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Minor alleles are associated with white rust (Albugo
occidentalis) susceptibility in spinach (Spinacia
oleracea)
Henry O. Awika1, Thiago G. Marconi1, Renesh Bedre 1, Kranthi K. Mandadi1,2 and Carlos A. Avila 1,3

Abstract
Minor alleles (MA) have been associated with disease incidence in human studies, enabling the identification of
diagnostic risk factors for various diseases. However, allelic mapping has rarely been performed in plant systems. The
goal of this study was to determine whether a difference in MA prevalence is a strong enough risk factor to indicate a
likely significant difference in disease resistance against white rust (WR; Albugo occidentalis) in spinach (Spinacia
oleracea). We used WR disease severity ratings (WR-DSRs) in a diversity panel of 267 spinach accessions to define
resistant- and susceptibility-associated groups within the distribution scores and then tested the single-nucleotide
polymorphism (SNP) variants to interrogate the MA prevalence in the most susceptible (MS) vs. most resistant (MR)
individuals using permutation-based allelic association tests. A total of 448 minor alleles associated with WR severity
were identified in the comparison between the 25% MS and the 25% MR accessions, while the MA were generally
similar between the two halves of the interquartile range. The minor alleles in the MS group were distributed across all
six chromosomes and made up ~71% of the markers that were also strongly associated with WR in parallel performed
genome-wide association study. These results indicate that susceptibility may be highly determined by the
disproportionate overrepresentation of minor alleles, which could be used to select for resistant plants. Furthermore,
by focusing on the distribution tails, allelic mapping could be used to identify plant markers associated with
quantitative traits on the most informative segments of the phenotypic distribution.

Introduction
Genetic association studies can be used to determine

whether a genetic variant is associated with a particular
trait. If an association is present, a particular allele, gen-
otype, or haplotype will be seen more often than is
expected by chance in individuals or groups carrying the
corresponding trait1. Likewise, an individual carrying one
or two copies of a particular allele is more likely to present
the associated trait, such as susceptibility to a disease. The
identification of the groups or individuals at high risk of
developing a particular disease can be a daunting task,

given that many major alleles may also be risk factors2.
Shifts in allele frequencies are also common3,4 and can be
challenging to track in fast-paced breeding programs
relying on genome-wide association (GWA) mapping
strategies alone. Therefore, the aim of this study was to
determine whether particular minor alleles (MA) could be
found more often than by chance in relation to a simple
distribution using white rust disease severity ratings (WR-
DSRs), in a diverse collection of spinach (Spinacia oler-
acea) accessions as a test model.
WR in spinach is caused by Albugo occidentalis, an

oomycete obligate pathogen that attacks the vegetative
and flowering structures of the affected plants and causes
yellow lesions on the upper leaf surface and white pus-
tules on the abaxial side, resulting in severe yield losses5.
Resistance to WR in spinach is reported to be polygenic5,6;
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however, the mapping of its genic features is far from
conclusive. It is perhaps not surprising that the genetic
and molecular basis of resistance to WR is not well
understood in spinach, and new approaches are required
to elucidate the genetic and molecular basis of this
resistance. One possibility is to perform a GWA to target
minor alleles implicated as risk factors in susceptibility to
the disease7. Determining the distribution of such alleles
in diseased plants might illuminate the underpinnings of
minor alleles important for WR susceptibility in spinach.
Compared to human studies, it is relatively easy to

control and monitor the population structures and family
mating systems of cultivated crops, the no sedentary
nature of humans, coupled with ethical issues, means that
providing the same treatment or exposure to disease is
not a trivial matter8,9. Despite these challenges, associa-
tion studies comparing the contribution of alleles in dif-
ferent disease outcomes are more common in humans
and animals than in plants, with the number of published
articles (and the value of investments) exploring human
allelic associations to diseases significantly dwarfing the
numbers in plants to date8,10. It is common to partition
human study subjects into retrospective and prospective
cohorts, and case and control groups11. Retrospective
cohort studies are usually conducted on data that already
exist, and the disease exposures are defined before the
existing outcome data are explored to determine whether
exposure to a risk factor is associated with a statistically
significant difference in the disease development rate11,12.
These studies then follow the participants for a defined
period to assess the proportion that develop the outcome/
disease of interest10. After this, the genetic associations
can be explored to determine whether single-locus alleles
or genotype frequencies (or more generally, multi-locus
haplotype frequencies) differ between two groups of
individuals, such as diseased subjects and healthy con-
trols11. Studies implementing such experimental designs
have led to successful identification of loci harbouring risk
alleles for important complex diseases9,10,13. Just as GWA
studies (GWASs) were adapted from human studies and
became even more successful in plants8,13, we propose
that it is possible to adapt a related methodology involving
the partitioning of study populations for use in genomic
studies of plants.
Unrelated, random individuals are included in retro-

spective cohort (segmented) studies of human diseases;
therefore, we used individuals from plant populations
that were assumed to be unrelated and random. We
determined our study segments based on the WR-DSRs
that we phenotyped. Studies of segmented populations
can assess a range of outcomes, allowing an exposure
level to be rigorously assessed for its impact on devel-
oping disease11. Our segment definition drew on the
strength of using a random, nonbiased selection of

individuals, since the underlying genetic interventions in
the defined segments were naturally occurring. The
intention was to determine whether the difference in
allelic prevalence is a strong enough risk factor to predict
WR disease outcomes. By comparing these results with
those of a GWAS in which relatedness among individuals
is accounted for, we highlight the potential use of this
technique in predicting breeding markers associated with
WR in spinach.

Materials and methods
Two parallel analyses were conducted: (1) a

permutation-based basic allelic association to determine
the relationship between the minor allele distributions
and the WR-DSR, and (2) a GWAS adjusting for popu-
lation and kinship structure to compare with the markers
identified in the basic allelic association mapping.

Plant materials, growth environment, disease inoculation,
and phenotyping
A panel of 267 accessions described in our previous

report14 was used in this study. Briefly, the 267 spinach
accessions consisted of a diverse panel with accessions
from 33 countries and part of a collection maintained and
provided by the USDA-National Plant Germplasm System
(NPGS) at Ames, Iowa, USA. A detailed description of
each accession can be found at https://npgsweb.ars-grin.
gov/gringlobal/search.aspx. The 267 accessions were
grown at the Texas A&M AgriLife Research and Exten-
sion Center located at Weslaco, Texas, USA, at a latitude
of 26° 9′ 30′′N and a longitude of 97° 57′43′′W. The
plants were grown in a randomized complete block design
with three replicates per accession. Each plot contained
two rows of ~14 plants spaced at ~10-cm intervals, with
15 cm between the two rows. Each plot was 1.22 m from
the next adjacent plot. Conventional agronomic practices
for spinach were used, from land preparation to the last
date of data collection. The crop was fertilized with a
generalized N–P2O5–K2O rate of 135–84–90 kg/ha.
The natural field inoculation was accomplished by

planting crops in previously infected field. The experi-
mental plots were intercalated with rows of the suscep-
tible control cultivar “Monstrueux de Viroflay” to
uniformly spread the disease. WR dispersal and infection
is favoured by cool and humid conditions with mild wind
and water conditions5,15; therefore, the spinach field was
irrigated as needed to improve the spatter spread of the
spores and enhance humidity within the plant canopy.
The WR symptoms were evaluated on a per-plot basis, as
described by Dainello et al.16. Briefly, the WR-DSR scores
were based on the surface area covered by WR lesions as a
percentage of total surface area of a plot. The percent
ratings were categorized in 1%, 5%, and then at intervals
of 5% up to 50%.
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Tissue collection, DNA isolation, genotyping, and SNP
calling
Tissue handling, DNA isolation and library prepara-

tions, and genotyping and single-nucleotide polymorph-
ism (SNP) calling were performed as previously described
by Awika et al.14, and the genotyping framework followed
the double digest restriction site-associated DNA
(ddRAD-seq) genotyping-by-sequencing protocol descri-
bed by Peterson et al.17. The Illumina short-read
sequencing (HiSeq 2500) and demultiplexing using indi-
vidual indexes were performed using the Texas A&M
AgriLife Genomics and Bioinformatics services. The
paired-end raw sequencing reads (150 bp) were subjected
to filtering to obtain high-quality reads for the down-
stream analysis. The raw reads were filtered and trimmed
to remove adapter contamination and low-quality (aver-
age quality score ≤ 20) or ambiguous sequences with
uncalled nucleotides (<5% uncalled bases). The filtering
and trimming of the raw reads were performed using an
in-house pipeline developed using Python18 (https://
github.com/reneshbedre/RseqFilt). The high-quality
cleaned sequence data were aligned to the draft spinach
reference genome (v1)19 using the bowtie2 alignment
tool20.
The 267 spinach accessions were genotyped using

Stacks (v1.48)21,22, based on the draft spinach reference
genome (v1). In brief, various modules of the Stack
pipeline (pstacks, cstacks, sstacks, and rxstacks) were used
to identify and filter the genotypes21. The Ada cluster of
the TAMU High Performance Research Computing
(http://hprc.tamu.edu/) was used to perform the bioin-
formatics analysis. The SNP pipeline-end cleanup criteria
also included the removal of SNPs not anchored onto the
six published draft chromosomes19. A final 6166 SNPs in
VCF v4.223 were available for the downstream analyses of
which 6,111 were used in this study. The SNPs in the
spinach accession data can be downloaded from the
supplementary table presented by Awika et al.14.

Adjusting for population and interallelic stratification
STRUCTURE (v2.3.4)24 and a kinship matrix25 were

used to adjust for population stratification and allele
sharing26 before running the GWAS (see below).
STRUCTURE uses identity-by-state similarity, assuming
that two random alleles drawn from the same locus are
the same. An admixture model was run, with the dis-
tance of an individual from itself set to 0. The protocols
for using STRUCTURE, visualization in STRUCTURE
HARVESTER27, the associated algorithms28,29, and the
kinship matrix (K) were described previously by Awika
et al.14, except that, in this study, 5000 burn-ins instead
of 1000 burn-ins were used in STRUCTURE, and 17
rather than 15 replications were performed for each of
the seven population assumed (K). This was to further

improve the accuracy of convergence toward reliable
estimate of allele frequency in each (hitherto arbitrary)
subpopulation.

Distribution and accuracy of phenotypic prediction
A modified form of the retrospective cohort of human

diseases30 and the statistical principles of case–control
genotypic and allelic associations31–33 were used to define
the study samples. The study groups (segments) were
retrospectively defined based on the distribution of the
WR-DSR scores, providing a random, nonbiased inclusion
of individuals in each segment. The best linear unbiased
predictor estimates (BLUPs), least square means (LSM),
and arithmetic means (ArithMean) of the WR-DSR scores
were used to construct the distribution.
The BLUPs and LSMs were determined by running the

restricted maximum likelihood (REML) model on the
three replicate WR-DRS scores in JMP Statistical Software
v14 (SAS Institute, Cary, NC, USA) using the following
formula: Yij= µ+Ui+Wij+ e, where µ is the mean WR-
DSR for the whole population, U is the random plot
mean, W is the random deviation of the jth replicate from
the ith plot mean, and e is the residual error accounting
for plot-to-plot differences. To test the accuracy of the
BLUPs for predicting the true phenotypic means, the
correlations between the LSMs and BLUPs and between
the ArithMean and BLUPs were determined. One
advantage of the BLUP estimates is that they have a
reduced mean square error within the linear plot esti-
mators and thus deviated less from the mean of the rea-
lized plot phenotypic values34,35. The data were then split
into a random test sample (25%) and a training set (75%)
to test the model fitness in different sample sizes. The
slopes, R2, Akaike’s information criteria (AIC), and
Bayesian information criteria (BIC) were compared for the
three equations (the whole sample, the 25% sample and
the 75% sample).
To partition the data into segments consisting of indi-

viduals with high WR-DSRs (i.e., most susceptible [MS])
and individuals with low WR-DSRs (i.e., most resistant
[MR]), the whole sample (the “population” of 267 indivi-
duals) was also tested for the sample distribution statistics
of normality, skewness, and kurtosis. For these measures,
a “sample statistics” computation was used because the
material in this study is part of a larger diversity popula-
tion maintained by the USDA. In the strict context of this
study, the term “population” is used to refer to the 267
accessions used. The D’Agostino-Pearson Omnibus
test36,37 was applied at α= 0.05 to assess normality, while
skewness (S), a measure of asymmetry38, was determined
as S(G1)= [√n(n− 1)/(n− 2)]·g1

38. The standard error of
skewness (SES) was calculated as SES= √[6n(n− 1)/(n−
2)(n+ 1)(n+ 3)]38, where n is the sample size and g1 is the
squared variance (σ4).
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To assess the deviations in the distribution variance,
kurtosis was determined to measure whether the variance
results from infrequent extreme deviations or frequent
modestly sized deviations39. This established how rea-
sonable the distributions of the intermediate values and
the extreme values are for the two WR-DSR distribution
tails40. Kurtosis (G2) was determined as G2= (n− 1)/(n−
2)(n− 3).[(n+ 1)g2+ 6]38, and the standard error of
kurtosis (SEK) was calculated as SEK= 2(SES)√[(n2− 1)/
(n− 3)(n+ 5)]41, where n is the sample size and g2 is the
squared variance (σ4).

Phenotypic clustering (k)
The data, showing satisfactory (nonsignificant) kurtosis

and skewness, was partitioned into four quartiles or seg-
ments42, Q1–Q4, each containing ~66 plots (accessions)
used in the allelic tests. To define the quartile intervals,
the nearest-rank method was applied42,43: n= [(P/100)
*N], where n is the ordinal rank, P is the percentile in
question, and N is the total number of ranks in the
ordered list. For the cross-validation of the segments, the
entire population was divided into mutually exclusive five
percentile segments (k= 10). Each k consisted of ~13
accessions with WR-DSR scores, and ~10 accessions were
drawn from each of the k segments for the downstream
allelic analysis. The phenotypic raw data and assigned
clustering can be found in Supplemental Tables ST1 and
ST2.

Permutation within clusters and testing the hypothesis of
allelic associations
The frequencies of alleles in the two opposite segments

in the WR-DSR distribution were compared, i.e., the
segments containing individuals with WR-DSR scores
lower or higher than the mean population. The pairs of
segments consisted of ~20 individuals (for the 10 k, five-
percentile segments) and ~130 individuals for the Q1 vs.
Q4 and the Q3 vs. Q4 tests. BLUPs and genotypic data
were used to perform the basic allelic permutation tests to
provide empirical P values that also control the familywise
error rate31. In computing the allelic test for each segment
pair, the individual members of segments with a mean
larger than the population mean were populated with a
phenotype code of 1. The individual members of the
corresponding segments with a mean smaller than the
population mean were populated with the code 2. The
plots not included in either pair were coded as 0
(missing)31,44.
The tested hypothesis was that the allelic coefficients

associated with WR= 0, while the alternative hypothesis
was that these allelic coefficients ≠ 0 (i.e., a relationship
exists between the specific allele and the WR). The max
(T) permutation method was applied in PLINK
and gPLINK (http://zzz.bwh.harvard.edu/plink/index.shtml;

http://zzz.bwh.harvard.edu/plink/gplink.shtml)45, with 10,000
iterations for all SNPs. Max(T) performs all specified per-
mutations without dropping what might be nonsignificant
alleles45. The benefit of this is that two sets of empirical
significance values could then be calculated: the point-
wise estimates of the significance of an individual SNP
and a value that controls for the fact that thousands of
other SNPs were also tested. This was achieved by
comparing each observed test statistic against the max-
imum of all permuted statistics (over all SNPs) for each
segment pair.
The permutation-based Max(T) test uses a hypergeo-

metric distribution to compute probabilities and thus
does not depend on any large-sample distribution
assumptions45,46. The hypergeometric distribution was
especially important in this study because it allows for the
classification of data into two mutually exclusive samples
with random draws within the sets of samples47,48. The
probability tests from these permutations could generate
exact (comparable to Fisher’s exact) empirical significance
values48,49 that are valid in small samples such as the
segments used here where the likelihood ratio and Pear-
son tests become less reliable46,50. Because the permuta-
tion schemes preserve the correlational structure between
SNPs, these tests provided a less stringent correction for
multiple testing than the Bonferroni correction (BC),
which assumes all tests are independent. In fact, because
the corrected P value was of interest, it was not necessary
to demonstrate genome-wide significance levels beyond
0.05 or 0.0145. A P value ≤ 0.01 was used to declare a
significant association for the allelic tests, and an odds
ratio (OR) > 1 was used to declare risk.
The pre-analysis thresholds were minor allele frequency

(MAF)= 0.01, and max SNP missingness= 0.1; i.e., to be
incorporated into the analysis, a SNP must be present in
at least 90% of the accessions (individuals), otherwise it
was omitted. This stringency was increased from the 80%
used in the GWA, which was performed in parallel to the
allelic tests (described below) to penalize what was
believed to be-possible spurious associations during the
multiple test permutation correction51. Individual miss-
ingness was set at 0.1; i.e., an accession was included in
the analysis only if at least 90% of the SNPs were
present in it.

Genome-wide association studies
Since basic allele tests may require corroboration using

other tests51,52, a GWAS was conducted using all 267
accessions and 6111 SNP variants. The GWA approach
was implemented in TASSEL v5.2.52 and corrected for
the population structure and possible kinship (as descri-
bed above). For the purpose of this report, the significant
signals identified in the GWAS were used as a baseline to
assess the efficiency of the allele-based method (in Q1 vs.
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Q4, in Q2 vs. Q3, and in the five-percentile segments). A
basic genotypic association full (GAF) model was also
performed for the Q1 vs. Q4 pair. The difference between
the GAF and the allelic association tests is that instead of
coding individuals as 1 or 2, the GAF uses the actual
BLUPs to compute the genotypic association tests, while
using similar permutation parameters to those specified
for the allelic tests. The associated graphic plots were
generated using qqman v0.1.453 in R, ggplot2 v3.1.054 in R,
DAAG v1.22.255 in R, and e1071 v1.7–1 (https://www.
rdocumentation.org/packages/e1071) in R, as well as
Excel and jvenn56.

Determining the efficiency of the allelic association
The markers identified via the GWA model were

considered as the reference for true associations and
were used to determine the efficiency of the allelic
mapping using the case–control models at with the Q1
vs. Q4 and Q2 vs. Q3 comparisons, and the full model
GAF. To achieve this, the “true” signals in the GWA
model were used to standardize the ratio (z/T) of
matching markers in the other methods as a factor of
the GWA signals (L) and, thus:, (z/T)c ∙ Lkc, where z is
the number of markers identified using the allelic or
GAF model that were also identified in the GWAS; T is
the total markers identified using the allelic or GAF
model, and k is the efficiency multiple factor for model
c1 compared to model cn.

Minor allele discrimination and realignment
In order to evaluate how well SNP markers identified by

allelic mapping can discriminate between WR-resistant
and susceptible individuals, we compared the MAF of the
MR accessions within the fifth percentile of the WR-DSR
distribution tail vs. the MAF in the corresponding fifth
percentile WR-DSR distribution tail consisting of the MS
accessions. A disproportionately high MAF for a marker
would suggest that the marker is a susceptibility factor,
while a disproportionately low MAF would suggest a
resistance factor. To be considered disproportionately
represented, we defined that the frequency of the allelic
base at a SNP locus had to be less than half the frequency
of the corresponding allele on the second strand, and
significantly lower than the mean of MAFs in the second
strand (at α= 0.01).
To test the efficacy of this method, we determine if the

significant markers could discriminate between WR
resistance or susceptibility among the MR (WR-DSR < 20)
and 10 MS (WR-DSR > 40) accessions (see data parti-
tioning, Supplementary Table ST2). To do this, we rea-
ligned and determined the phylogeny of the nucleotide
sequences of each of the 20 accessions at the significant
SNP loci using MEGA X57 unweighted pair group method
with arithmetic mean58. Phylogeny was tested using 500

bootstrap replications59 for the combined 20 (10 MR and
10 MS) accessions. The substitution model based on the
maximum composite likelihood method60 was imple-
mented for the nucleotides at the significant polymorphic
sites in each of the accession. We used the default settings
of uniform rates and assumed homogenous pattern
among lineages. Pairwise deletion was selected for sites
with gaps or missing data.

Heritability
Both the broad-sense heritability (H) and the narrow-

sense heritability (h) were determined as previously
described14. Briefly, H was computed on a line mean basis
using the variance components generated in the REML
model, with replicates nested in three blocks in a single
location: H=Vl/(Vl+ (Vl·Vr[Block])/3+Ve/3)), where Vl

is the variance within a line, r is the replicate, and e is the
residual.
Narrow-sense heritability (h) was calculated based on

the marker mean genetic and residual variances. Since we
specified the population parameters previously deter-
mined (P3D) in the optimal compression model (in
TASSEL), h was obtained from the mean genetic variance
and the mean residual variance in the compression
models: h= (σa

2)/(σa
2+ σe

2), where σa
2 is the mean

additive variance of the marker allele and σe
2 is the var-

iance of the residual (error).

Results
Defining the distribution, data segmentation, and accuracy
of phenotypic prediction
The phenotypic distribution had a slight negative (left)

skew. The ArithMean was 36.25 (sd= 6.61, range: 10–50;
Fig. 1a), and a few outliers identified on the lower
extremes were found to cause the observed left skew. The
BLUP data (Fig. 1b) had a slight, nonsignificant, negative
skew of −0.15 (se= 0.07) and a excess kurtosis of −0.04
(se= 0.01), based on two-tailed tests of skewness (Zg1)
and excess kurtosis (Zg2)

41, respectively, at the 0.05 sig-
nificance level. The distribution statistics for ArithMeans
and BLUPs are shown in Figs. 1 and 2.
We tested the accuracy of the BLUP estimates to predict

the true phenotypic means by determining the correlation
between the LSMs, ArithMeans, and BLUPs. The corre-
lation between the ArithMeans and BLUPs was 0.99 (Fig.
1c), while between the LSMs and BLUPs it was 1 (Fig. 1d).
The correlations between ArithMeans and BLUP were
0.89 and 0.87 for the 75% (201-plot) test set and the 25%
(66-plot) validation set, respectively (data not shown). The
differences in AIC and in BIC between the three equations
were negligible when comparing the whole population
(267 plots) with the test set and the validation set (Table 1),
indicating that we could apply the BLUP estimates across
the different sample sizes.
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The data were segmented as shown in Fig. 2. For the
k= 10 segments, only the 5% MR-5 and the 5% MS-5 on
either tail are shown. Parameter counts used in associa-
tion tests of the segments are shown in Table 2. In this

report, we used the term “most resistant (MR-25)” to
describe the accessions with WR-DSR scores in the lower
25th percentile (i.e., Q1), and “most susceptible (MS-25)”
to mean the accessions with WR-DSR scores in the upper
25th percentile (i.e., Q4). We considered the accessions
with WR-DSR scores between the 25th and 50th per-
centiles (i.e., Q2) to be moderately resistant, while the
moderately susceptible were those with WR-DSR scores
between the 50th and 75th percentiles (i.e., Q3).

Number of markers associated with WR resistance
identified in the allelic tests and the genotypic tests
We mapped the SNPs hosting minor alleles that are

associated with WR and compared the proportions of

Fig. 1 Distribution of WR-DSR and accuracy prediction test. Distributions of the arithmetic mean (a) and BLUP estimates (b) for the WR-DSR
scores in the sample population are displayed. A corresponding box plot is shown below each distribution histogram. The correlations between the
BLUPs and the arithmetic mean c and between the BLUPs and the LSM d are also shown. s, standard deviation of population sample.

Fig. 2 Density plot of the BLUP estimates. The segments for the
most resistant 5% of samples (MR-5), the most resistant 25% of
samples (Q1), the moderately resistant 25% of samples (Q2), the
moderately susceptible 25% of samples (Q3), the most susceptible
25% of samples (Q4), and most susceptible 5% of samples (MS-5) are
shown. Skewness or kurtosis of >±2 is not considered significant. SE
standard error.

Table 1 Test statistics for model fitness.

Set Number of plots (actual) RSME R2 AIC BIC

Whole 267 3.661623 0.97 5542 5566

Test 201 3.819942 0.96 5545 5571

Valid 66 4.354772 0.97 5541 5560

RSME root mean square error, AIC Akaike’s information criterion, BIC Bayesian
information criterion
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the minor alleles mapped in individuals between the
corresponding population segments. The differences
between the mean MAFs in the MS segments and the
MR segments were significant. The MS-5 MAF was
significantly higher than the mean MAF in the MR-5
group (P ≤ 0.008), while the MS-25 (Q4) segment had a
significantly higher MAF than the mean MAF in the
MR-25 (Q1) group (P ≤ 0.001) (Fig. 3a for all alleles and
3b for significantly associated alleles). By contrast, the
intermediate quartile segments (Q2 vs. Q3) showed no
significant differences except for two of the five k-
segment pairs. (Fig. 3a, b). These observations indicate
that a greater number of the minor alleles found to be
associated with WR reside in the individuals showing
the most severe WR symptoms in comparison with the
resistant individuals.

Markers identified using the allelic and GWA models
A total of 448 significant alleles (Table 3, Fig. 4)

associated with WR-DSR were identified in individuals
in the Q1 vs. Q4 segment comparison of ~130 indivi-
duals, while only 61 alleles were identified when the Q2
vs. Q3 segment pair was analysed (Table 3; Supple-
mentary Tables ST3 and ST4). We compared the asso-
ciated markers in the allelic tests to those in the basic
full model (GAF, using the ~130 accessions in the Q1 vs.
Q4 segments) and those in the GWAS model (using all
267 accessions). A total of 102 (~23%) of the 448 sig-
nificant markers identified in the Q1 vs. Q4 tail com-
parison and only two (~3.3%) of the 61 significant
markers identified using the Q2 vs. Q3 segment pair
were also found to be significant in the GWA. These
represented 71.8 and ~1.4%, respectively, of the

142 significant markers identified using the GWA
model. The GAF identified 342 significant markers, of
which 45 (~31.7%) were also found to be significant in
the GWAS. The Q1 vs. Q4 and GAF analyses shared
86.7% of their significant markers (Supplementary
Tables ST3, ST4, and ST6).
Taking the 142 markers in the GWA model as the

reference for true associations, we compared the effi-
ciency of the allelic mapping using the case–control
models with the Q1 vs. Q4 and Q2 vs. Q3 comparisons,
and the full model GAF. To achieve this, we used the 142
“true” signals in the GWA model to standardize the ratio
(z/T) of matching markers in the other methods as a
factor of the GWA signals (L). Based on comparisons of
the standardized ratios, the allelic mapping in the Q1 vs.
Q4 DSR tails was 7.7 times more efficient at discovering
true signals than the allelic mapping using the inter-
quartile DSR range Q2 vs. Q3, and 2.4 times more effi-
cient than the full model GAF. These observations
indicate that mapping alleles in the Q1 vs. Q4 segments
better identified the loci associated with WR than map-
ping using the Q2 vs. Q3 segments or the GAF model in a
population with a near-normal phenotypic distribution.
The difference in the number of individuals and markers
used, or in the method used to account for population
structure and stringency in declaring test significance,
might have contributed to the large difference in the
markers identified using the GWA in comparison with the
other models.

MAFs determined using the GWA and allelic tests
Figure 3c presents the MAFs for each chromosome,

including the MAFs from the GWA. The phenotypically

Table 2 Percentile ranges and their parameters used in allelic tests.

Percentile ranges Ind with

non-missingness

Number

of SNPs

Number of

accessions

Genotyping rate Number

of Ind in

R group

Number

of Ind in

S group

Genomic

inflation factor

Mean

X2

statistic

Number of

tests corrected

for in R and S

<5 15 4725 262 0.937 10 10 1.98503 1.36259 4285

5–10 20 4725 262 0.937 10 10 1.56618 1.13646 4608

10–15 20 4725 262 0.937 10 10 1.37061 1.22006 4660

15–20 20 4725 262 0.937 11 9 1.34904 1.12663 4627

20–25 19 4725 262 0.937 10 9 2.16307 1.65384 4639

25–30 20 4725 262 0.937 10 10 1.16959 1.10623 4632

30–35 20 4725 262 0.937 10 10 1.64921 1.19752 4446

35–40 20 4725 262 0.937 10 10 1.23457 1.02834 4613

40–45 21 4725 262 0.937 11 10 1.25598 1.10425 4669

45–50 20 4725 262 0.937 10 10 1.71999 1.3079 4448

Ind individual accessions, R resistant, S susceptible
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less diverse Q2 vs. Q3 pair showed no significant differ-
ences in their MAFs except on chromosome 2 (chr2) and
chr3. The more phenotypically diverse Q1 vs. Q4 pair
showed a more dramatic difference in their MAFs, except
on chr6 where there was no difference. Compared to the
MAFs identified using the GWAS, the segments with
higher WR-DSR scores in the allelic tests (Q2 and Q3)
showed a significantly higher prevalence of minor alleles,
except on chr3. The data show that the pattern of higher-
risk alleles in the MS vs. MR segments was fairly well
maintained across most chromosomes, except that on
chr2 and chr5, the differences were more dramatic, with
chr5 showing the largest difference between the Q4 MS
and the rest of the segments, and between the Q4 MS and

the GWA. The MAFs did not seem to correspond to the
chromosomal length or chromosomal marker densities
reported for this set of markers and plant population14.
These observations suggest that the different chromo-
somes in spinach may contain different numbers of risk
alleles for WR.

Marker distribution
The plotting of associated markers in the segmented

and unsegmented data (Fig. 5) revealed the presence of
extended genomic regions with high-scoring association
signals, which are non-chromosome specific and were
identified independently of a specific association model.
The population-structure-corrected GWA, which maps

Fig. 3 Proportion of MAFs in individuals drawn from the two tails of the BLUP distribution. Each bar represents the mean MAF proportion of
ten individuals from the tail with a WR-DSR score less than the mean and greater than the mean. The ten individuals were randomly drawn from each
of the percentile segments shown. a Mean MAF for all the 4871 SNPs. b Mean MAF of polymorphisms with a significant association with WR. c MAF
per chromosome. GWA minor allele frequencies are shown against those mapped using the basic allelic association tests. Standard error bars are
shown. Q quartile, MR most resistant, MS most susceptible, R resistant with reference to the mean WR-DSR, S susceptible with reference to the mean
WR-DSR.
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SNPs in linkage disequilibrium (LD), showed little dif-
ference in the pattern of the strong signals in comparison
with the allele-specific mapping strategy (Fig. 4).

Markers for WR resistance are discriminated by their
extremely low minor allele frequencies in the resistant
lines
In order to evaluate how well minor alleles associated

with WR can discriminate between resistant and suscep-
tible accessions for their use in molecular breeding pro-
grams, we compared the MAF in 10 MR lines within the
fifth percentile WR-DSR distribution tail to the MAF in
the corresponding 10 MS lines in the fifth percentile WR-
DSR distribution tail. We considered that a dis-
proportionately high MAF for a marker would suggest
that the marker is a susceptibility factor, while a dis-
proportionately low MAF would suggest a resistance
factor. Based on these criteria, the majority (11) of the 15
markers identified by allelic mapping had dis-
proportionately low MAF in the resistant plants (colored
blue, Table 4), indicating their potential use as markers to
select for WR resistance factors in spinach.
Furthermore, the realignment of the 20 sequences at the

15 significant SNP loci resulted in two divergent nodes
connected to either the most resistant (MR) group on one
hand and the most susceptible (MS) on the other hand
(Fig. 6). The MR branch consisted of nine (PI 179592, PI
176781, PI 169678, PI 173984, NSL 32629, CPPSIH 3 04,
NSL 6083, PI 303138, and PI 179594) out of ten acces-
sions, while the MS branch had all the ten susceptible
lines (PI 205232, PI 418978, PI 181964, PI 174387, PI
171866, PI 160926, NSL 6087, NSL 65915, NSL 186328,
and NSL 22003). The line PI 379547, which was pheno-
typed as resistant was phylogenetically associated with the
susceptible group and shared a node with the susceptible

Table 3 Significant marker signals across models and associated minor allele counts compared across segments (mean
standard error in parenthesis).

GWA GAF Basic allelic association compared between

corresponding 25% tail segments

Basic allelic association compared between

corresponding interquartile segments

Chr #Mk #Mk #Mk MR (Q1) MS (Q4) OR #Mk Q2 Q3 OR

Chr1 28 59 60 0.119 (0.03) 0.249 (0.07) 3.36 (0.41) 8 0.215 (0.07) 0.269 (0.27) 1.54 (0.42)

Chr2 26 68 95 0.173 (0.02) 0.251 (0.08) 2.83 (0.38) 15 0.133 (0.08) 0.262 (0.04) 3.52 (0.47)

Chr3 38 53 102 0.111 (0.08) 0.186 (0.04) 3.81 (0.48) 6 0.113 (0.02) 0.205 (0.05) 1.00 (0.45)

Chr4 28 78 80 0.178 (0.02) 0.249 (0.01) 3.11 (0.41) 24 0.23 (0.00) 0.240 (0.05) 1.83 (0.41)

Chr5 27 36 62 0.111 (0.09) 0.224 (0.51) 9.52 (0.39) 6 0.088 (0.02) 0.049 (0.08) 3.42 (0.82)

Chr6 23 46 49 0.250 (0.01) 0.246 (0.08) 9.88 (0.40) 2 0.209 (0.04) 0.172 (0.08) 3.76 (0.53)

aNumber of associated alleles na na na 72 376 na na 27 34 na

% of associated alleles na na na 14 86 na na 44 56 na

Totals 170 342 448 na na na 61 na na na

na not-available, #Mk number of markers, Chr chromosome, GWA genome-wide association model, GAF basic genotypic association test, Q quartile, OR odds ratio
aAlleles in the Q1–Q4 segments

Fig. 4 Number of markers identified in the tests (bar graph) and
their similarity across the tests (Venn). Allelic tests using accessions
in the most resistant and most susceptible 5% tails (MR-5 and MS-5,
respectively), quartiles Q1 and Q4 (Q1 vs. Q4), and quartiles Q2 and Q3
(Q2 vs. Q3) of the WR-DSR scores across the population; basic
genotypic association using a full model (GAF); and the population
structure-corrected GWA analysis.
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NSL 65915, suggesting that some of the marker signals
were shared between the PI 379547 and MS accessions.
These observations indicate that, with the exception of PI
379547, 9 spinach accessions phenotyped as MR may be
harboring SNPs more closely associated with the 11
resistance factors (see Table 4), while the 10 MS may be
mostly associated with the four susceptibility factors. The
two groups can be candidate parents for developing
biparental populations segregating for the WR resistance
and for the resistance markers validation.

Heritability
We observed a discrepancy in the predicted and actual

heritability observed. The phenotype-based mixed model
predicted 97% of the variation observed in WR-DSR,
whereas the variance components explained a total of 64%
of the heritability. At the marker level, the additive effect
model predicted 98% of the heritable variance, even though
individually, the per-marker r2 ranged between 0.00 and
0.09. These observations underpin the conundrum asso-
ciated with the “missing heritability” in the GWA models.

Fig. 5 Manhattan plots of the distribution of markers across the six chromosomes. The horizontal red line is the P ≤ 0.01 threshold for the allelic
associations (a–c) and the GWA analysis at P ≤ 3.06e–6 (d). A QQ-plot of the P value distribution is shown to the right of each Manhattan plot. The
number of individual accessions used in the analyses were a 20 picked from the 5% of two extreme WR-DSR distribution tails; b 132 picked from
quartile Q1 and Q4; and c 134 picked from the interquartile range, Q2 and Q3.
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Discussion
Minor alleles are more frequent in plants showing higher
susceptibility to WR
The minor and major allele frequencies and identities

were expected to change such that in the smaller sam-
ples, the frequency of alleles most commonly associated
with disease was larger compared to that of the allele
variant common throughout the entire population
(equivalent to our sample of 267 accessions)4. Indeed,
for the associated loci, the mean MAFs were sig-
nificantly higher in the WR-DSR distribution tail con-
taining the most susceptible accessions compared to the
WR-DSR distribution tail containing the most resistant
accessions (Fig. 3; Table 3), suggesting that these may be
among the alleles most commonly associated with WR
in this study. A limitation of the outlined basic allelic
association methods is the possible occurrence of false
positives that may be an artefact of the population
structure8. Despite this, around five times more markers
(376) of risk alleles associated with WR were identified
in the most susceptible (Q4) individuals than in the
most resistant (Q1) individuals (72 markers; Table 3).
For the plants in the interquartile range (i.e., Q2 and
Q3), however, only seven (34 vs. 27) more risk alleles
were significantly associated with WR in the moderately
susceptible individuals (Q3) than in the moderately
resistant plants (Q2). The smaller difference in the
minor allele count between Q2 and Q3 may have been
due to the small phenotypic variation between these
groups, as the WR-DSR is biased toward the mean61.
This further shows that the difference in the association
of risk alleles with WR is more distinct at the opposing
tail distributions of the DSR.

The distribution of markers associated with WR showed
no chromosome-specific pattern across the association
models (Fig. 5). This observation underscores the com-
plexity of pinning down a specific number of “major
candidate genes” conditioning the spinach-WR pathogen
interaction; for instance, in a recent study using members
of the same population, we showed that the width of some
LD blocks extended up to 100Mb14, suggesting that large
chunks of the genome in this material is are still well
conserved and may contain long swathes of with many
SNPs intervening in WR disease.

Variable correlation between markers in the allelic tests
and those identified in the GWA analysis
The statistical methods that have been developed to

control for population structure may produce a more
uniform P value distribution but can have reduced
sensitivity13,24,62,63. The use of the Bonferroni correc-
tion (BC) in assigning significance may be highly con-
servative, however, generating many false negatives64

and causing a lower correlation percentage between the
significant markers in the GWA and those containing
the associated minor alleles (Table 3; Fig. 4). In fact,
while 71% of markers identified in the Q1 vs. Q4 allelic
association were also significant in the GWA (Table 3),
this number increased to 78% when the less con-
servative Benjamini–Hochberg’s false-discovery rate
(FDR) correction was used instead of the BC. Since the
allelic tests analyse the association of the minor alleles
with the severity of the WR incidences, a vast propor-
tion of the alleles and/or the associated markers not
represented among the significant polymorphisms in
the GWA may actually have been significant major
alleles4. We did not test this; however, the fact that the
heavily diseased plants invariably showed a higher MAF
strongly suggests that these rare variants are indeed
important genomic risk factors for WR in the suscep-
tible accessions.
Compared to the GWA model, the allelic tests may have

exposed the presence of alleles reflecting stratification in
the samples that could not be captured by permutation
alone4,13. To bridge this gap, Brachi et al.8 suggested that
the GWAS could be performed on samples partitioned
according to regional isolation because they have reduced
allelic heterogeneity which is confounded by the popula-
tion structure. The authors contended that LD blocks are
likely to be longer in the regional subsets, a feature that
might decrease the mapping resolution. Our data parti-
tioning were not based on the regional identity of the
accessions. The accessions included in each segment
showed regional heterogeneity in WR resistance and
other previously identified phenotypic features (Supple-
mentary Table ST1; https://npgsweb.ars-grin.gov/
gringlobal/search.aspx)14,65,66. It was not clear in our

Fig. 6 Marker-accession hereditary relationship between most
resistant and most susceptible lines. Circles, susceptible lines;
squares, resistant lines; filled squares and circles, significant BLUPs
from REML model.
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study whether the partitioning that concentrated the risk
alleles to a 25% subset of the population may also have
experienced a low mapping resolution, such that many valid
signals in the GWAwent undetected in the basic allelic tests.

Different alleles in the same marker
Comparing the nucleotide identities for each given

locus, some markers showed the same allelic pair in the
GWA analysis as they did in the other models; for
instance, of the 15 markers common to both the GWA
and in the MS-5, a total of nine SNPs maintained the
same minor and major allele sets (see Table 4). Six mar-
kers had showed either a complete allele change in the
two bases, or just shifts in the major and minor allele
frequencies. For example, the markers 18906_141 (chr1,
position 31,305,392) and 41441_41 (chr6, 16,966,214)
showed T/C and A/T changes, respectively, in both the
GWA and in the MS-5 group. On the other hand, the
markers 18167_81 (chr1, position 21,843,464) and
23256_116 (chr2, position 40,008,560) showed A/G and
G/A polymorphisms, respectively, in the GWA, but were,
T/C and C/A polymorphisms, respectively, in the MS-5
(Table 4). These allelic shifts suggest that there may have
been be multiple alternate alleles at the same loci4, even
though the algorithms we used were based on a di-allelic
architecture. Multiple alleles in many LD haplotype
blocks67 may also mask the penetrance of each other4,68.
Indeed, in a study of berry numbers in a grapevine (Vitis
vinifera), Myles et al.13 identified a number of association
signals of for alleles in strong LD regions with containing
non-genotyped but functional alleles. This discrepancy in
allele identity in this study may also have been an artefact
of our artificial in silico “selection pressure” resulting in
allelic drift3 in favour of the WR-DSR distribution tails.
The alleles that are similar in both the MS-5 and the
GWA analyses indicate they are common disease variants
present in the whole entire population.

Discrepancies in the heritability estimates
The variations explained by the field phenotyping highly

overestimated the heritability (98%) compared to the
heritability (64%) determined from the variance compo-
nents. Similarly, the in the GWA model, the marker based
mean heritability was 98% compared with a paltry <10%
variation for the most heritable marker. We did not
determine marker-based heritability for the markers
identified using the allelic association and the GAF
models. In any case, these observations underpin the
conundrum associated with the “missing heritability” in
the GWA models. For the purpose of this study, we will
not try to untangle this ambiguity. Better and more
extensive coverage of the probable causes of such wide
disagreements between the predicted and observed her-
itability can be found in other studies and reviews4,8,68.

Risk alleles and functional assignment
It has been suggested that many rare variants may be

functionless, yet they can still accumulate in the genome
and eventually become functional if combined with other
nearby variants4,8. Such variants may, for example, accu-
mulate over time, and eventually forming novel tran-
scription start sites, transcription factor-binding sites,
protein-binding sites, and histone-binding sites7,69, which
may be functional in pathogen–host plant interactions. In
fact, some of these studied functionalities were repre-
sented in a small sample of 15 SNPs identified in plants
displaying the highest and lowest WR-DSR scores in this
study (Fig. 4; Table 4). For instance, among the markers,
18906_141 (chr1, position 31,305,392) is anchored on the
gene Spo00225, which contains a predominantly plant-
based protein domain known as a pentatricopeptide
repeat (PPR). PPR mediates many plant functions,
including the regulation of gene expression, by binding
RNA and negatively regulating abscisic acid signalling and
many other plant development and stress signalling
pathways70–72. The marker 23256_116 (chr2, position
40,008,560) is hosted by the gene Spo14439, which
encodes Histone H3, the acetylation of which mediates
many fungal pathogen–host plant interactions (see Jeon
et al. review73).
Many of the mapped markers involved in other pro-

cesses are listed in the Supplementary Tables ST3, ST4,
ST5, ST6, and ST7; however, we emphasize that the
functionality of these markers in spinach-WR interactions
should be understood in the context of genomic regions
with extended LD clusters of high-scoring SNPs, which
poses a challenge for the selection of WR disease resis-
tance using candidate genes74. In addition, the marker
spectrum of all the models used in this study (Fig. 5) may
underscore the complex pattern of allelic heterogeneity in
the WR–plant interactions. In our view, therefore, the
most promising genetic control of WR may be through
genomic selection.

Significance for molecular breeding
We have shown that, by segmenting data based on

phenotypic strength, the target alleles in individuals with
stronger WR phenotypes have a significantly higher MAF
than in those showing weaker WR phenotypes. In fact, a
marker–phenotype relationship test using the 15 markers
in 20 sequences (10 of resistant plants and 10 for sus-
ceptible plants) show a discrimination of the resistant
group from the susceptible group of accessions (Fig. 6).
The striking preponderance to discriminate between the
resistance lines from the susceptible lines among the 20
accessions at the corresponding 5th percentiles strongly
suggest that 11 markers are resistance factors in the nine
MR accessions, while the four markers are susceptibility
factors in the 10 MS accessions. Since none of the nine

Awika et al. Horticulture Research           (2019) 6:129 Page 13 of 15



lines have been previously reported as possible resistance
sources for white rust of spinach, they may form part of
potentially new sources for breeding WR-resistant spi-
nach. The application of this method could narrow down
the targeted population to enable a detailed study of the
disease resistance associated with these minor alleles. This
may be useful in assigning marker significance directly to
the important phenotypic tails and for quickly assessing
the underlying molecular causative variants and thus
provides an insight into the loci required for susceptibility.
Furthermore, by focusing on the distribution tails, allelic
mapping can potentially be used to identify markers
associated with quantitative traits in plant systems while
significantly reducing the population size required for
testing.
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