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Abstract

Ripe rot is a serious grapevine disease in Vitis L. and Muscadinia (Planch.) Small. However, resistance to this disease has
been reported in some oriental Vitis species. To identify resistance-related Quantitative Trait Loci (QTLs) from the
Chinese grape species V. amurensis, an F; population of V. vinifera ‘Cabernet Sauvignon’ x V. amurensis ‘Shuang Hong'
was used to map the ripe rot resistance loci expected in ‘Shuang Hong' grape. A total of 7598 single nucleotide
polymorphisms (SNPs) between the parents were identified in our previous study, and 934 SNPs were selected for
genetic map construction. These SNPs are distributed across the 19 chromosomes covering a total of 166531 cM in
length, with an average of 1.81 cM between markers. Ripe rot resistance phenotypes among the hybrids were
evaluated in vitro using excised leaves for three consecutive years from 2016 to 2018; a continuous variation was
found among the F; hybrids, and the Pearson correlation coefficients of the phenotypes scored in all three years were
significant at the 0.01 level. Notably, the first QTL reported for resistance to grape ripe rot disease, named Cgrl, was
identified on chromosome 14 of ‘Shuang Hong' grapevine. Cgrl could explain up to 19.90% of the phenotypic
variance. In addition, a SNP named 'np19345" was identified as a molecular marker closely linked to the peak of Cgri

and has the potential to be developed as a marker for the Cgr1 resistance haplotype.

Introduction

Grape ripe rot disease, caused by Colletotrichum
gloeosporioides (Penzig) Penz. & Sacc'. or Colletotrichum
acutatum?®, results in sunken necrotic lesions on stems,
flowers, leaves, and fruit clusters®. In most grapevine
planting regions of China, especially in southern China
with rainy and humid veraison and maturity periods, C.
gloeosporioides has become the main causal agent of grape
ripe rot*,

Fungicide application is the most effective way to con-
trol grape ripe rot’. Because veraison and maturity are the
main periods for C. gloeosporioides infection, application
of fungicides is indispensable. The period between fun-
gicide spraying and fruit ripening is too short to avoid the
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risk of introducing fungicide residues in berry and pro-
ducts derived from them (must, wine, and raisin). Garcia-
Cazorla et al.® detected fungicide residues in berry, must,
and wine after monthly spraying of fungicides, and the
amount of residues in berry was higher than those in must
and wine. In addition, fungicide spraying is labor-inten-
sive, costly, and damaging to the environment. Therefore,
developing ripe rot-resistant varieties with high fruit
quality would be beneficial to the grape industry.

Ripe rot, a serious disease in grapevine, has been
reported in many species of Vitis L.* and Muscadinia
(Planch.) Small’. Li et al.® evaluated ripe rot resistance in
56 accessions of Chinese wild Vitis species and found all
of them to be resistant to ripe rot disease. Among them,
there were 8 V. amurensis accessions, including ‘Shuang
You'. ‘Shuang Hong’, which shares a common parent,
‘Shuang Qing’, with ‘Shuang You’, was used to investigate
the genetics of ripe rot resistance in V. amurensis in this
study.
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Genetic mapping is commonly used for identifying
genetic loci of interest. In grapevine, many genetic maps
have been constructed using first- and second-generation
markers, such as restricted fragment length polymorph-
isms (RFLP)*'%, amplified fragment length polymorph-
isms (AFLP)'®'!, random amplification of polymorphic
DNA (RAPD)”", and simple sequence repeats (SSR)"*'?,
However, the intervening distances among these markers
are usually too long to fine-map the candidate genes.
Single nucleotide polymorphisms (SNPs), as third-
generation molecular markers, are the most abundant
markers in grapevine and very useful for fine-mapping'*~'°.
With the development of a library pooling strategy and
high-throughput DNA sequencing technology'’/, SNP
calling has developed into a time- and cost-saving marker
technology. In the present study, we used a “genotyping-
by-sequencing” strategy to identify SNPs for constructing
genetic maps in a population of V. vinifera ‘Cabernet
Sauvignon’ and V. amurensis ‘Shuang Hong’ to identify
ripe rot resistance Quantitative Trait Loci (QTLs) in the
latter.

Results
Construction of genetic map

The cross-pollination (CP) model of JoinMap 4.0 was
used to construct the genetic maps. Markers were segre-
gated into different linkage groups by the ‘independence
LOD’ function, and a LOD score of 7’ was set as the
threshold for determining whether loci were linked or not.
Subsequently, the Kosambi function was used to calculate
the distance between markers.

The map of the female parent, ‘CS’, contained 559 SNPs
across 19 chromosomes (Chrs) covering 1506.57 ¢cM, with
an average marker distance of 2.93cM (Table 1). The
number of SNPs on the Chrs ranged from 13 (Chr09) to
43 (Chr18), with an average of 29.4 markers per Chr. The
map of the male parent, ‘SH’, contained 511 SNPs cov-
ering 1440.14 cM across 19 Chrs, with an average marker
interval of 3.36 cM (Table 1). The number of SNPs ranged
from 12 (Chr18) to 42 (Chr13), with an average of 26.9
markers per Chr.

After construction of maps for the parents, the ‘Com-
bine Groups for Map Integration’ function was used to
construct the consensus map. This map contained 934
SNPs and covered 1665.31 cM on 19 Chrs. The average
marker interval was 1.81 cM (Table 1; Fig. 1). The average
number of SNPs per chromosome was 49.2. The genetic
distance of the linkage groups ranged from 41.95 (Chr16)
to 116.02 cM (Chr07), with an average length of 87.65 cM
per Chr.

Phenotypic analysis of parents and progeny
Resistance to C. gloeosporioides was scored from 1
(most susceptible) to 9 (most resistant) (Fig. 2). The
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average scores for the parents during the three-year per-
iod (2016—2018) were 2.85 for CS and 7.86 for SH (Fig. 3).
Resistance to C. gloeosporioides displayed continuous
variation in the CS x SH hybrids and appeared to be a
quantitative trait (Fig. 3). Most of the progeny fell into the
resistance range of 6-7.99 (32.9-44.7%), followed by
8-9.00 (19.—-35.3%). Some individuals showed transgres-
sive segregation (Fig. 3). The Pearson correlation coeffi-
cient of the C. gloeosporioides resistance scores between
2016 and 2017 was 0.41, that between 2017 and 2018 was
0.40, and that between 2016 and 2018 was 0.28; all were
significantly correlated at the 0.01 level (Table 2).

Nonparametric test

The rank-sum test, performed using the Kruskal—Wallis
algorithm, identified 21 markers on Chrl4 that cose-
gregated along with C. gloeosporioides resistance in three
years (Table 3). Four of these 21 markers (np19345,
npl9481, np19678, and npl9803) were identified in all
three years, among which np19345 was the marker that
cosegregated most significantly with C. gloeosporioides
resistance.

QTL analysis

Based on the parent maps and the integrated map,
interval mapping (IM) was used to identify the ripe rot
resistance QTLs. In the map of ‘SH’ and the integrated map,
a QTL on Chr14 was consistently observed in all three years
evaluated. This QTL was named Cgrl. In 2016, the max-
imum LOD score (equal to 4.00) was located at 13.06 cM
on Chrl4 and explained 19.50% of the phenotype variance.
The maximum LOD score was located at 12.06 cM in 2017
and 2018 and explained 16.00% and 17.20% of the pheno-
typic variance, respectively (Table 4, Fig. 4).

To fine-map Cgrl, np19345, the nearest marker to the
two peak positions, was selected as the cofactor for
multiple-QTL mapping (MQM) analysis. For the map of
‘SH” and the integrated map, the same QTL could also
be identified close to npl9345 in all three years
and explained up to 19.50% of the phenotypic variance
(Table 4).

As expected, this QTL could not be identified in the
female ‘CS’ map by either IM or MQM methods in any of
the three years.

Correlation between C. gloeosporioides resistance and the
np19345 marker

Np19345, the marker most significantly linked to C.
gloeosporioides  resistance as detected by the
Kruskal-Wallis test (Table 3), was also the closest marker
to the LOD peak in the Cgrl region (Table 4). This
marker was located at 4,080,914 bp on Chromosome 14
(Table S1). By analyzing the RAW sequencing data on this
marker region, the nucleotides were ‘GG’ in ‘CS’ and ‘GA’
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Data of linkage groups in the maternal parent ‘Cabernet Sauvignon,’ paternal parent ‘Shuang Hong,” and

LGs Map of female parent ‘Cabernet Sauvignon’ Map of male parent ‘Shuang Hong’ Integrated map
Covered No. of Average Covered No. of Average Covered No. of Average
length (cM) markers distance (cM) length (cM) markers distance (cM) length (cM) markers distance (cM)

01 98.12 33 3.07 103.93 17 6.50 108.15 48 230
02 77.99 34 2.36 69.52 27 267 74.90 48 1.59
03 7531 31 2.51 75.75 25 3.16 80.71 49 1.68
04 9565 33 299 76.00 20 4.00 94.31 50 1.92
05 8427 29 3.01 73.59 34 223 93.86 50 1.92
06 89.55 36 2.56 88.60 17 5.54 9043 49 1.88
07 71.50 28 265 108.22 29 3.87 116.02 50 2.37
08 9163 37 255 85.65 26 343 9567 49 1.99
09 4431 13 3.69 61.64 39 1.62 82.09 48 1.75
10 78.70 24 342 52.65 34 1.60 100.25 50 2.05
" 69.70 33 218 84.88 26 340 71.83 50 147
12 81.19 30 2.80 74.88 27 288 88.22 50 1.80
13 83.82 25 349 100.63 42 245 101.81 50 2.08
14 7847 27 3.02 73.15 27 2.81 78.88 50 1.61
15 96.65 28 3.58 70.91 26 2.84 94.55 50 193
16 3713 20 1.95 34.86 29 1.25 4195 43 1.00
17 81.90 40 2.10 81.88 14 6.30 87.51 50 1.79
18 94.56 43 2.25 64.78 12 5.89 91.99 50 1.88
19 76.12 15 544 58.62 40 1.50 72.16 50 147

Total 1506.57 559 293 1440.14 511 336 1665.31 934 1.81

in ‘SH’, respectively (Fig. 5a). The progeny carrying ‘GG’  Discussion

generally showed susceptible phenotypes, whereas ‘GA’
individuals generally showed resistance, and these results
were quite consistent over all three years of disease eva-
luation (Fig. 5b—d).

Identification of putative ripe rot resistance genes
Seventeen biotic/abiotic stress-related genes were
identified in the Cgrl corresponding region from the
grapevine reference genome ‘PN40024’ (Fig. 6). Among
these, 11 genes were disease-related ‘R’ genes with NBS
and/or LRR domains. Most of these disease-related genes
were arranged in three clusters, which contained 3, 4, and
3 genes in regions of 94, 307, and 121 kb, respectively.
Between clusters II and III, there was another NBS-LRR-
like gene, one cell death-related gene, two frigida-like
genes, and two superoxide dismutase [Cu-Zn] genes.
Outside cluster III, there was EDRI, which was a general
disease resistance- and stress tolerance-related gene.

Grape ripe rot caused by the fungal pathogen
C. gloeosporioides is one of the most serious grapevine
diseases. C. gloeosporioides can attack different parts of
the grapevine tissues, but its main damage is to the
ripening berries. The juvenile period of grape hybrids is
variable; plants usually take 3-6 years to bear fruit, which
makes it difficult to evaluate and select C. gloeosporioides
resistance using berries in a timely fashion. To establish
an in vitro evaluation system for ripe rot resistance in
grapevine, Jang et al.'® inoculated ripe rot pathogens into
several grapevine organs, including young leaves, mature
leaves, young stems, and fruits, and they found that young
leaves could be used for effectively predicting ripe rot
resistance. In this study, we inoculated excised young
leaves in three consecutive years and found that ripe rot
symptoms appeared consistently. Based on the phenotype
data, a QTL for ripe rot resistance was mapped on Chr14
of V. amurensis ‘Shuang Hong’. This result demonstrated
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Fig. 1 Integrated genetic map of ‘Cabernet Sauvignon’ x ‘Shuang Hong
(. J

that young leaves could be used for evaluating grape ripe
rot resistance and mapping resistance QTLs.

The ripe rot resistances among the hybrids tended to
increase from 2016 to 2018 (Fig. 3). This is likely because
ripe rot resistance becomes stronger as the vine becomes
older. This phenomenon also resulted in a narrower QTL
region mapped by the IM method in 2018 than in 2016
and 2017 (Fig. 4).

To date, first-generation and second-generation mole-
cular markers have been used to construct most grapevine

genetic maps. In these maps, the average distance between
markers mostly ranged from 4.6cM to 11.5 cM'™%,
Zyprian et al.** constructed a linkage map with a com-
bination of SSR and SNP markers, and the average dis-
tance between markers was reduced to 2.71 ¢cM. Barba
et al.'® used SNPs to construct two genetic maps, and the
average distances between markers were 1.64 ¢cM and 1.46
cM. In this study, SNPs were used to construct a genetic
map with an average distance of 1.81 cM between mar-
kers. These results indicate that SNP markers are very
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Fig. 2 Leaf symptoms of ripe rot disease representing different levels of resistance/susceptibility
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Fig. 3 Distribution of ripe rot phenotype scores among 91 hybrids of
‘Cabernet Sauvignon’ x ‘Shuang Hong'
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Table 2 Pearson correlation coefficients of ripe rot scores
in 3 years

Pearson correlation 2016 2017 2018
2016 1.00 041° 0.28°
2017 1.00 040°
2018 1.00

*The correlation is significant at the 0.01 level

frequent in grapevines and could significantly improve
marker density compared to that of maps made using
first- and second-generation markers.

Resistance (R) genes containing conserved domains,
such as nucleotide-binding sites (NBS) and leucine-rich
repeats (LRR), mainly function in disease resistance in
plants®®. In grapevine, at least 386 putative R genes have
been predicted*®, some of which play important roles in
downy mildew? ~%°, powdery mildew®®, and anthrac-
nose™ resistance. Many of the disease resistance QTL

Table 3 Identification of markers cosegregated with
resistance to C. gloeosporioides using the Kruskal-Wallis
algorithm

Locus Chromosome Df* Significance level

2016 2017 2018
np19260 14 1 ek *x _
np19203 14 1 *xx * _
Im14326 14 1 - _ *
Im14239 14 1 - _ *%
hks63 14 1 _ _ x
np19345 14 ] ERERHR FRERE X%
np19481 14 1 *xxRRR Frre %%
np19678 14 1 nnn - .
np19803 14 1 ERRHK ERRRK *%
np20004 14 1 p— P— _
np19954 14 1 - - ~
np20288 14 1 - - ~
np20247 14 1 ok *x B
Im15095 14 1 - - *
Im15139 14 1 - - *
Im15403 14 1 _ * %%
np20439 14 ] ok _ B
Im15461 14 1 - * *%
hk942 14 1 - - -
np20613 14 1 * - -
np20756 14 1 ** - -

"P=0.1, ¥%0.05, ¥**0,01, ****0,005, *****0,001, *****%0,0005
“Degrees of freedom

regions were found to host a number of ‘R’ genes by
comparison to the reference genome of the grapevine. For
example, the corresponding region of RpvIO, a downy
mildew resistance QTL identified on Chr9 from ‘Solaris’,
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Table 4 Summary of the QTL for C. gloeosporioides resistance identified on linkage group 14

Map LG Year Mapping type LOD threshold LOD,.x of QTL LOD max position (cM) Variance explained (%)
LG-specific® Genome-wide®
Integrated 14 2016 IM 29 33 4.00 13.06 19.50
MQM 29 33 4.00 13.06 19.50
2017 IM 30 31 329 12.06 16.00
MQM 30 3.1 3.29 12.06 16.00
2018 IM 30 32 349 12.06 17.20
MQM 30 32 349 12.06 17.20
‘Shuang Hong" 14 2016 IM 29 32 4.00 2207 19.50
MQM 29 32 3.98 15.88 19.40
2017 M 26 29 4.21 26.57 20.00
MQM 26 29 3.54 14.88 17.10
2018 IM 26 3.0 3.36 14.88 16.60
MQM 26 3.0 3.36 14.88 16.60
“Estimated threshold values using a permutation test with 1000 permutations at a = 0.05
LG14
Distance (cM) LOD LOD LOD
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Fig. 4 Quantitative traits for C. gloeosporioides resistance identified on LG 14. The dotted line indicates the LOD threshold

contained 26 NBS-LRR genes corresponding to the gen-
ome region of ‘PN40024’"%, The corresponding region of
the RpvI/Runl locus, which cosegregated with both
downy and powdery mildew, contained 11 NBS-LRR
genes, and two of these 11 genes were verified as func-
tional genes in response to the respective diseases®. In
the present study, according to the ‘PN40024’ reference

genome, the Cgrl region contained 11 putative disease
resistance genes with NBS and/or LRR domains (Fig. 6).
Therefore, we believe that one or more of these predicted
‘R* genes could determine ripe rot resistance in V.
amurensis ‘Shuang Hong’ grapevine. In the future, we will
interest to investigate them further to understand the
genetic basis of resistance to grape ripe rot.
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Fig. 5 Distributions of C. gloeosporioides resistance levels among the hybrids were separated by the presence of ‘GG’ or ‘GA’ alleles at
np19345. a Base information of the np19345 allele and its flanking sequence; b-d Ripe rot phenotypes of F; progeny with ‘GG’ and ‘GA" in 2016 (b),
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Materials and methods
Mapping population

The population was obtained by crossing V. vinifera
‘Cabernet Sauvignon’ and V. amurensis ‘Shuang Hong’ in
2011. Seeds (151) were germinated in a greenhouse in
2012, and seedlings (126) were planted in the greenhouse
of the China Agricultural University experimental station,
Haidian District, Beijing, China. The true hybrids (91)
were confirmed using eight SSR markers (VMC1G3.2,
VMC1G7, VMC5H5, VMC8G6, VRZAGS3, VVIF52,
VVIN56, and VVIP31).

Disease evaluation

The ripe rot pathogen, C. gloeosporioides, was isolated
from an infected leaf and confirmed by sequencing C.
gloeosporioides was cultured on potato dextrose agar
(PDA) medium at 28 °C in the absence of light until the
mycelium spread throughout the medium. After the
mycelium was removed, the medium was cultured at
28°C in the presence of light to promote spore produc-
tion. The spore suspension was adjusted to
~100,000 spores per mL using sterile distilled water with
0.1% (v/v) Tween-20.
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At the ten-leaf stage, which usually occurs in early May,
sixteen square pieces (1-cm-side length) were sampled in
each year from the fourth and fifth fully expanded leaves
of each individual with surgical scissors and were placed
on wet filter paper in Petri dishes with the abaxial side up.
Leaf pieces were artificially inoculated by spraying with C.
gloeosporioides suspension and stored in the dark at room
temperature. Six days after inoculation, the disease
symptoms were scored as 1, 3, 5, 7, or 9 based on the area
of necrotic patches (1 = not limited, vast necrotic patches;
3 = numerous necrotic patches; 5 = limited necrotic pat-
ches; 7 =less necrotic patches; 9 = punctuated or no
necrotic patches) (Fig. 2). The resistance score of each
individual was equal to the average score of the 16 leaf
pieces. Two leaf pieces from each of the progeny were
inoculated with water as a control in each experiment.

DNA extraction

DNA was extracted from young leaves of the parents
and progeny by the hexadecyl trimethyl ammonium
bromide method, as described by Qu et al.32,

Genotyping and map construction

Library construction and sequencing were performed
using the genotyping-by-sequencing method as described
by Elshire et al.3® with minor modification. Mse I (New
England Biolabs, Ipswich, MA, USA) and Haell (New
England Biolabs, Ipswich, MA, USA) were used to digest
the DNA. Two adaptors with 6-nucleotide barcodes were
ligated to the digested DNA fragments. By mixing all the
samples together, we constructed a DNA pool. Primers
complementary to the adaptor sequences were used to
amplify the pool. PCR products between 400 and 425 bp
were selected from agarose gel. Paired-end sequencing
(PE150) was performed for the selected fragments using an
[lumina 2500 platform (Illumina, San Diego, CA, USA) by
Novogene Bioinformatics Technology Co., Ltd. (Beijing,
China). Finally, we identified 7,598 high quality SNPs that
could be used to construct a genetic map (Table S1)
(unpublished). To avoid markers from the same genetic
bin, the segregation type of each marker was analyzed, and
only one SNP among markers of the same segregation type
was retained. Moreover, we found that, if multiple-QTL
mapping (MQM) with cofactor was selected for mapping
by MapQTL 6.0 software, 50 markers was the threshold
allowing computation in each linkage group for the cross
CP population. Therefore, fewer than 50 markers on each
chromosome that were distributed uniformly in physical
distance were selected to construct the maps.

The CP model of JoinMap 4.0 was used to construct the
linkage groups®*. We selected Im x Il and hk x hk type
markers to construct the map of the female parent (CS)
and nn x np and hk x hk type markers to construct the
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map of the male parent (SH). Markers with too many
missing genotypes or showing significantly distorted
segregation (P <0.001) were discarded. A LOD score
equal to seven was the threshold to decide whether loci
were linked. To optimize the marker order, markers with
X?> 3.0 were excluded. The Kosambi function was used to
calculate the genetic distance between markers. After the
parent maps were constructed, the ‘Combine Groups for
Map Integration’ function was used to construct the
integrated map.

QTL analysis

We used MapQTL 6.0% to calculate marker cose-
gregation and QTL position. The phenotypic (.qua file),
map (.map file), and loci (loc file) information were
imported into MapQTL 6.0. The Kruskal-Wallis algo-
rithm was employed as a nonparametric test to identify
markers that were significantly associated with the trait.
Interval mapping (IM) was used to detect putative QTLs
related to the trait in a 0.5-cM step size. The marker close
to the position with the highest LOD in each sampling
year was selected as a cofactor. MQM was used for further
accurate calculation of the putative QTLs detected by the
IM test combined with the cofactor in 0.5-cM steps. The
genomic-wide and LG-specific LOD threshold (a = 0.05)
was calculated by 1000 permutation tests.
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