and the lowest NRMSE (R2=
0.9156, NRMSE= 19.94%). The performance of the CNN
model for LFW and LDW was similar, with R2 values of
0.8983 and 0.8910, respectively, and NRMSE values of
26.00% and 22.07%, respectively. For the lettuce cultivars
(Fig. 8 and Table 1), the CNN model showed different
performances. Generally, the CNN model was better at
estimating the growth-related traits of Flandria and
Tiberius than Locarno, which might be due to the dif-
ferences in the leaf shape of the lettuce. Flandria and
Tiberius have flat-leaf types with relatively stretched
leaves, while Locarno is a curled-leaf type with uneven
curling leaves. Therefore, the CNN model was able to
obtain more comprehensive information when extracting
the features of Flandria and Tiberius. However, the leaves
of Locarno were more curled, resulting in the learned
features not being comprehensive enough to account for
the covering and hiding of leaf sections, which affected the
estimation accuracy. Therefore, the CNN model achieved
the highest prediction accuracy for Flandria and Tiberius.

Comparison of the results with the conventional
estimation methods
Prior to the construction of shallow machine learning

classifiers, correlation analysis was performed between
pairs of parameters that included the low-level image
features and the three growth-related traits. The features
that were highly correlated to the actual values of the

Fig. 5 Depth image segmentation. a shows the randomly colored superpixels, and b show the segmented lettuce plant

Fig. 6 The calculations for PA and H
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Fig. 8 Estimation results of the growth-related traits for each greenhouse lettuce cultivar. a–c shows the estimation results of LFW, LDW, and
LA for Flandria, d–f shows the estimation results of LFW, LDW, and LA for Tiberius, g–i shows the estimation results of LFW, LDW, and LA for Locarno,
the dashed line indicates the 1:1 line

Fig. 7 Estimation results of growth-related traits based on the CNN model. a, b, and c shows the estimation results of LFW, LDW, and LA,
dashed line indicates the 1:1 line
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growth-related traits were used to build the classifiers.
The selected features for building the classifiers to esti-
mate LFW, LDW, and LA are shown in Tables 2–4,
respectively.
Based on the selected features, SVR and RF models were

constructed. The estimation results by the two classifiers
are shown in Fig. 9. For the growth-related trait of LFW,

SVR demonstrated better performance than RF, while for
the growth-related traits of LDW and LA, RF achieved
superior results to SVR. Compared with the performance
of the CNN model (Table 5), although the R2 value of RF
for estimating LDW was very close, its NRMSE value was
approximately 3.5% higher. Considering the R2 and
NRMSE comprehensively, the CNN model indicated
better performance on estimating LDW than RF.
According to Table 5, it can be concluded that the CNN
models outperformed the two classifiers in estimating all
three growth-related traits with higher R2 values and
lower NRMSE values. A possible explanation for the
results might be that the construction of SVR and RF was
based on the low-level features of the digital images,
which could be extracted based on the image segmenta-
tion of lettuce plants. This method may be unreliable due
to an uneven external illumination and other factors,
potentially resulting in a low accuracy image segmenta-
tion, which decreased the accuracy of the feature extrac-
tion15. Furthermore, the low-level image features were
artificially designed, indicating that the generalization
ability of SVR and RF models was poor18,28. Therefore, the
estimation accuracy for the growth-related traits of the
greenhouse lettuce was worse than that of the CNN
model.
It can be seen from Fig. 10 that the LR-V and LR-PA

models demonstrated better estimation performance than
the LR-H model. The research objects of this paper were
vegetables. From the perspective of horticulture research,
the H of lettuce was an essential trait for growth mon-
itoring. However, it is not fair to say, the higher, the
better. In the case of nutrient deficiencies, excessive
growth can also occur42. Therefore, the estimated biomass
(LFW and LDW) and LA from the H of greenhouse let-
tuce can be inaccurate. In addition, existing research has
shown that V and PA have relatively strong correlations
with the growth-related traits of crops43,44. Therefore, the
results that the LR models that used V and PA as

Table 2 Correlations of the LFW measurements with the
low-level image features

Features Correlation

coefficient

Features Correlation

coefficient

RGB_G_Energy −0.692a YCrCb_Cr_Energy −0.687a

HSV_H_Average 0.685a YCrCb_Cb_Average −0.700a

HSV_H_Energy −0.687a YCrCb_Cb_Energy −0.687a

HSV_S_Average 0.691a HSI_S_Average −0.690a

LAB_L_Energy −0.693a HSI_S_Energy −0.697a

LAB_A_Average −0.696a HSI_S_Homogeneity −0.686a

LAB_B_Energy −0.686a Area 0.9187a

aCorrelation is significant at the 0.01 level

Table 1 Results of the estimated growth-related traits for
the three cultivars of greenhouse lettuce by the
CNN model

Cultivars LFW LDW LA

R2 NRMSE R2 NRMSE R2 NRMSE

Flandria 0.9152 22.23% 0.9532 14.73% 0.9449 16.34%

Tiberius 0.9271 19.15% 0.8984 17.71% 0.9156 17.13%

Locarno 0.9040 31.05% 0.8476 31.45% 0.9044 25.81%

Table 3 Correlations of the LDW measurements with the
low-level image features

Features Correlation

coefficient

Features Correlation

coefficient

RGB_R_Homogeneity −0.652a LAB_B_Energy −0.652a

RGB_G_Energy −0.651a YCrCb_Cr_Energy −0.651a

HSV_H_Energy −0.653a YCrCb_Cb_Energy −0.652a

HSV_S_Energy −0.650a HSI_S_Std 0.661a

HSV_S_Homogeneity −0.657a HSI_S_Energy −0.653a

LAB_L_Energy −0.655a Area 0.8831a

HSI_S_Homogeneity −0.661a

aCorrelation is significant at the 0.01 level

Table 4 Correlations of the LA measurements with the
low-level image features

Features Correlation

coefficient

Features Correlation

coefficient

RGB_G_Energy −0.664a YCrCb_Cr_Energy −0.662a

HSV_H_Average 0.660a YCrCb_Cb_Average −0.671a

HSV_H_Energy −0.664a YCrCb_Cb_Std 0.662a

HSV_S_Average 0.667a YCrCb_Cb_Energy −0.664a

HSV_S_Energy −0.662a HSI_S_Energy −0.667a

LAB_L_Energy −0.667a HSI_S_Homogeneity −0.665a

LAB_B_Energy −0.663a Area 0.8930a

aCorrelation is significant at the 0.01 level
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predictor variables exhibited better estimation accuracy
than those using H as the predictor variable were within
expectation. Compared with the CNN model (Table 5),
the three LR models (LR-V, LR-PA, and LR-H) based on
structural features had low R2 values and high NRMSE
values. In addition, the two shallow machine learning
classifiers outperformed the LR models (Table 5). This
result might be explained by the fact that the growth of
lettuce was not only related to geometric features but also
related to the color and texture features of lettuce. The
structural features derived from depth images were geo-
metric, thus containing no color or texture information of
the greenhouse lettuce. Therefore, the LR models based
on structural features derived from depth images yielded
the worst prediction accuracy.

Generalization test results
The evaluation of the performance of the proposed

estimation method using images from different growing
seasons would strengthen the belief in its validity and
generalization45. Therefore, we performed a generalization

test by directly applying the pretrained CNN model to
images of Tiberius planted in another growing season
(Season 2). We adopted the same experimental design as
in “Greenhouse lettuce image collection and preproces-
sing,” resulting in a dataset containing 200 images and
corresponding growth-related traits covering the entire
growing season of the greenhouse lettuce.
The estimation results are shown in Fig. 11. Regression

analysis suggested that the values of the three growth-
related traits estimated from the images in Season 2 agreed
well with the corresponding values derived from field
measurements. For the three growth-related traits of LFW,
LDW, and LA, the CNN model had R2 values equal to
0.9277, 0.9126, and 0.9251, respectively, and NRMSE values
equal to 22.96%, 37.92%, and 27.60%, respectively. The
results revealed that the proposed estimation method had a
strong generalization ability. On the other hand, the tem-
perature and humidity in the greenhouse changed with the
seasons, which would cause the growth of lettuce to change.
Promisingly, the estimation results of the CNN model were
still accurate, demonstrating that the proposed estimation
method achieved excellent robustness and made a reliable
tool for monitoring the growth of greenhouse lettuce.

Discussion
The close and accurate monitoring of crop growth is

critical for the optimized management of crop produc-
tion46. Direct measurement of growth-related traits is
destructive and inefficient. Nondestructive monitoring
has emerged and become a hot topic of current research.
Computer vision technology has been widely used in
nondestructive monitoring, providing great convenience
to growth-related trait acquisition by using conventional
methods, i.e., SVR, RF, and LR. However, these methods
are limited in practical applications. Therefore, with the
rapid development of deep learning, CNN has become
preferred by researchers for its advantages, such as no

Fig. 9 Estimation results of the growth-related traits based on SVR and RF. a, b, and c shows the estimation results of LFW, LDW, and LA,
dashed line indicates the 1:1 line

Table 5 Estimation results of the constructed models for
the three growth-related traits

Models LFW LDW LA

R2 NRMSE R2 NRMSE R2 NRMSE

CNN 0.8983 26.00% 0.8910 22.07% 0.9156 19.94%

SVM 0.8842 31.07% 0.8456 27.63% 0.8627 27.40%

RF 0.8772 33.42% 0.8959 25.52% 0.8778 27.40%

LR-V 0.8492 33.53% 0.7669 32.73% 0.7561 34.78%

LR-PA 0.8454 34.26% 0.8281 28.49% 0.8062 31.38%

LR-H 0.6193 53.85% 0.7074 36.83% 0.6846 39.84%
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need to manually extract features. In this study, we
demonstrated that CNN can serve as a convenient and
accurate tool to obtain growth-related traits for green-
house lettuce. In comparison with the conventional
methods, the proposed CNN model showed superior
estimation performances in estimating the three growth-
related traits for multiple cultivars of greenhouse lettuce,
as shown in Table 5. Specifically, the estimated results of
the CNN model on all three growth-related traits had R2

values above 0.89 and NRMSE values below 27%. The
results demonstrated the advantages of the CNN model in
that it was able to automatically learn complex feature
representations from digital images, which can be trans-
lated to a strong generalization ability47. The obtained
results agreed with previous studies by Ma et al.18 and
Grinblat et al.23.

Limitations and future work
Although the proposed method has been shown to be

accurate and efficient, there are still limitations that we
need to take into account. One limitation is that images
were acquired from only the top view, indicating that the
error may increase if there are too many overlaps between

the leaves. Another limitation is the fixed H during image
collection. If the H changes, the estimated results may be
biased.
Future studies will continue to collect more images to

enlarge our dataset, such as images of other lettuce cul-
tivars. To improve the efficiency of the method, we will
explore the growth-related traits of multiple lettuce plants
in a single image. In addition, the factors that may influ-
ence the performance of the CNN model, such as stress
and H for image collection, will also be explored.

Prospective
Growth monitoring can indicate the status of green-

house lettuce, which is critical for intelligent field man-
agement to control the greenhouse environment and
establish nutrition strategies. The proposed estimation
method allowed us to estimate LFW, LDW, and LA for
multiple cultivars of greenhouse lettuce by using digital
images, which are low cost and easy to use. The method
has great potential for being used in the field when
combined with mobile devices or when integrated into
other automatic platforms since its input images can be
captured by low-cost digital cameras.

Fig. 11 Estimation results of the generalization test. a, b, and c shows the estimation results of LFW, LDW, and LA, dashed line indicates the 1:1

Fig. 10 Estimation results of the growth-related traits based on the structural features. a LFW, b LDW, c LA, dashed line indicates the 1:1 line
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Conclusions
In this study, a method for the estimation of growth-

related traits of multiple cultivars of greenhouse lettuce
was proposed by using digital images and CNN, which
could provide support for growth monitoring. The
estimated growth-related traits had good agreement
with the actual measurements, with R2 values of ~0.9
and NRMSE values of ~20%. Furthermore, the perfor-
mance of the proposed method was superior to that of
the conventional methods that are widely adopted to
estimate growth-related traits. The obtained results
showed that the proposed method in this study achieved
better estimation performance for Flandria and Tiberius
cultivars than Locarno. After another batch of images
were acquired of the Tiberius cultivar that was planted
in Season 2 for verification, the results reinforced that
the proposed estimation method had a strong general-
ization ability, as well as robust estimation performance
despite the seasonal factors. It can be concluded that the
proposed method is a reliable tool for estimating the
growth-related traits of greenhouse lettuce and has
excellent potential in the application of growth mon-
itoring. Furthermore, the accurate monitoring of
growth-related traits can provide support for scientific
management decision-making.
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