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Climate change is rapidly affecting species distributions across the globe, particularly in the North Atlantic. For highly mobile and
elusive cetaceans, the genetic data needed to understand population dynamics are often scarce. Cold-water obligate species such
as the white-beaked dolphin (Lagenorhynchus albirostris) face pressures from habitat shifts due to rising sea surface temperatures in
addition to other direct anthropogenic threats. Unravelling the genetic connectivity between white-beaked dolphins across their
range is needed to understand the extent to which climate change and anthropogenic pressures may impact species-wide genetic
diversity and identify ways to protect remaining habitat. We address this by performing a population genomic assessment of white-
beaked dolphins using samples from much of their contemporary range. We show that the species displays significant population
structure across the North Atlantic at multiple scales. Analysis of contemporary migration rates suggests a remarkably high
connectivity between populations in the western North Atlantic, Iceland and the Barents Sea, while two regional populations in the
North Sea and adjacent UK and Irish waters are highly differentiated from all other clades. Our results have important implications
for the conservation of white-beaked dolphins by providing guidance for the delineation of more appropriate management units
and highlighting the risk that local extirpation may have on species-wide genetic diversity. In a broader context, this study
highlights the importance of understanding genetic structure of all species threatened with climate change-driven range shifts to
assess the risk of loss of species-wide genetic diversity.
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INTRODUCTION
Understanding within-species connectivity and diversity is essen-
tial for informing conservation management and can help in
assessing the impact of local extinctions for species-wide genetic
variation (Palsbøll et al. 2007; Pavlova et al. 2017). In the marine
environment, limitations to dispersal are more subtle than in
terrestrial systems due to the scarcity of geophysical barriers.
Nevertheless, marine species often display genetic structuring
influenced by environmental conditions such as physiography,
salinity, thermal niches, social structure, movement patterns, and
behavioural specialisation (Craig and Herman 1997; Foote et al.
2011; Hoelzel 2009). Disentangling these patterns can be
challenging, yet is critical for conservation management of species
threatened with anthropogenic impacts and environmental shifts
driven by global climate change (Palsbøll et al. 2007). The latter is
particularly alarming for species inhabiting cold temperatures, as

their available habitat is likely to shift under global warming (Louis
et al. 2020; Pauls et al. 2013). This can have strong impacts on
distribution, abundance, and species-wide genetic diversity. For
example, when differentiated populations are present in areas
subject to strong environmental change with limited availability to
new suitable habitat, extirpation may result in the loss of a
significant proportion of species-wide genetic diversity (Razgour
et al. 2013). This, in turn, can negatively affect the ability of the
species to adapt to future changes, as high genetic diversity is
believed to be a major driver of positively selected mutations
(Kardos et al. 2021). The risk of local extirpation, either driven by
climate change or by direct anthropogenic impact, can only be
accurately assessed when sufficient information on range-wide
population structure of a species is available. As global recognition
of the significance of genetic variation in biodiversity conservation
grows and national and international bodies increasingly enforce
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commitments to protect ocean habitats (CBD 2022; DeWoody
et al. 2021; United Nations 2015), there has never been a more
urgent time to explore the connectivity of cold-water marine
species to achieve appropriate conservation management strate-
gies in response to challenges posed by global climate change.
The white-beaked dolphin (Lagenorhynchus albirostris) is a cold-

water obligate cetacean inhabiting continental shelf, shelf edge
and continental slope waters of the temperate and sub-polar
North Atlantic (Galatius and Kinze 2016). The species is common in
the Canadian Atlantic, Greenland, Iceland, the Barents Sea, and
parts of the North Sea and adjacent UK and Irish waters
(Hammond et al. 2013; Hansen and Heide-Jørgensen 2013; Kinze
et al. 2018; Lien et al. 2001; Øien 1996; Pike et al. 2019; Fig. 1a). In
past decades a considerable northward shift in its southern
distribution has been detected suggesting that white-beaked
dolphins in the North Sea and adjacent UK waters avoid waters
with higher sea surface temperatures (SSTs) (IJsseldijk et al. 2018;
MacLeod et al. 2007; Waggitt et al. 2020). As SSTs in the North Sea
are projected to further increase, more frequently exceeding the
suitable threshold for white-beaked dolphins, the species risks
facing a considerable northward-shift in this region (Dieterich
et al. 2019; Evans and Waggitt 2020; Johns et al. 2003; Lambert
et al. 2014). Additionally, the species faces numerous direct
anthropogenic pressures, such as bycatch in commercial fisheries
(Reeves et al. 2013), local unregulated harvesting (Takekawa 2000;

Piniarneq 2021), prey depletion (Jackson et al. 2001), anthropo-
genic noise and chemical contaminants (Stone and Tasker 2006;
Galatius, Bossi et al. 2013; Williams et al. 2023). In order to
understand the consequences of predicted habitat shifts and
other threats, it is necessary to investigate how white-beaked
dolphins are connected across their range. As of now, morpho-
metric studies have described differences in skull characteristics
between the western North Atlantic and the North Sea indicative
of separate populations (Mikkelsen and Lund 1994), suggesting
some level of population structure. This was confirmed by
genetic studies, supporting a distinction between northeast and
northwest Atlantic populations, but also within the northeast
Atlantic (Banguera-Hinestroza et al. 2010). Fernández et al.
(2016) generated a panel of genome-wide SNPs, yet the study
lacks an assessment of within-species genetic structure. For the
conservation management of the white-beaked dolphin, a
comprehensive assessment of population structure is needed to
delineate more appropriate management units, as highlighted
within the Agreement on the Conservation of Small Cetaceans of
the Baltic, Northeast Atlantic, Irish and North Seas (ASCOBANS;
ASCOBANS 2019). Here, we explore species-wide population
structure, genetic diversity and contemporary geneflow of the
white-beaked dolphin across the North Atlantic with the aim of
providing guidance for improved conservation management of
the species.
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Fig. 1 Genomic population structure of white-beaked dolphins across the North Atlantic Ocean and adjacent waters, based on
1092 SNPs. a Geographic locations of individual samples coloured by sampling location. The shaded area represents the distribution of the
species across the North Atlantic. b, c Scatterplots displaying variation of the first two and the second and third principal components of a
Principal Component Analysis (PCA). Percentage of variance for each axis shown in parentheses. d Admixture proportions of each individual
for the most likely K (K= 3). ICE Iceland, BAS Barents Sea, NS North Sea, WSI western Scotland and Ireland, WNA western North Atlantic.
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METHODS
Sampling and DNA extraction
A total of 169 tissue samples were obtained from preexisting archives and
consisted of stranded (n= 133), by-caught (n= 23) or biopsied (n= 13)
white-beaked dolphins sampled between 1992 and 2021. Prior to any
further processing, the tissue samples were stored either dry frozen or in a
≥80% ethanol solution at −80 °C. The geographical distribution of the
samples ranged from eastern Canada in the western North Atlantic (n= 3;
biopsies), Iceland in the central North Atlantic (n= 23; bycatch) and the
Barents Sea (n= 10; biopsies), Scotland (n= 81; strandings), England
(n= 24; strandings), Ireland (n= 3; strandings), Denmark (n= 4; strand-
ings), Germany (n= 12; strandings), The Netherlands (n= 8; strandings),
and France (n= 1; stranding) in the eastern North Atlantic or adjacent
waters (Figs. 1a and 2a). Genomic DNA was extracted using the Maxwell
PureFood & GMO Authentication kit on a Maxwell RSC extraction robot.
DNA was quantified using a Qubit fluorometer and tested for high
molecular weight DNA content on a 1% agarose gel. DNA concentrations
were standardised across samples and subsequently, 166 samples and 18
duplicate samples were submitted for DArTseq™ (Diversity Arrays
Technology, Canberra, Australia). The DArTseq™ assay involves complexity
reduction using a pair of restriction enzymes and amplification of the
fragments via PCR. The resulting library is then shotgun-sequenced on an
Illumina HiSeq 2500, producing single-end sequenced reads with a length
of 130 bp. Due to later acquisition, the three samples from eastern Canada
were submitted to Azenta Life Sciences (Chelmsford, Massachusetts,
United States) for Short-Read Non-Human Whole Genome Sequencing
(WGS) on an Illumina NovaSeq to ensure coverage of the same markers
retained by the DArTseq™ approach. The raw data produced by Azenta
was paired-end shotgun-sequenced with a fragment size of 150 bp.

Read processing and mapping
Single-end DArTseq™ reads were quality-checked using FASTQC and
barcodes were trimmed using the process_radtags function within STACKS

v2.5.4 (Andrews 2010; Catchen et al. 2013). Similarly, for the paired-end
WGS reads FASTQC was used for quality control and TRIM GALORE v0.6.6 was

used to remove Illumina adapters. Both the DArTseq™ and WGS reads were
mapped to the chromosomal-level genome assembly of Lagenorhynchus
albirostris (Accession number: GCA_949774975.1) using the bwa mem
function in BWA v0.7.17 (Li 2013). The output was assessed for mapping
percentage and written to bam files using SAMTOOLS v1.9 (Li et al. 2009).
Following this, the mapped files were sorted (SortSam) and all reads

were assigned to a read group (AddOrReplaceReadGroups) using PICARD TOOLS

(Broad Institute 2019). Additionally, duplicates which can arise during
library preparation were tagged and removed (MarkDuplicates) in the WGS
reads. The output was indexed, and depth of coverage was calculated
using SAMTOOLS.

Variant calling
Analysis of Next Generation Sequencing Data (ANGSD) software was used
to detect variants and calculate genotype likelihoods across the
169 samples (Korneliussen et al. 2014).
An initial variant calling step was performed on all samples using base

call and mapping quality filters (-minMapQ 30, -minQ 30, -SNP_pval 1e−6)
and the output was written to PLINK format by specifying the -doPlink flag,
which translates the variants to called genotypes. This initial dataset was
inspected for levels of missing data and distribution of heterozygosity
using the --het and --missing functions within PLINK v.1.09 (Purcell et al.
2007). Seven samples showed missing data ≥ 30% and three samples
displayed above-average heterozygosity suggesting cross-
contamination issues. These samples were removed from the workflow.
Furthermore, pairwise relatedness between individuals was calculated
by combining output from the PLINK --genome function and output from
the programme NGSRELATE (Korneliussen and Moltke 2015). Two pairs of
samples showed a pairwise relatedness coefficient (PI_HAT) above 0.5
corresponding to first-degree relatedness (parent-offspring or full-
siblings) and the sample with the lower genotyping rate of each pair
was removed from subsequent analyses (Supplementary Fig. S1). The
dataset for investigation of population structure thus comprised 157
individuals and the genotype likelihood calculation in ANGSD was
repeated with additional filters on read depth (-setMinDepth 785,
-setMaxDepth 3140) corresponding to a minimum depth of coverage of
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Fig. 2 Investigation of a contact zone in the southern range of the white-beaked dolphin. a Geographic positions of the sampled
individuals. The colours correspond to the two differentiated populations in the North Sea (NS) and western Scotland and Ireland (WSI), with
the eastern Scottish (E_SCOT) individuals coloured separately. b Scatterplots of genetic structure from the first and the second axes of a
Principal Component Analysis (PCA). Percentage of variance for each axis shown in parentheses. c Admixture proportions of the three
assessed regions for K= 2.
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5X and a maximum depth of coverage of 20X per locus per individual to
avoid potential bases arising from sequencing errors following
recommendations by O’Leary et al. (2018). Furthermore, we identified
variants that were located in an interspersed repeat region using the
programme RepeatMasker and excluded those from the variant calling
by specifying the remaining sites using the -sites flag in ANGSD.
Further filtering of the multilocus genotypes was conducted in PLINK

using a minor allele count of 2 to remove variants generated through
uncertainties in base calling during sequencing. We examined the patterns
of linkage disequilibrium decay in our data and observed a relatively steep
decline in linkage disequilibrium in the initial portion of your linkage
disequilibrium decay graph drawn by the programme NGSLD (Fox et al.
2019). This suggests stronger linkage patterns among nearby SNPs and
therefore, we used the --indep function in PLINK to prune loci affected by
linkage disequilibrium with a window size of 50 kb, a step size of 5 and a
variant inflation factor of 2. The final dataset comprised 1092 Single
Nucleotide Polymorphisms (SNPs) for all downstream population genetic
analyses.

Population structure
We investigated population structure using a number of different
approaches. First, we performed a Principal Components Analysis (PCA)
in PCANGSD (Meisner and Albrechtsen 2018). PCA is a dimensionality
reduction approach, summarising genetic variation into Principal
Components (PCs), which can be projected into axes to visualise
genetic clustering. This approach is not influenced by geographic
information. Eigenvalues of the first 20 PCs were inferred from the
covariance matrix generated by PCANGSD. In R, population structure was
visualised by plotting PCs one and two and PCs two and three (R Core
Team 2022). To investigate patterns of fine-scale and sex-mediated
population structure, the PCA was also performed with putative
population assignments based on sampling site and for each sex
separately, respectively. Second, K-means clustering was conducted to
estimate the number of ancestral populations in the dataset using a
maximum likelihood approach in NGSADMIX (Skotte et al. 2013) and a
Bayesian approach in STRUCTURE both with and without a-priori popula-
tion assignments. A-priori assignments were informed by the clustering
retained from the PCA. We investigated the most likely number of
genetic clusters present in the dataset by calculating both DeltaK and
Log Likelihood from the NGSADMIX output and DeltaK using the Evanno
method from the STRUCTURE output (Evanno et al. 2005; Supplementary
Figs. S2 and S3). We examined the fit of the admixture proportions
derived from the NGSADMIX algorithm to its model assumptions by
correlating the residual differences between called and predicted
genotypes with the EVALADMIX software (Garcia-Erill and Albrechtsen
2020; Supplementary Fig. S4). The individual admixture proportions for
each K and the correlation of residuals were plotted in R.
Finally, in order to investigate the significance of genetic population

structure in the dataset, we grouped the samples into the populations
informed by the approaches above and calculated the Weir and
Cockerham pairwise fixation index (FST) with 10,000 bootstraps using
functions embedded in the DartR package (Weir and Cockerham 1984;
Mijangos et al. 2022). Additionally, we grouped the samples by sampling
sites (i.e., by country) and calculated pairwise FST to investigate patterns of
fine-scale population structure.

Contemporary gene flow
We estimated the proportion and direction of contemporary geneflow
between genetic populations and between sampling sites using the BA3-
SNPS extension of the software BAYESASS, which enables computation of large
genomic datasets (Mussmann et al. 2019; Wilson and Rannala 2003). In the
first instance, initial runs were performed using the
BA3-SNPs-autotune function to determine the optimal combination of
the mixing parameters deltaM (mixing parameter for migration rates),
deltaA (mixing parameter for allele frequencies) and deltaF (mixing
parameter for inbreeding coefficients). These parameters were set to
deltaM= 0.1563, deltaA= 0.3250 and deltaF= 0.0500. Five separate runs of
BA3-SNPS were performed on different seeds with 10,000,000 MCMC
iterations and 1,000,000 burn-ins on sampling intervals of 1000. Chain
convergence of the runs was assessed in R and significance of the retained
migration rates was assessed by a 95% confidence interval calculated as
mean migration rate ±1.96 x mean standard deviation (Supplementary Fig.
S5). The proportion and directionality of geneflow between populations
was visualised in R.

Isolation by distance
We tested the correlation of geographic and genetic distance by
performing redundancy analysis and an ANOVA test on Euclidean distance
matrices of geographic distances (km) and pairwise fixation indices (FST)
calculated between sampling sites using the vegan package in R. To
achieve this, we calculated the minimum marine distance between
sampling sites using a workflow described in Assis et al. (2013). Genetic
distances were transformed to a continuous scale as GD ¼ FST

ð1�FST Þ to allow
for correlation with geographic distances. The correlation of geographic
distances and corresponding fixation indices was subsequently
visualised in R.

Multilocus heterozygosity
To investigate variation in genetic diversity across populations, we
calculated the multilocus heterozygosity (MLH) across the 1092 SNPs as
described in Stoffel et al. (2016) per population using the package
InbreedR. Based on the detected population structure in the dataset, we
grouped the individuals into their corresponding populations. Additionally,
we visualised MLH distribution across the entire sample set.

Investigation of a contact zone
Upon initial inspection of the observed structure, each analysis was
repeated within a more localised approach in the North Sea and adjacent
UK and Irish waters, to investigate finer-scale structure and the putative
existence of a region of strong admixture in east Scotland in greater detail.
For calculation of fixation indices, estimation of migration rates and
heterozygosity, this was achieved by removing the admixed individuals
from east Scotland to retain unbiased estimates.

RESULTS
Data quality
The percentage of reads that mapped to the reference genome
was 100% in almost all the samples. The mean coverage of all
covered regions in the genome across all DArTseq™ samples was
12.75X and across the three WGS samples it was 8–10X across the
entire genome. The initial number of variants detected in the
unfiltered dataset was 542,232 SNPs across 169 individuals, which
was reduced to 1092 highly informative SNPs across 157
individuals. Comparison of the 18 duplicate pairs ensured no
genotyping errors were present our analyses.

Population structure
We investigated the population structure present in the dataset
using complexity reduction, maximum likelihood and Bayesian
approaches combined with estimation of pairwise fixation indices
and isolation-by-distance analysis. Combining results from all
analyses, we observed both significant broad-scale and fine-scale
population structure across the range of the white-beaked
dolphin.
Mapping genetic origin against sampling location shows a clear

differentiation of geographically isolated populations into four
genetic clusters (Fig. 1b, c). Samples collected in both Iceland and
the Barents Sea were assigned to the same genetic clade with a
clear separation from the British Isles and the North Sea along the
first PC axis. Similarly, the three individuals sampled in eastern
Canada (WNA) were separated further along PC1, forming a
separate cluster (Fig. 1b). Interestingly, NGSADMIX and STRUCTURE
analysis did not identify the WNA samples as a separate genetic
cluster and grouped them together with the Icelandic and Barents
Sea samples (Fig. 1d, Supplementary Figs. S6 and S7). Finer
structure could be identified with separation of white-beaked
dolphins sampled around west Scotland and Ireland and the
coastlines of the North Sea along the third PC axis (Fig. 1c). This
was further corroborated by NGSADMIX and STRUCTURE analyses (Fig.
1d, Supplementary Figs. S6 and S7). A subsequent assessment of
finer-scale and sex-mediated structure by a separate PCA confirms
the overall structure detected by the previous approaches,
demonstrating no clear difference in population structure
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between male and female white-beaked dolphins, implying the
absence of sex-mediated dispersal (Supplementary Fig. S8).
Based on these results, naming conventions for the genetic

clusters are introduced as the following regions: Western North
Atlantic (WNA), Iceland and Barents Sea (ICE&BAS), west Scotland
and Ireland (WSI) and North Sea (NS). Additionally, based on the
pattern observed between NS and WSI, subsequent analyses were
also performed with the eastern Scottish (E_SCOT) individuals as a
separate group to investigate the influence a potential contact
zone in this region may have on the estimation of population
genetic parameters (Fig. 2a). We find that the majority of
individuals previously grouped with NS but clustering with WSI
were indeed from eastern Scotland (Fig. 2b). Admixture propor-
tions for the three regions separately further visualise that eastern
Scotland seems to be a contact zone between individuals of the
southern and central North Sea and individuals sampled in Ireland
and the west coast of Scotland (Fig. 2c).
Pairwise fixation indices between the four populations retained

by the PCA confirm that the samples from the western North
Atlantic were significantly differentiated from the North Sea and
western Scotland and Ireland samples (FST_WNAvs.NS= 0.05943055,
p= 0.000; FST_WNAvsWSI= 0.078774106, p= 0.000), but displayed a
lower, yet significant, differentiation to the Iceland and Barents
Sea samples (FST_WNAvs.ICE&BAS= 0.01886975, p= 0.002). Similarly,
the animals sampled in Iceland and the Barents Sea were

significantly differentiated from the North Sea (FST_ICE&BASvsNS=
0.03946870, p= 0.000) and western Scotland and Ireland
(FST_ICE&BASvs.WSI= 0.05496347, p= 0.000), while the latter two
regions displayed a weak, but statistically significant differentia-
tion (FST_NSvs.WSI= 0.006011101, p= 0.000). When excluding east-
ern Scottish samples, the fixation index between the North Sea
and western Scotland and Ireland clades increases (FST_NSvs.WSI=
0.008685244, p= 0.000), indicative of a large proportion of
admixed individuals from both populations in this region. The
pairwise FST values calculated between sampling sites are
visualised in Fig. 3a and exact values can be obtained from
Supplementary Table S2.

Contemporary gene flow
Estimation of the proportion and direction of geneflow between
populations performed in BAYESASS suggested little introgression
from the western North Atlantic population into any of the other
populations (Fig. 3c). Likewise, the Iceland and Barents Sea
population and the two populations of the North Sea and western
Scotland and Ireland showed very little evidence of gene flow in
either direction. However, a higher proportion of gene flow was
detected between Iceland and the Barents Sea and western North
Atlantic populations in the direction of the western North Atlantic,
specifically from Iceland to western North Atlantic with an
estimated 0.166 migrants per generation (see Supplementary
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Table S1 for details). Similarly, there is a strong signal of
unidirectional geneflow from Iceland into the Barents Sea
(m= 0.222). Furthermore, a high level of introgression was
detected between the two geographically neighbouring North
Sea and western Scotland and Ireland populations with the
majority of geneflow being facilitated by the North Sea population
(m= 0.306). Interestingly, although the estimated migration rate
remained similar when excluding eastern Scottish samples
(m= 3265), the direction of geneflow reversed to a unidirectional
influx from western Scotland and Ireland to the North Sea. All
other migration rates did not exceed 0.06 migrants per generation
and were therefore considered low.

Isolation by distance
We investigated patterns of isolation by distance (IBD) by
correlating geographic distance with pairwise fixation indices
(genetic distance) between all sampling sites. The redundancy
analysis (RDA) showed a moderate but statistically significant
correlation between geographic and genetic distance
(r2= 0.3989931, p= 0.001). The IBD curve confirms that most
datapoints fit within the confidence interval, but some points
outside the general trend suggest deviations from IBD in both
directions that is, stronger connectivity than expected under pure
IBD (below curve) and stronger differentiation than expected
under pure IBD (above curve; Fig. 3b).

Genetic diversity
To assess genetic variation across the dataset, we calculated
individual multilocus heterozygosity (MLH). We found MLH was
normally distributed with a mean of 0.147 across all samples
(min= 0.079, max= 0.173, Supplementary Fig. S9). When compar-
ing MLH between genetic populations, we found little difference
in heterozygosity between all sampled populations, but the
western North Atlantic population displays slightly higher yet non-
significant MLH compared to the other populations (Fig. 3d). The
admixed eastern Scottish individuals did not inflate the hetero-
zygosity estimates of the North Sea population as assessed by
excluding these in a separate estimate (MLH= 0.1444 with
E_SCOT vs. MLH= 0.1447 with E_SCOT removed).

DISCUSSION
Exploring the extent of genetic connectivity and differentiation
across the range of the white-beaked dolphin is essential for
conservation management, particularly given the numerous
anthropogenic impacts on dolphin populations such as bycatch,
accumulation of chemical contaminants and traditional hunts, as
well as the putatively rapidly progressing effects of increasing SSTs
threatening cold-water obligate species with habitat shifts. Using a
combination of reduced representation and whole-genome
sequencing, we investigated population structure, gene flow
and genetic diversity in white-beaked dolphins from ten different
sampling locations. We detect both broad-scale structure across
the North Atlantic and fine-scale structure in the eastern North
Atlantic and adjacent waters. The results of this study allow for a
more informed delineation of management units for conservation
and highlight the importance of population genomics in
biodiversity conservation of species facing changes in their
habitat amid global climate change.
Principal Components Analysis of 157 white-beaked dolphins

detected a pattern of four differentiated clusters. Three of the four
populations were also detected using K-means clustering
approaches, but western North Atlantic samples were continu-
ously grouped with Icelandic and Barents Sea individuals. This is
likely due to limitations of the programmes STRUCTURE and NGSADMIX

to detect structure when gene flow is high and sample sizes are
small (Waples and Gaggiotti 2006). The evaluation of the fit of our
data to the admixture algorithm confirms that this method may

not be able to disentangle the full ancestral history, likely due to
gaps in sampling coverage across the species’ range and
associated assumptions the algorithm makes based on the
provided data set. Statistical evaluation of panmixia using Weir
and Cockerham’s pairwise fixation indices reject the null hypoth-
esis of continuous genetic connectivity between Iceland and
Barents Sea and western North Atlantic, supporting the existence
of four differentiated populations as shown in the PCA. We
therefore conclude that K= 4 comprising of the western North
Atlantic, Iceland and Barents Sea, North Sea, and west Scotland
and Ireland, is the most likely number of populations in our
dataset. Pairwise FST values were highest between western North
Atlantic and west Scotland and Ireland and North Sea populations.
Indeed, migration between these regions was very low in our data
and a significant correlation of geographic and genetic distance
suggests isolation by distance contributing largely to the observed
differentiation. This is in agreement with previous genetic studies
using mtDNA and microsatellite loci and a morphometric study
describing distinct differences in skull characteristics between
dolphins from the North Sea and the western North Atlantic
(Banguera-Hinestroza et al. 2010; Mikkelsen and Lund 1994).
In direct contrast to the differentiation between the western

North Atlantic and the North Sea, western Scotland and Ireland is
the relatively strong connectivity between western North Atlantic
and Iceland and Barents Sea populations, despite an apparent
hiatus in distribution between the two latter areas (Pike et al.
2019). Remarkably, a complete homogeneity of genotypes from
Iceland and the Barents Sea was found and is indicative of
frequent (0.222 migrants per generation) long-distance individual
migration events between the two regions as corroborated by our
analysis on contemporary gene flow and in line with observed
movement capabilities of the species (Rasmussen et al. 2013).
Similarly, a relatively high migration rate (0.166 migrants per
generation) was found between Iceland and the western North
Atlantic, yet genetic distinction is persistent but weak. Abundance
estimates from Iceland and the Barents Sea suggest large
population sizes (Byrd et al. 2020; Øien 1996; Pike et al. 2019)
which could be obscuring the presence of differentiation between
two otherwise demographically separate clades (Waples 1998).
Regular geneflow between populations and large population sizes
could also contribute to the higher heterozygosity values in the
western North Atlantic, though this could also be an artifact of
different sequencing techniques in this population and the
possibility of introducing batch effects in the estimates (Lou and
Therkildsen 2022).
Within the eastern North Atlantic and adjacent waters, we

detected a clear separation of Icelandic and Barents Sea white-
beaked dolphins from individuals sampled around western
Scotland and Ireland and the North Sea, as well as a regional
separation of individuals sampled off the coast of the North Sea
and those sampled off western Scotland and Ireland with a region
of strong admixture in eastern Scotland. This result was in part
anticipated and consistent with results from a previous study by
Banguera-Hinestroza et al. (2010) who compared Barents Sea
samples to the British Isles and North Sea. The introduction of
samples from Iceland in our study gives a new dimension to the
overall pattern of structure found in this species, as the minimal
marine distance between sampling sites in Iceland and, for
example, the Netherlands is comparable to the distance between
Iceland and the Barents Sea (~2200 km) yet genetic distances and
migration rates are in stark contrast. Hence, there is a strong
implication that ecological factors could influence population
structure in the eastern North Atlantic and adjacent waters. This is
further supported by the consistent pattern of regional structure
found between the North Sea and west Scotland and Ireland.
The region of strong admixture between white-beaked dolphins

of the North Sea and of western Scotland and Ireland, located at
the eastern Scottish coast, brings up interesting questions about
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the factors driving this pattern. Ecological differences may in part
be responsible for the detected differentiation between the two
neighbouring clades, and the occurrence of a contact zone could
reflect a response to environmental change and resulting change
in behaviour suggesting the contact zone is a recent phenom-
enon. An alternative explanation to the pattern could be a
retrieval of a separate refugium population to the southern North
Sea during the most recent LGM, which has been argued as a
potential driver for regional structure in marine species of the
North Atlantic (Hewitt 2000; Hoarau et al. 2007).
The limited understanding of white-beaked dolphin ecology,

life history and habitat use hampers the interpretation of drivers of
the observed population structure. Notably, seasonal migration
from higher latitudes in the winter to lower latitudes in the
summer have been observed in various regions (Canning et al.
2008; Fall and Skern-Mauritzen 2014; Pike et al. 2019). This could
be influenced by numerous factors such as responses to migratory
prey, site fidelity to certain areas during mating season,
competition from other species or predator avoidance. Regarding
diet, white-beaked dolphins have been reported to target higher
level trophic gadoid fish with some regional variation across their
range based on stomach content analyses (Dong et al. 1996;
Jansen et al. 2010; Fall and Skern-Mauritzen 2014; Schick et al.
2020; Samarra et al. 2022). However, studies using stable isotopes
show a clear preference for pelagic squids in the western North
Atlantic versus a preference for higher trophic level fish in the
eastern North Atlantic and Iceland (Samarra et al. 2022; Plint et al.
2023; Kiszka and Caputo, unpublished data). This difference may
in part explain the elevated genetic distance that we found in our
IBD analysis between the two sites of the North Atlantic. Within
the eastern North Atlantic, seasonal occurrence during summer
months has been argued to possibly result from site fidelity in
both the North Sea and west Scotland and Ireland, potentially
driving the fine-scale structure as observed in our study (Reeves
et al. 1999; Canning et al. 2008; Brereton et al. 2013; Galatius,
Jansen et al. 2013). Contrastingly, long-term photo ID monitoring
of Icelandic dolphins suggest no strong signal of site fidelity
(Bertulli et al. 2015). Altogether, further studies on white-beaked
dolphin movement, diet, behaviour, and ecology of different
populations are needed to explore potential drivers of the
observed population structure and inform a more targeted
management approach.

Implications for conservation management
Our findings could have significant implications for conservation
management at both regional and North Atlantic basin-wide
scales by providing new evidence on fine-scale population
structure of white-beaked dolphins. Currently, the species receives
varying degrees of management; in the western North Atlantic,
white-beaked dolphins are considered a single stock across their
western range (Byrd et al. 2020). In Icelandic and Norwegian
waters, the species receives no targeted management, while in its
southern distribution it is managed as a single management unit
(MU) comprising of the North Sea and the waters extending
beyond the western coast of Ireland and the UK (IAMMWG 2015).
Evans and Teilmann (2009) compiled all available information on
the species and recommended four MUs comprising of the
Labrador shelf, Icelandic waters, the Barents Sea and the North Sea
and adjacent waters. Our results largely support this delineation,
but based on our genetic analysis, our recommendations differ
slightly.
The Labrador shelf population is only represented by three

samples in our study from eastern Canada. These samples
represent a differentiated clade in our analyses, generally
supportive of the distinction of this region as a separate MU.
However, a more in-depth assessment of structure is needed in
this region, covering larger areas, and increasing sample size. An
important aim for future studies will be the introduction of

samples from Greenland, especially in the light of increasing rates
of removals through traditional hunts and the uncertainty on the
sustainability of these hunts (Piniarneq 2021).
Our findings also reveal strong connectivity between white-

beaked dolphins sampled in Iceland and the Barents Sea, and
strong differentiation between the Iceland and Barents Sea and
the North Sea and west Scotland and Ireland. Populations in
higher latitudes such as the Iceland and Barents Sea population
are unlikely to experience habitat loss due to increasing SSTs and
may in fact find more available habitat as sea ice retreats (Stafford
et al. 2022). However, it may still be useful to assess white-beaked
dolphins in these regions regarding their distribution, habitat use
and behaviour as well as impact of anthropogenic activities to
investigate their responses to potential environmental change and
learn more about this populations’ ecology. It is recommended
that the genetic connectivity between Iceland and the Barents Sea
should be considered in future assessments of this population.
Most strikingly, our findings on fine-scale structure between

the North Sea and western Scotland and Ireland warrant
reconsideration of current local management (IAMMWG 2015).
In this part of their range, white-beaked dolphins appear to
strongly associate with SSTs below 12–13 °C (MacLeod et al.
2007) and therefore are likely to be especially vulnerable to
increasing SSTs (Evans and Waggitt 2020). Furthermore, this
region has been identified as a high- risk area for strong
anthropogenic impact from climate change, pollution, and
fishing (Davidson et al. 2012). Populations of white-beaked
dolphins on the edge of their southern distribution are therefore
likely to be impacted by climate-change associated habitat shifts
(Lambert et al. 2014), in addition to numerous direct threats
(Stone and Tasker 2006; Bearzi et al. 2006; Reeves et al. 2013;
Galatius, Bossi et al. 2013; Williams et al. 2023). A recent
northward-shift in their distribution based on strandings data
(IJsseldijk et al. 2018; Williamson et al. 2021) and predictive
habitat modelling (Lambert et al. 2014) is indicative of an
ongoing contraction of suitable habitat around the British Isles
and North Sea. The responses of the two local populations are
difficult to predict. Possible scenarios range from a retreat to
small pockets of suitable habitat, leading to small vulnerable
populations, the total extirpation of the species in the area or a
northward-shift and subsequently increased connectivity into
waters currently occupied by dolphins of the genetically
differentiated population around Iceland and the Barents Sea.
Our assessment of local structure in this region indicates that
eastern Scotland may currently be a contact zone for dolphins
from the two southern clades, suggesting that further admixture
could weaken the observed structure over time. Future genetic
monitoring of these regions could help to predict how those
populations may interact and what the genetic consequences
could be. The potential risk of local extirpation of these two
southern populations, and consequently the loss of a significant
proportion of species-wide genetic diversity, should be empha-
sised in future management plans. Furthermore, formal assess-
ment of the impact of factors that may cause additional
mortality such as bycatch, pollution, and marine development
should be a priority in future conservation efforts.
In a wider context, our study provides an example of the

importance of assessing population genomics in marine species
facing pressures from climate change and human impact. As the
relevance of genetic diversity as a pillar of biodiversity conserva-
tion for long-term species survival gains acknowledgement from
international and national policymakers (United Nations 2015;
CBD 2022), detailed knowledge on the population structure and
genetic variability is urgently needed. Using these data to
understand the dynamics of these species can help in identifying
vulnerable populations and assess the risk for the loss of species-
wide genetic diversity by local depletion and continued human
impact.
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DATA AVAILABILITY
Raw sequence reads are available at the European Nucleotide archive (ENA) under
the accession number PRJEB71584.

CODE AVAILABILITY
All code for analyses and plotting can be accessed at https://github.com/MarcGose/
WBD_PopGen.
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