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Loss or duplication of key regulatory genes
coincides with environmental adaptation
of the stomatal complex in Nymphaea
colorata and Kalanchoe laxiflora
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Abstract

The stomatal complex is critical for gas and water exchange between plants and the atmosphere. Originating over 400
million years ago, the structure of the stomata has evolved to facilitate the adaptation of plants to various
environments. Although the molecular mechanism of stomatal development in Arabidopsis has been widely studied,
the evolution of stomatal structure and its molecular regulators in different species remains to be answered. In this
study, we examined stomatal development and the orthologues of Arabidopsis stomatal genes in a basal angiosperm
plant, Nymphaea colorata, and a member of the eudicot CAM family, Kalanchoe laxiflora, which represent the
adaptation to aquatic and drought environments, respectively. Our results showed that despite the conservation of
core stomatal regulators, a number of critical genes were lost in the N. colorata genome, including EPF2, MPK6, and
AP2C3 and the polarity regulators BASL and POLAR. Interestingly, this is coincident with the loss of asymmetric
divisions during the stomatal development of N. colorata. In addition, we found that the guard cell in K laxiflora is
surrounded by three or four small subsidiary cells in adaxial leaf surfaces. This type of stomatal complex is formed via
repeated asymmetric cell divisions and cell state transitions. This may result from the doubled or quadrupled key
genes controlling stomatal development in K laxiflora. Our results show that loss or duplication of key regulatory
genes is associated with environmental adaptation of the stomatal complex.

Introduction

Stomata are a pore-like structure in multiple organs,
including leaves and stems, which facilitates gas and water
exchange. When environmental conditions are unfa-
vourable, plants can regulate water evapotranspiration
and reduce CO, uptake by opening and closing the sto-
mata. For instance, Crassulacean acid metabolism (CAM)
plants are adapted to arid conditions’. The stomata in
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CAM plants remain closed during the day to reduce
evapotranspiration while staying open at night to absorb
CO,. These physiological traits make CAM plants resis-
tant to diverse stresses, including strong irradiance and
drought”.

Stomatal structure is highly conserved across land
plants. The basic core structure with two guard cells
surrounding the stomatal pore has remained unchanged
during evolution®. However, the patterning of the mature
stomatal structure differs among plant groups and can be
generally summarized by three classes: anomocytic, ste-
phanocytic, and paracytic*. The widely used model plant
Arabidopsis  thaliana exhibits anomocytic stomata.
However, there are a few species (for example, CAM
families) among the eudicots with paracytic stomata®.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.


www.nature.com/hortres
http://creativecommons.org/licenses/by/4.0/
mailto:wus@fafu.edu.cn

Xu et al. Horticulture Research (2018)5:42

Most grass species have paracytic mature stomata®.
Amborella trichopoda in ANITA possesses stephanocytic
stomata’. The diverse architecture of mature stomatal
structures may suggest the evolution of their different
developmental regulations and their adaption to different
environments.

In A. thaliana, meristem mother cells (MMCs) undergo
up to three asymmetrical divisions to form guard mother
cells (GMCs). In grasses, meristemoids divide asymme-
trically to form GMCs, and the lateral neighbouring axial
cell lineage surrounding the GMC undergoes asymmetric
division to give rise to lateral subsidiary cells (LSCs)®. In
A. trichopoda, however, protodermal cells can directly
become GMCs or divide asymmetrically to produce a
GMC”’. Hence, the regulation of stomatal development is
highly diverse in different groups of land plants.

In the past, A. thaliana and Oryza sativa were often
used as model systems to study stomatal patterning and
development. Based on those studies, we now have a good
understanding of the basic molecular network behind
stomatal development. In A. thaliana, a complex signal-
ling cascade of several genes has been identified to pro-
mote stomatal development. The secreted peptides of the
EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE
(EPFL) family act with a mitogen-activated protein kinase
(MAPK) cascade to regulate the activity of basic-helix-
loop-helix (bHLH) transcription factors'®. EPF1 and
EPF2 specifically bind to leucine-rich repeat receptor
(LRR) kinase complexes that include members of TOO
MANY MOUTHS receptor-like protein (TMM) and the
ERECTA family (ER). EPF1 is expressed in late-stage
meristemoids, GMCs and young guard cells, whereas
EPF2 is expressed in early-stage protodermal cells'"'?, In
the downstream pathway, a number of mitogen-activated
protein (MAP) kinases, including MAPKKK YODA,
MPKK4/5, MPKK?7/9, and MAPK MPK3/6, were found to
transduce the signalling for stomatal development'?, Five
bHLH transcription factors positively regulate the
stomatal-lineage transition and differentiation. For
example, SPEECHLESS (SPCH), MUTE, and FAMA act
sequentially to promote the cellular transition in a stage-
specific manner. SPCH regulates asymmetric divisions in
MMC and MUTE involved in GMC differentiation'*"°,
FAMA promotes the last step to form GCs'®. Two addi-
tional bHLH proteins, SCREAM/ICE1 and SCREAM2, act
redundantly to heterodimerize SPCH, MUTE, and FAMA
to coordinate the regulation'”.

Polarity information is critical in stomatal development
and directs asymmetric cell division and possibly cell fate
determination. In A. thaliana, two unique polarity pro-
teins, POLAR LOCALIZATION DURING ASYM-
METRIC DIVISION AND REDISTRIBUTION (POLAR)
and BREAKING OF ASYMMETRY IN THE STOMA-
TAL LINEAGE (BASL), show mostly overlapping
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localization during asymmetric stomatal divisions'®'®. In

the grass, the asymmetric division taking place in the
lateral neighbouring cell to produce the subsidiary cell
relies on two LRR receptor-like kinases, PANGLOSS1
(PAN1) and PAN2?>*', PAN proteins are located at the
poles in SMCs at the site of contact with GMCs, which
precedes the polar accumulation of small GTPases (ROPs)
and F-actin®®. Interestingly, recent observations in Bra-
chypodium distachyon found that BAMUTE regulates
subsidiary cells through cell-to-cell movement®. In
contrast, the MUTE homologue in A. thaliana is
immobile*>**,

Although stomata morphologies across land plants have
been widely examined, questions on the early evolution of
angiosperms and the adaptation of stomata to diverse
environments remain to be answered. It is not clear how
molecular regulation of stomatal development evolved
and how that relates to the diverse stomata morphologies
among the land plants. Immediately above the root node
of angiosperm evolution is the ANITA grade (basal
angiosperms), which includes Amborella, Nymphaeales,
Illiciaceae, Trimeniaceae and Austrobaileyaceae’. In this
study, we took advantage of the newly sequenced genome
of Nymphaea colorata (not released yet), a typical base
angiosperm, to examine stomata regulation in early
angiosperm evolution.

The structure and function of stomata are important for
environmental adaptation. In some species, stomata
underwent radical modifications to facilitate habituation
to a particular environment. A recent study indicated that
Z. marina lost all the genes involved in stomatal differ-
entiation, which is coincident with its marine habituation.
Nymphaea colorata is also an aquatic plant, so it is
interesting to know if its stomata-related genes also
changed during evolution. By contrast, Kalanchoe laxi-
flora, a CAM species, has adapted to drought conditions
and has evolved specialized stomata functions. To
understand how the evolution of the molecular regulation
of stomatal development is associated with environmental
adaptation, we analysed stomatal morphologies and rela-
ted regulatory cascades in both Nymphaea colorata and K.
laxiflora. Our analysis showed that although generally
conserved, loss or duplication of key genes could be
associated with structural and physiological renovations
required for individual adaptation of plants to local
environments.

Materials and methods
Plant materials and growth condition

A. thaliana Columbia seeds were germinated and grown
on 1/2 MS medium with 1% agar, 1% sucrose and 0.05%
(wt/vol) morpholinoethansulfonic acid monohydrate (pH
5.7) under a 16/8-h light/dark cycle at 23 °C. Plants were
imaged 3—4 days after planting. O. sativa and K. laxiflora
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were grown at 28 °C with a 16/8-h light/dark photoperiod.
N. colorata were cultivated in water at 23°C in the
greenhouse. Leaves of Spirodela polyrhiza were collected
in winter 2017 at the Fujian Agriculture and Forestry
University.

Methods
Microscopy and image processing

For Differential Interference Contrast (DIC) imaging,
the protocol was modified slightly according to Raissig
et al.>**, Samples from the mid-regions of leaves were
cut into small squares and cleared using a solution
(ethanol: acetic acid glacial, in proportions 4:1 by volume)
to remove chlorophyll; then, samples were subjected to a
basic solution (a mixture of 7% NaOH in 60% ethanol).
Finally, samples were washed briefly with 40% ethanol and
mounted in water for visualization and microscopy
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analysis. Samples were examined using a Nikon ECLIPSE
Ni-U microscope fitted with a Nikon DS-Ri 2 digital
camera. Images were processed using Image].

Phylogenetic analysis

We surveyed a number of genomes, such as A. thaliana,
K. laxiflora, Sorghum bicolor, O. sativa, Zea mays, Ananas
comosus, S. polyrhiza, and A. trichopoda, from Phytozome
v12. Nelumbo nucifera and Phalaenopsis equestris were
retrieved from ftp://ftp.ncbinih.gov/genomes/. Ginkgo
biloba was found from GigaDB (http://gigadb.org/). N.
colorata was recently sequenced by Liangsheng Zhang'’s
Lab in Fujian Agriculture and Forestry University, and
sequences were available in the water lily genome data-
base (eplant.org). To obtain probable orthologous genes,
we performed BLASTp (protein query—proteins database)
and tBLASTn (protein query—nucleic acid database)

e
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Fig. 1 Stomatal structures and development process in Nymphaea colorata. a The upper epidermis of N. colorata with anomocytic stomata.
b Abaxial hydropote complex structures of N. colorata with base (b) formed by anticlinal contact cell walls, the lens-shaped cell (L), and the bowl-
shaped cell (Bc). c-e Micrograph of stomata at different developmental stages in adaxial leaf surfaces. ¢ Squared patterning, a protodermal cell.
d Large round cells are putative GMCs (orange arrow). e Stage with maturing stomata (red arrow). Schematic diagram of stomatal development. A
protodermal cell (pale blue) that differentiated directly into a guard mother cell (orange); then, the GMC divided into GCs (red)
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searches to selectively look for similar protein sequences
from these genomes®*. A MAFFT (Multiple Sequence
Alignment program) was chosen to produce an alignment
of all amino-acid sequences with a BLAST score of at least
60 against A. thaliana®’. The phylogenetic tree was
reconstructed using the maximum likelihood (ML)
method in FastTree2?®.

Protein domains were identified using the National
Center for Biotechnology Information conserved domain
search tool. PEST domains were identified using emboss.
bioinformatics.nl/cgi-bin/emboss/epestfind.

Results
Loss of stomatal development genes in N. colorata

It was reported that different stomatal development
patterns occur in plants of the ANITA grade. A. tricho-
poda possesses mostly perigenous and mesoperigenous
stomata’. In this species, protodermal cells can directly
become GMCs or divide asymmetrically to produce
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GMCs and stomatal lineage ground cells’. However, in
Nymphaea, protodermal cells seemed to skip asymmetric
divisions and directly gave rise to GMCs”’. It is still to be
determined whether asymmetric division is an ancestral
stomata-forming step during evolution.

To gain a deeper understanding of the ancestral devel-
opment of stomatal structure, we performed anatomic
observation of the stomatal structure in N. colorata. We
found that N. colorata stomata are only present on the
adaxial surface of the floating leaf, with each stoma sur-
rounded by 4-8 neighbouring cells (Fig. 1a). On the
abaxial surface of N. colorata, we only found hydropote
complexes with lens-shaped cells and bowl-shaped cells,
which appeared to be surrounded by specialized rosettes
of epidermal cells (Fig. 1b). It was hypothesized that the
hydropote in Nymphaea colorata is homologous to sto-
matal complexes, and its functions and morphologies are
highly associated with aquatic habitats®. Similarly,
another floating plant, S. polyrhiza, has lost stomata on
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Fig. 2 Phylogenetic trees of stomatal bHLH genes in representative species. a The molecular tree summarizes the phylogenetic relationships of
representative species, including gymnosperms (e.g., Ginkgo biloba), basal angiosperms (e.g., Amborella trichopoda and Nymphaea colorata),
monocots (e.g., Oryza sativa and Spirodela polyrhiza), and eudicots (e.g., Arabidopsis thaliana and Kalanchoe laxiflora). b-e Gene trees of master
regulatory bHLH transcription factors SPCH (b), MUTE (c), FAMA (d) and ICE1/2 (e) in stomatal development. Amino-acid sequences from G. biloba
(Gb), A. trichopoda (Atr, grey shade), N. colorata (N, blue shade), S. polyrhiza (Spipo), Phalaenopsis equestris (Peq), Zea mays (Zm), O. sativa (Loc_Os,
green circle), Nelumbo nucifera (NNU), K laxiflora (Kalax, peachy shade) and A. thaliana (AT, peachy circle) were used to generate trees
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the abaxial surface (Figure S1). These results reveal that
floating plants tend to lose stomata or create special
stomata-like structures to adapt to the aquatic environ-
ment. It can also be exemplified by seagrass, Zostera
marina, in which no stomata are present on leaves, and
coincidently, entire stomatal genes are lost to adapt to the
marine lifestyle®®. Although anatomical descriptions of
stomatal development have been reported for many taxa,
little is known about the evolution of the molecular
machine of stomatal formation across land plants.

One way to understand the evolution of these essential
regulators of stomatal development is to analyse their
phylogenies. This is currently feasible based on the gen-
ome sequences for many species, including the eudicots
A. thaliana and K. laxiflora; the monocot plants O. sativa
and Z. mays. To facilitate our understanding of the early
evolution of these regulators, we included basal angios-
perms A. trichopoda, and we recently sequenced the
genome of an early-divergent angiosperm N. colorata (see
Materials and methods for information on genome data)
(Fig. 2a). To understand some special features of stomata
formation in N. colorata, we analysed the potential
orthologues of A. thaliana genes involved in stomatal
formation using the unique unpublished genome data of
water lily. In line with A. thaliana, we found high con-
servation of the core genes required for stomatal
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formation in N. colorata, including an orthologue of an
SPCH-like gene, NcSPCH (Fig. 2b); orthologue of a
MUTE-like gene, NcMUTE (Fig. 2c); orthologue of a
FAMA-like gene, NcFAMA (Fig. 2d), and two orthologues
of an ICE/SCRM-like gene, NcICE1l and NcSCRM2
(Fig. 2e). We further analysed the conservation of the
homologous domain of these proteins and found a high
degree of domain conservation (Fig. 3). However, we also
found a number of genes missing from the N. colorata
genome, including the peptide ligands EPF2, MPK®6, and
AP2C3 and the polarity controllers BASL and POLAR
(Fig. 4). Interestingly, the function of lost genes seems to
be highly specific to the asymmetric stomatal develop-
ment stages.

Stomatal development gene duplications in K. laxiflora

Whole-genome duplications (WGDs) are a common
phenomenon during evolution, and the resulting gene
duplications (GDs) provide redundant functions or spe-
cified novel functions®*, WGDs are the source of
functional diversity or novelty in the genome for adaption
to environmental changes®. It has been suggested that
two distinct WGDs occur in the K laxiflora lineage and
generate four gene copies across the genome™.

To understand the evolution of CAM stomata-related
genes, we performed genome phylogenetic analysis in K.
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Table 1 (continued)

N. nucifera O. sativa S. polyrhiza N. colorata A. trichopoda G. biloba

K. laxiflora

Symbol A. thaliana

Gene name

ax.0045s0074
ax.0289s0053

Gb 21469

Spipo18G0019800 NC9G0114290  Atr|scaffold00170.9

LOC

ax.0092s0006 NNU 025519

ax.0164s0037
ax.1441s0002
ax.0375s0036
ax.0283s0042
ax.0104s0069

Spipo14G0030500 NC13G0028550

0s01g10840

LOC

0505911730

LOC

0502914130

LOC

Ka

Ka

Ka

AT4G18710

BIN2

BRASSINOSTEROID INSENSTIVIE 2

Ka

Ka

Ka

Ka

Ka

0506935530

NF not found
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laxiflora. Intercellular signalling networks, such as peptide
ligands, transmembrane receptors TMM/ER, MAPK
modules, and bHLH transcription factors, are important
for stomatal patterning"'~"”. In the EPF/TMM/ER mod-
ule, our phylogenetic analysis shows that EPF2, EPFL6,
TMM and ER/ERL have two copies, whereas EPF1 and
EPFL9 have six and four orthologous genes, respectively,
in K laxiflora (Figs. 4a, 5). Furthermore we found each
YODA, MKK4/MKK5, MKK7/MKK9, MAPKs MPK3/
MPK®6, and AP2C3 gene has only one copy in A. thaliana
while expanded to four homologous genes in K. laxiflora
(Figs. 4b, ¢, 5). Similarly, the group of bHLH transcription
factors in K. laxiflora has also expanded to four ortholo-
gous (Fig. 2). In addition, the copy of the cell fate deter-
mining regulators, HDG2 and FLP/MYB88 also became
quadrupled in K. laxiflora (Figures S2A, B). To understand
if the asymmetric division is also associated with polarity
in K laxiflora, we analysed polar genes in K. laxiflora. Our
analysis indicates that K laxiflora genome contains
homologous genes for PAN1, PAN2, POLAR, BASL, and
ROP (Figures S2C, S2D, S2E; Fig. 4d, e). Together, these
findings suggest that four copies of stomatal orthologous
genes in K. laxiflora possibly derived from maximally two
rounds of genome duplication (Table 1).

Novel formation of subsidiary cells in K. laxiflora

CAM increases water-use efficiency and drought resis-
tance in plants, which is characterized by nocturnal
opening and diurnal closing of the stomata®. Therefore,
stomatal control in the leaves is particularly important for
this type of plant to reduce evapotranspiration in the
daytime and increase carbon dioxide (CO,) collection at
night>*®, The physiological traits probably improve the
resistance of CAM plants to diverse environmental
stresses, including drought'?,

To gain a better understanding of the stomatal complex
in CAM plants, we performed anatomical observation of
K. laxiflora, a member of the eudicot CAM family. In K.
laxiflora, stomata are surrounded by three to four small
subsidiary cells in adaxial leaf surfaces (Fig. 6a). Similarly,
we found that the stomata of Phalaenopsis equestris,
another CAM monocot species, is also surrounded by
approximately four subsidiary cells (Figure S3). This
innovation of stomatal architecture could derive from
differential regulation of stomatal formation. We found
that in K laxiflora, stomata formed via a series of asym-
metric cell divisions and cell state transitions: proto-
dermal cells entered the stomatal lineage and took on a
MMC identity; the MMC underwent three or four
asymmetrical divisions to form GMC and Stomatal line-
age ground cell (SLGC) (Fig. 6d-g). The GMC underwent
a symmetric division to form a pair of guard cells, and
SLGCs eventually became subsidiary cells surrounding
the guard cell (Fig. 6b, c).
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Fig. 6 Stomatal development of Kalanchoe laxiflora on adaxial leaf epidermis. a There are two types of mature stomata equably distributed on
adaxial leaf surfaces; the guard cells are surrounded by three (blue arrow) or four subsidiary cells (red arrow). b A stoma with three subsidiary cells. ¢ A
stoma with four subsidiary cells. d-g DIC of different stages with asymmetric division finally form two mature stomatal types. Meristemoid (green
star), surrounding cells (white star), guard mother cell (orange star), guard cells (red star), and subsidiary cells (blue star)

It is widely accepted that different stomatal patternings
reflect the asymmetric division of precursor cells and
lateral divisions of neighbouring cells®’. For example, in
anomocytic stomata occurring in the eudicot A. thaliana
(Fig. 7a, b), the MMC underwent three asymmetric divi-
sions to give rise to a GMC and SLGCs, which was fol-
lowed by a transition from SLGCs to pavement cells
(Fig. 7c). Although both A. thaliana and K. laxiflora are
eudicots, K. laxiflora possesses stephanocytic stomata
(Fig. 7d, e). Developmentally, there is a similarity between
these two types of stomata: meristemoids undergo a series
of asymmetric divisions to produce SLGCs surrounding
guard cells (Fig. 7f), and different cell fate choices of
SLGC:s finally give rise to different stomatal complexes
(Figure S4). In monocot species such as O. sativa, the type
of mature stomata is named the paracytic type, in which
the guard cell is surrounded by two subsidiary cells
(Fig. 7g, h). In this type, the stomatal meristemoid divides
asymmetrically to form a larger SLGC and a smaller
meristemoid that directly forms the GMC. Before the
GMC divides, it induces neighbouring cell files to adopt

an SMC identity, which subsequently forms SCs via
asymmetric divisions. The GMC then undergoes sym-
metric mitosis to eventually form guard cells (Fig. 7i).
Therefore, subsidiary cells can develop through different
ways: one is through asymmetric division in O. sativa, and
the other is through SLGC differentiation in K. laxiflora.
In K. laxiflora, subsidiary cells are noticeably visible, but
little is known about the factors defining subsidiary cell
identity. In Brachypodium distachyon, subsidiary cells are
formed through asymmetric divisions. BAMUTE is an
orthologue of A. thaliana MUTE that has been identified
as sufficient for SC formation based on its acquisition of
cell-to-cell mobility®®. In A. thaliana, AtMUTE, which is
associated with GMC identity, is nonmobile. The question
is whether the KalaxMUTE could also specify SC identity
by being mobile. To address this, we compared MUTE
orthologues of the representative species with B. dis-
tachyon, A. thaliana and K. laxiflora to test potential
mobility motifs in K. laxiflora (Fig. 8). Our results show
high conservation in the bHLH functional domain. The
differences in potential mobility residues of KalaxMUTE
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Fig. 7 Mature stomatal types and development in diverse species. a, d, g Mature stomatal types. Diagrams show the guard cell pair (red) and
subsidiary cells (green). a Anomocytic stomata lack subsidiary cells. d Stephanocytic stomata possess a ring of subsidiary cells. g Paracytic stomata
possess one pair of lateral subsidiary cells oriented parallel to the guard cells. b, ¢ Example of eudicot stomata in A. thaliana. b The upper epidermis of
A. thaliana with anomocytic stomata. ¢ Schematic diagram of stomatal development transitions. A subset of protodermal cells (pale blue) enter the
stomatal lineage and take on an MMC identity; the MMC (pale green) undergoes asymmetric cell division producing a smaller meristemoid (green)
and larger SLGCs (white). Then, the meristemoid differentiates into a GMC (orange), and the GMC undergoes a symmetric division to form a pair of
guard cells (red). e, f Example of eudicot stomata in K. laxiflora. e The upper epidermis of K. laxiflora with stephanocytic stomata. f Schematic diagram
of stomatal development. Protodermal cells (pale blue) take on an MMC identity. The MMC (pale green) divides through three or four asymmetric
divisions to give rise to a GMC (orange), and a round of neighbouring cells (dark blue) eventually become subsidiary cells (blue) surrounding the
guard cells (red). h, i Example of monocot stomata in O. sativa. h The upper epidermis of O. sativa with linear cell files and paracytic stomata.

i Diagrams illustrating stomatal development for the stomatal complex. Cell protoderm files (pale blue) asymmetrically divide to create a meristemoid
(green), and the meristemoid differentiates into a GMC (orange). Then, neighbouring cell files (SMC, pale purple) divide asymmetrically to form SCs
(blue). Finally, the GMC divides once symmetrically to form GCs (red), and the GCs and SCs terminally differentiate and form mature dumbbell-shaped
stomata. Key: protodermal cell that will give rise to the stomatal lineage, pale blue; MMC (meristemoid mother cell), pale green; meristemoid, green;
SLGCs (stomatal-lineage ground cell), white; GMC (guard mother cell), orange; GCs (guard cells), red; SMC (subsidiary mother cell), pale purple; SCs

Meristemoid sC Immature GCs

(subsidiary cells), blue

from its homologue in B. distachyon are similar to those
in A. thaliana. Thus, the subsidiary cells in K. laxiflora
may not be specified by KalaxMUTE mobility.

Discussion

Stomatal patterning is diverse among different land
plants. In Physcomitrella patens, stomata exhibit partial or
complete division to form a single GC or paired GCs,
respectively’®. Moss does not have genes encoding MUTE
or SPCH and uses genes encoding two bHLH proteins,
PpSMF1 and PpSCRMI, to promote stomatal forma-
tion®, In A. thaliana, the stomata are surrounded by two
kidney-shaped guard cells, and polar localization of BASL
is required for a series of asymmetric divisions to form the
stomatal structure®™. In O. sativa, polar localization of
PAN protein is responsible for subsidiary cell asymmetry
in the stomatal complex'®. In B. distachyon, BAMUTE is
necessary and sufficient for SC formation. However,
AtMUTE in A. thaliana defines GC precursor fate®,

Overall, it appears that the function of most genes is
conserved during stomatal formation across plant evolu-
tion, but there are novel genes recruited to regulate
unique aspects of stomatal patterning in some species.

The regulatory machine of stomata development
appeared to be flexible and adaptable during evolution.
The adaptation pressure could quickly change the division
and differentiation pattern during stomata formation. For
example, all the genes involved in stomatal differentiation
are lost in seagrass Zostera to enhance its adaptation to
marine lifestyle®. Plants of the ANITA grade form spe-
cialized structures in the epidermal cells to adapt to its
habitat?®. Similarly, N. colorata has lost genes, which
could be associated with its unique stomatal development.
However, further molecular and genetic manipulations
are needed for functional verification.

Compared with our understanding of stomatal devel-
opment in model systems, little is known about the
molecular evolution of stomatal morphology, particularly
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bHLH
Kalax. 0004s0103 MSHIAVERNRRRQMNEHLRVLRSLTP SFYIKKGDQASIIGGVIEFVKELHQVLQVLDSKK
Kalax. 0418s0025 MSHIAVERNRRRQMNEHLRVLRSLTPSFYIKKGDQASIIGGVIEFVKELHLVLQVLDSKK
Fudicot |Kalax.0268s0032 MSHIAVERNRRRQMNEHLKVLRSLTP SFYIKRGDQASIIGGVIDFIKELHQVLQVLDSQK
Kalax. 0539s0032 MSHIAVERNRRRQMNEHLKVLRSLTPSFYIKRGDQASIIGGVIDF IKELHQVLQVLDSQK
AT3G06120 MSHIAVERNRRRQMNEHLK SLRSLTPCFYIKRGDQASIIGGVIEFIKELQQLVQVLESKK
Bradilg18400.1 MSHIAVERNRRRQMNEHLK TLRSLTPALYVKRGDQASIIGGAVDF IRELHVLLEALQANK
grass | LOC_0s05g51820 MSHIAVERNRRRQMUNDHLKVLRSL TP AFY IKRGDQASTIGGATDF IKELQTLLASLEAQK
A0 K ROROKOKROK KRR KK - koK : kokkoRkKOK | - oK ok okRRKoKKOKK ¢ oz ok s okk: o
Kalax. 0004s0103 RRK RSLégsSNPSPRPLLQLCTPSSDSSPSPRLQQ--
Kalax.0418s0025 RRK RSLSPSSNPSPRPLLQLGAPSSDSSPSPRPQQ—
Fudicot |Kalax.0268s0032 RRK ESLSPSPNPSPRPLLQLG TPSSDSSPSPRLLE-—
Kalax. 0539s0032 RRK ESLSPSPNPSPRPLLQLGTPSSDSSPSPRLLE——
AT3G06120 RRK TLNRPSFPYDHQTIEPSSLGAATTRVPF SRIENV
Bradilg18400. 1 RERLNNNLHPCSTP——————————— TTPSPRSLPTNNTNSSSPGSGG SSSAASNTG SGGG
grass |L0C_0505g51320 KRRQQPQAHLISPASISASGGGSPSPTPSPRSLITSCSPTAAAGSSAGSSSSISPKDENK
s * .e B
v AAS *g
Kalax.0004s0103 ————GFKELGACSNSLVADVEAKL SGANVVLRIVCRRAGG-QVGKIVSVLERLCFDVLQL
Kalax. 0418s0025 ————GFKELGACSNSLVADVEAKL SGANVVLRIVCRRAGG-QVGKIVSVLERLCFDVLQL
Fudicot |Kalax.0268s0032 —-——-GFKELGACCNSPVADVVAKLSG SNVVLRIICRRAGG-QVGKIVSELERLCFDVLQL
Kalax. 0539s0032 —=—=-GFKELGACCNSPVADVVAKLSG SNVVLRIICRRAGG-QVGKIVSELERLCFDVLQL
AT3G06120 MTTSTFKEVGACCNSPHANVEAKISG SNVVLRVVSRRIVG-QLVKIISVLEKLSFQVLHL
Bradilg18400.1 VNKEKARELAACCSSAALEVEARTISGANLLLRTLSGRAPPGQAAKMVGLLQALHLEVLHL
grass |L0C_0505g51820 QQLQLVAEL AACCNSPMADVEARISGANVLLRTLSRRAPP---VRIIALLESLHLEVLHL
Koo, dk, ok k:ok k- oKk Kk ocokk - X il DKCE K EESEICKEOK
Kalax. 0004s0103 NISSMEDTVLYSIVIKIGLECQLSVEELAHVIQKSLYQDEIATASDNATDTLLANYL-——
Kalax. 0418s0025 NISSMEDTVLYSIVIKIGLECQLSVEELAHVIQKSLYQDEIATASDNATDTLLANYL---
Fudicot |Kalax.0268s0032 NISSMEDTVLYSFVVKIGLECLISVEELALEIQKSLYHDEITTASTASDSLLAHHL-———
Kalax. 0539s0032 NISSMEDTVLYSFVVKIGLECLISVEELALEIQKSLYQDEITTASTASDSLLAHHS———-
AT3G06120 NISSMEETVLYFFVVKIGLECHLSLEELTLEVQKSFVSDEVIVSTN-—————————————
Bradilgl18400.1 NISTLEDTVLHSFVLQIGLECQLSVEDLAFEVHQTFCCDYQQEDHHGQQQLLLELPIAGT
grass | LOC_0s05g51820 NITTMDDTVLYSFVLKIGLDCHLSVDDL AMEVHQSFMPPP AAHPDNHLHS————————-—
Lo ARG R DR E A0 R E SR R o0 R 35 D EE T e
Kalax. 000450103 2 = -——————-
Kalax.0418s0026 ~  ————————
Fudicot Kalax.0268s0032 —-——————
Kalax.0539s0032 ~  ————————
AT3G06120 @3 s==————
Bradilg18400. 1 VHGDIMIN
grass |poc_ososgs1820 0 —-—————-
Fig. 8 Alignment of grass and eudicot MUTE orthologues to identify potential mobility residues. MUTE orthologues of the representative
grass species Brachypodium (BAMUTE—Bradi1g18400) and rice (OsMUTE—LOC_Os05g51820) were aligned with the MUTE orthologues of the
representative eudicot species Arabidopsis (AAMUTE—AT3G06120) and Kalax.000450103/Kalax.0418s0025/Kalax.026850032/Kalax.0539s0032 using
ClustalW (http://www.genome jp/tools-bin/clustalw). The bHLH domain spans the first 50 amino acids and is indicated. Green shaded amino acids
represent high similarity, whereas yellow shaded amino acids represent intermediate similarity. Candidate amino acids that are either consistently
different between grasses and eudicots or are conserved among grasses but not in eudicots, or vice versa, are marked with a red asterisk and
represent potential mobility motifs

in basal angiosperms. Alongside the completion of the
genome, we are beginning to find the comparative
molecular basis of the evolution of stomatal development
and identify orthologues of stomatal regulator genes in a
selected range of phylogenetic taxa. However, it is still
technically difficult to analyse the function of orthologues.
In the N. colorata genome, we found that a number of the
genes that are highly specific to the stomatal asymmetric
division were missing. Taken together, these results sug-
gest that most core regulators of stomata formation
remain conserved during evolution, whereas some gene
loss events can occur to modify stomata formation pro-
cesses, such as asymmetric division. These changes at the

genetic and morphological levels of individual species may
result from adaptation to inhabitant environments rather
than evolutionary changes.

Recent studies have indicated that WGD events are ubi-
quitous in the evolution of angiosperms, and WGDs tend to
retain multiple family duplications to increase the frequency
of multiplication and the function of genes‘“. Thus, WGDs
are widely thought to provide genomic novelties and
complexities to promote plant adaptation to environ-
ments*?, Large-scale GDs involved in stomata development
through WGDs in K. laxiflora have been identified®®.

Analysis of the genes involved in stomata formation
showed that the protein sequences of the core genes


http://www.genome.jp/tools-bin/clustalw
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required to instigate and pattern stomata are conserved in
K. laxiflora (Table 1). It is unclear whether the expression
or protein modification of these regulators is different in
K. laxiflora compared with that in A. thaliana. Indeed, the
duplication of stomata regulator genes appears to be a
common theme in K laxiflora, but the extent to which
this represents a divergence in gene function requires
further studies.

It seemed that genes encoding critical developmental
regulators were more likely to be retained during evolu-
tion™**, For stomatal development, subsidiary cells can
occur from an adjacent cell file or the same cell as the
guard cells. Based on sequence conservation, the mobility
of KalaxMUTE could be similar to its homologue in
Arabidopsis. Thus, it is less likely that the modification of
KalaxMUTE leads to featured stomatal subsidiary cells in
K. laxiflora. Further work is needed to investigate whether
the gene gains in K. laxiflora are associated with sub-
sidiary cell establishment.
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