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An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the
literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed
over the period 1970–2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that
reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the
number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support
the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the
causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure,
lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over
time, botanists’ perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that
explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued
that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a
hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.
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INTRODUCTION
Natural hybridisation is the crossing of individuals from populations
which are distinguishable on the basis of one or more heritable
characters (Harrison 1990; Arnold 1997). Along with the massive
accumulation of evidence that it is a common phenomenon across
the tree of life (Mallet 2005; Folk et al. 2018; Runemark et al. 2019;
Edelman and Mallet 2021), genomic-based studies in recent years
have also confirmed the diversity and complexity of its consequences
(Abbott et al. 2013; Payseur and Rieseberg 2016; Thawornwattana
et al. 2022; Bock et al. 2023), which hinder the understanding of its
overall evolutionary impact. Several outcomes of natural hybridisa-
tion have traditionally been recognised ranging from those in which
F1 offspring are consistently sterile—as are mules and many plant
hybrids in Stace et al. (2015)—to hybrid speciation. For animal
groups, the most commonly reported outcome of hybridisation is the
establishment of a situation that persists over time in which two
species mate and produce offspring within a defined area known as
hybrid zones (HZs hereafter).
Abbott (2017) raised an interesting question when he reported

that only 137 hybrid zones were found in plants of equivalent
ploidy in a literature search. Kawakami and Butlin (2012) and
Hewitt (2004) mentioned that several hundred hybrid zones had
been reported in the literature, although they did not provide a
list. To put the number of plant hybrid zones in context —without
aiming for an exhaustive search— we conducted a survey in
Google scholar of papers published in all journals from 1970 to
2022 that included ‘hybrid zone’ in their title. Using this criterion,
371 HZs were identified, of which 86 (23.1%) involved vascular

plants and 285 (76.8%) animals (Table 1, S1, S2). The number of
vascular plant HZs is similar to or higher than those reported for
other large groups such as insects (66; 17.7%) and other
invertebrates (18; 4.8%). However, the number of vascular plant
HZs is less than half that of another well-studied group such as
vertebrates (201; 54%). This contrast is accentuated when looking
at the total number of papers —136 for vascular plant HZs vs. 675
for vertebrate HZs— because the latter are often the subject of
multiple studies and papers (Table 1). The question that arises
from these figures is whether the number of reported HZs for
vascular plants should be higher than it is, especially considering
that the number of vascular plant species is estimated to be six
times that of vertebrates, and the estimated percentage of
hybridising species follows the same trend (about 25% for plants
vs. about 10% for animals; Mallet 2005). Shedding light on this
apparent inconsistency is relevant at a time when the evolutionary
consequences of hybridisation in a variety of organisms are being
intensely studied along multiple lines of evidence (Green et al.
2010; Abbott et al. 2013; Pease et al. 2016; Vallejo‐Marín and
Hiscock 2016; Meier et al. 2017; Lamichhaney et al. 2018; Suarez-
Gonzalez et al. 2018; Runemark et al. 2019; Helleu et al. 2022;
Hibbins and Hahn 2022). Abbott (2017) suggested that differences
in reported plant and animal hybrid zones might not be the result
of insufficient sampling in plants, but instead that plant taxa might
produce hybrids without forming hybrid zones, which could be
thus rare in the wild. This is the starting point for this perspective
paper, in which we discuss potential non-mutually exclusive
causes that may underlie this puzzle. As the diversity of scenarios
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and organisms to be considered makes this a challenging task, our
aim is to provide a structured discussion that may stimulate
studies that address this question with a wide range of empirical
data across different taxonomic groups. To address the possible
causes of the conundrum, it is important to understand how
hybrid zones are defined and recognised.

HYBRID ZONES
Definitions of hybrid zones tend to be as broad as “narrow regions
in which genetically distinct populations meet, mate, and produce
hybrids” (Barton and Hewitt 1985) or “narrow regions of
phenotypic or genotypic change, which separate otherwise more
or less homogeneous taxa” (Jiggins and Mallet 2000). Harrison
(1993) even extended the term explicitly to include “situations
ranging from sporadic or occasional hybridisation between
species that are broadly sympatric (perhaps associated with
different habitats or resources) to narrow zones of hybridisation
between taxa with effectively parapatric distributions”. This broad
circumscription may be useful to fit as many hybridisation
scenarios as possible within the HZ framework, but it raises the
question of whether classical hybrid zone theory would be useful
to investigate the full range of scenarios covered by such broad
definitions. In their classic review, Barton and Hewitt (1985)
restricted the HZ concept for practical reasons, following the
predominant use in the literature, to make it synonymous with a
cline, i.e., a gradient or set of gradients in phenotypic characters or
allele frequencies, at one or more loci. It is not the purpose of this
paper to circumscribe the HZ concept. However, it is relevant to
the question we are addressing below, and will therefore be
mentioned in the discussion where appropriate.
Hybrid zones have attracted the attention of population

geneticists and evolutionary biologists for decades on the grounds
that they represent windows into the evolutionary process,
providing insights into the genetics of local adaptation, repro-
ductive barriers and speciation (Barton and Hewitt 1985, 1989;
Hewitt 1988; Harrison 1990, 1993). More recently, HZs occurring
along environmental gradients, have been considered as sentinels
for global change whenever climate-driven changes in species
ranges can be told apart from other sources of range shifts
(Abbott and Brennan 2014; Taylor et al. 2015; Abbott 2017;
Wielstra 2019; Abdelaziz et al. 2021).

TYPES OF HYBRID ZONES
Beyond the production of hybrid offspring, elements that define
the nature and types of HZs include the presence of clines,
whether hybridisation is restricted to a delimited space, whether
this space is environmentally uniform or patchy, whether dispersal
is important, whether the scenario is stable over time, and what
forces determine its maintenance. Stable hybrid zones can be

maintained by selection against hybrids, environmental selection,
or a combination of the two (Kawakami and Butlin 2012), and this
is essentially what characterises the main types of hybrid zones
that have been traditionally considered.
Tension models are those in which the HZ is maintained only by

a balance between dispersal and selection against hybrids, which
are always less fit than the parental taxa (Barton and Hewitt 1985).
Since selection is independent of the environment, i.e., endogen-
ous, these HZs are free to move. Bounded hybrid superiority zones
tend to occur in ecotones between parental habitats, and hybrids
exhibit higher fitness than their progenitors only in these
intermediate habitats due to environmental-dependent selection,
but lower fitness in parental’s habitats (Moore 1977). Mosaic zones
refer to situations where parental populations occupy distinct
habitats that are distributed in a mosaic pattern, and where
hybrids may have lower, higher or intermediate fitness than the
parental types (Harrison and Rand 1989). To these, Arnold (1997)
added the evolutionary novelty model, arguing for the involve-
ment of environmental-dependent (exogenous) selection in all the
three previous types including the tension model, and for the
possibility of a higher fitness in certain hybrid genotypes, not only
in ecotones but in certain habitats even in the progenitors’. Unlike
other models, in Arnold’s model endogenous selection would not
act as a purifying form of selection against all hybrid genotypes
but only against some. A rich literature on HZs accumulated over
several decades has shown that real situations do not always fit
easily into any of these models. This realisation has led to less
categorical approaches to HZs such as Curry’s (2015) proposal to
place HZ types along a continuum based on selective pressures in
different geographical contexts and ignoring criteria such as
migration.
Regarding their origin, HZs can be formed in situ by direct

environmental selection in contiguous populations across envir-
onmental gradients —primary zone— or by secondary contact
between previously isolated populations —secondary zone—
(Kawakami and Butlin 2012) although it is difficult to distinguish
between the two based on current patterns of variation (Endler
1977; Gompert and Buerkle 2016). Another aspect that allows
characterisation of HZs is their genetic structure, based on the
presence of different genotypic classes. Bimodal hybrid zones are
those that contain predominantly multilocus genotypes that are
similar to the parental forms, with almost no intermediates
(Harrison and Bogdanowicz 1997). Unimodal hybrid zones are
those in which intermediate genotypes predominate, i.e., F1s, F2s
and backcrosses. Bimodality results from strong prezygotic
isolation between the parental populations, whereas unimodal
HZs should have weak prezygotic barriers or at least non-
assortative mating (Jiggins and Mallet 2000). These authors also
suggested that unimodal and bimodal HZs represent different
stages of a speciation continuum. This is a useful but controversial
idea positing that the different situations of reproductive isolation

Table 1. Summary from the literature survey presented in Tables S1 and S2 conducted in Google Scholar of papers published in all journals from
1970 to 2022 that included ‘hybrid zone’ in their title (unpublished theses and preprint manuscripts not included).

Group Nº of
HZs

% with respect to
all groups

Nº HZs with > 1
paper

% HZs with > 1
paper

Nº papers with
HZ in title

AVG Nº papers
per HZ

% papers with respect to
all groups

VASCULAR
PLANTS

86 23.18 20 23.26 136 1.58 16.77

ANIMALS
(total)

285 76.82 104 36.49 675 2.37 83.23

Vertebrates 201 54.18 77 38.31 491 2.44 60.54

Insects 66 17.79 23 34.85 154 2.33 18.99

Other
invertebrates

18 4.85 4 22.22 30 1.67 3.70

TOTAL 371 124 811

HZ, hybrid zone.
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between diverging species that we currently find in most groups
represent different stages of the same speciation process (Shaw
and Mullen 2014; Seehausen et al. 2014; Stankowski and Ravinet
2021; DeRaad et al. 2023).

CAUSES FOR A LOW NUMBER OF PLANT HYBRID ZONES
We propose here six non-mutually exclusive factors that may be
involved in this question (Fig. 1). Harrison (1993) stated that “Plant
hybrid zones tend to be diffuse (not geographically well defined)
and are often characterised by local hybrid swarms”. This
statement suggests how the lack or deficit of spatial structure
(diffuse HZs) and/or the lack or deficit of genetic structure (hybrid
swarms) might be differential features in plant hybridisation
scenarios compared to the spatially defined narrow classical HZs
in animals. The biological underpinnings of these factors may be a
manifestation of the broader range of scenarios along which
hybridisation occurs in plant groups, which may be consistent
with the propensity of plant species to produce hybrids (Mallet
2005) and the lower strength of postzygotic barriers (Lowry et al.
2008; Widmer et al. 2009; Baack et al. 2015).
However, the puzzle is not necessarily that HZs are rarer in plants,

but that they are less reported in the literature, which may be
influenced by biases associated with different scientific disciplines or
academic traditions. For example, in Abbott’s (2017) compilation,
16.8% (23) of the 137 HZs are from Japan, which contains c. 5600
species of vascular plants (0.41 of the Japanese flora reported to be
involved in HZs) (https://www.cepf.net/our-work/biodiversity-
hotspots/japan/species) (Fig. 2). These figures are comparable to
those from the USA, from which 42 HZs are recorded (30.6% of
Abbott’s compilation) from a total of c.17,000 vascular plants (0.24 of
the US flora). But they contrast with 7 HZs recorded from Australia
(5.1% of the compilation), whose flora includes c. 22,500 species
(0.03 of the Australian flora) (https://www.dcceew.gov.au/science-
research/abrs/publications/other/numbers-living-species/discussion-
plants), and 13 HZs compiled from China (9.4% of 137), whose flora
includes c. 31,000 species (0.04 of the Chinese flora) (http://
flora.huh.harvard.edu/china/mss/plants.htm). These contrasting

patterns may be influenced by different biomes, as HZs reported
from tropical regions are scarce (Turchetto et al. 2022), although
these four countries all include subtropical or tropical areas, or by
different levels of knowledge. However, different academic tradi-
tions may also have influenced the focus on hybridisation studies, as
HZs.

Lack or deficit of spatial structure
Hybridisation events that result in sterile F1 hybrids probably
contribute to our puzzle. Although they are common or even the
norm in plants, they do not constitute HZs because they are
occasional and sometimes ephemeral: “Occasional hybridisation
between recognisable species or subspecies is, therefore, the
rule in flowering plants” (Stebbins 1959). This is reflected in
floras (Ellstrand et al. 1996; Whitney et al. 2010; Marques et al.
2018), especially those that have been thoroughly studied for
hybridisation (Stace et al. 2015). Considering the plant species
recorded in the British Isles, 69% of the possible hybrids for the
genus Epilobium (31) have been reported there, 40% for
Euphrasia (69 hybrids; Preston and Pearman 2015). In the former
genus, hybrids are mostly sterile, whereas in the latter, hybrids
are usually highly fertile (Stace et al. 2015). Yet, no HZ has been
reported for either of these genera, illustrating that the puzzle
persists in the most extensively studied region for hybridisation
in plants.
Dispersal of progenitors is thought to play a critical role in the

persistence of HZs (Barton and Hewitt 1985; Thomas et al. 2008;
Brennan et al. 2009; McEntee et al. 2020; but see Curry 2015).
Dispersal of hybrid embryos (seeds) across and out of the HZ has
been less considered (Tochigi et al. 2021) and may also play a role
in the puzzle. If hybrid plant embryos or juveniles tend to disperse
more than animals, this would contribute to spatially less
structured hybridisation scenarios, leading to a geographically
diffuse distribution of hybrid offspring, consistent with Harrison’s
(1993) description of plant HZs. This is conceivable when
comparing plants to animal groups traditionally considered to
have low vagility such as amphibians and insects, but it is unclear
whether it could apply to avian HZs. We do not have direct

Possible causes for the differences between the number of vertebrate 
and plant hybrid zones

Botanists’ perception of hybridisation
Until recent years, a majority of zoologists placed all 
observations of natural hybridisation within hybrid 
zone frameworks. In contrast, botanists largely view 
hybridisation as a mechanism that may generate new 
diversity and promote adaptation.

Lack of spatial structure
Hybridisation in plants may not lead to spatially 
defined scenarios, as has been suggested by some 
authors. Hybrid seeds may tend to disperse more and 
be more viable, and independent from progenitors, 
than embryos in some animal groups.

Lack of genetic structure
Hybridisation in plants can often give rise to hybrid 
swarms, containing early and later generation hybrids 
and backcrosses. These genetically unstructured 
arrays do not fit into clines, which some authors 
consider to be synonymous with hybrid zones.

Lability of plant hybrid zones over time
The dynamics of hybrid zones may have involved the 
spatial displacement or extirpation of one or both of 
the parental species, making it difficult to identify a 
previously existing hybrid zone.

Hybridisation between non-closely related species
Weaker postzygotic than prezygotic reproductive 
barriers in plants, but not in animals, can result in 
successful hybridisation between species that are 
neither sister nor closely related. In these cases, viable 
hybrids may be rarer and more scattered due to 
chromosomal, BDM, or cyto-nuclear incompatibilities. 

Lack of population genetic data
Population genetic analyses, classically used to study 
hybrid zones, have been less common in plant 
hybridisation studies for a number of reasons, including 
inadequate sampling.

Fig. 1 Causes for the few reported hybrid zones in plants compared to vertebrates. Outline of six possible non-mutually exclusive factors
discussed in the text.
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comparative evidence to support the importance of the mobility
of plant hybrid embryos, but there are several features in plants
that may have favoured geographically diffuse hybridisation
scenarios. Seed dispersal capacity varies with the nature of
dispersal mechanisms and their adaptations (Van der Pijl 1982).
However, the prevailing view in plants is that long-distance
dispersal, even if infrequent, is important for range expansion over
time (Sanmartín and Ronquist 2004; Hampe 2011), and it is not
precluded by the lack of specific adaptations (Green et al. 2022).
Another feature that could contribute to a less structured HZ, or
even no HZ, associated to hybrid seed dispersal is the high
frequency of hermaphrodite flowers compared to animals, which
mostly have separate sexes. Because some degree of self-
compatibility is common in plants, individual (hybrid) plants can
be founders of a population beyond the contact zone of the
parental species or populations. This is in contrast to most
vertebrate groups, where there are separate sexes and offspring
are highly dependent on their progenitors in the early stages
of life.
The dispersal of hybrid embryos may also depend on the HZ

model. Barton and Hewitt (1985) suggested that plants “where
hybrid populations are apparently isolated from one or both
parents”, might be an exception to the tension zone model.
Although some plant HZs fit the tension model (Šmíd et al.
2020; Natola et al. 2022), cases where the HZ fits a mixed model
or alternative models cannot be rejected are more common
(Lexer et al. 2005; Brennan et al. 2009; Cruzan et al. 2021).
Furthermore, in Abbott’s (2017) review on plant HZs, the
mosaic zone was the most frequently reported or inferred. In
the absence of intrinsic selection against all hybrid genotypes,
some degree of environmental-dependent selection (e.g.,
Johnston et al. 2001; Rieseberg et al. 2003; Pinheiro et al.
2010; Jacquemyn et al. 2012), a substantial dispersal capacity,
and rapid independence from progenitors would allow them to
track efficiently their niches, which could lead to a dispersed
distribution of hybrids. This profile could be enhanced by an
abundant number of seeds produced per individual, which is
common in plants.
A geographically diffuse distribution of hybrids between two

parental species may not be the case at all sites where they come
into contact. An example of this is between two bluebell species,
Hyacynthoides hispanica and H. non-scripta. They form a hybrid
zone in north-western Spain (Marquardt et al. 2022), but in Britain,

where A. hispanica is introduced, a hybrid is produced that
exhibits a geographically diffuse distribution (Ruhsam et al. 2020).
Preliminary results from landscape genetics in plants (reviewed

in Sunderland et al. 2020) suggest that effective dispersal rates are
lower in high quality habitats than in different types of human-
modified landscapes. Because hybridisation is often associated
with disturbed habitats (Anderson and Stebbins 1954; Grabenstein
and Taylor 2018), this may facilitate more efficient dispersal of
hybrid embryos. Human-mediated dispersal of hybrids may also
play a role (Wichmann et al. 2009).
Polyploidy is a fundamental process in plants that often

involves hybridisation (Soltis et al. 2009; Wendel 2015; Van de
Peer et al. 2021). Some plant HZs include interploidy hybridisation
(Šmíd et al. 2020; Arida et al. 2021), and despite the chromosomal
barrier represented by different ploidies (Lafon‐Placette and
Köhler 2016), the so-called triploid block can be partially overcome
and interploidy hybrids can be formed that bridge progenitors
(Husband 2004; Köhler et al. 2010). However, due to the strong
postzygotic interploidy barriers (Comai 2005) and to the minority
cytotype exclusion principle (Husband 2000), hybrids are usually
not frequent at a given moment in time, implying that the
interploidy contact zones are likely to fit at most diffuse HZs.
To advance this cause, future work in plant hybridisation should

more explicitly address the spatial component and determinants
of spatial structure, focusing on factors that influence extrinsic
selection, such as mychorrizae (Jacquemyn et al. 2012).

Lack or deficit of genetic structure
Hybrid swarms contain a variety of recombinant types, including
early and later generation hybrids, and backcrosses (Harrison
1993; Abbott 2017). Hybrid swarms are often considered a type of
hybrid zone when broadly defined (Harrison 1993), fitting
unimodal HZs (Jiggins and Mallet 2000). However, if HZs are
considered synonyms for clines (Barton and Hewitt 1985), hybrid
swarms, which represent a poorly structured scenario, do not
easily fit into HZs and could thus contribute to the puzzle.
Hybrid swarms are common in plants, which may be due in part

to findings that postzygotic barriers, including failure to form
hybrid seeds or sterility of hybrid offspring, are often less strong
than prezygotic barriers in plants (Lowry et al. 2008; Baack et al.
2015) and that, unlike in most animals, prezygotic isolation does
not evolve faster than postzygotic isolation (Widmer et al. 2009). In
his seminal paper, Stebbins (1959) noted that some woody
genera, such as Quercus, Salix, Vaccinium, Arctostaphylos, Cea-
nothus, Eucalyptus, and Acacia, are particularly prone to forming
natural hybrid swarms, and that hybrid swarms could be
intractable when apomixis and allopolyploidy are involved, e.g.,
in Crataegus, Rubus, Potentilla, Taraxacum, Hieracium. In Abbott’s
(2017) review, “approximately 22% [of the case studies] were best
described as hybrid swarms containing a wide range of hybrid
types along with parental classes” (31 cases out of 137). Further
studies of the fine genetic structure of plant HZs, especially
unimodal zones, are needed to assess the importance of hybrid
swarms in plants, including their evolutionary significance, e.g.,
whether explosive adaptive radiation is just an extraordinary
consequence of hybrid swarms (Barrier et al. 1999; Meier et al.
2017) or a more frequent outcome, and whether it could be part
of the speciation continuum (Seehausen 2013).

Hybridisation between non-closely related species
The weaker postzygotic than prezygotic isolation barriers reported
in plants suggest another possible avenue for exploring our
question. In plants, it is conceivable that hybridisation between
non-sister species, and in general between species that are not
closely related, could be more common than in animals. However,
how this could lead to fewer HZs in plants is less clear. One
possibility is that whenever hybridisation occurs between more
distantly related plant species, viable offspring may be scarce due
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Fig. 2 Possible influence of academic tradition in reporting plant
hybrid zones. Percentage of hybrid zones (dark grey) from four
countries with respect to the total number recorded in Abbott
(2017) compared with the estimated number of vascular plants in
each of them (light grey). From left to right, Japan, United States,
Australia, China.
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to a higher probability of chromosomal, BDM, or cytonuclear
incompatibilities and thus a lower probability of viable hybrid
genotypes. If this were the case, viable hybrids should be
scattered and the possibility of a classical hybrid zone would be
diluted.
In a survey of phylogenetic proximity in the plant HZ literature

selected by Abbott (2017), we considered four categories (1) non-
sister species, (2) sister species (including subspecies of the same
species), (3) species reported as closely related even if no explicit
phylogeny was available, and those falling into the same
polytomy, (4) insufficient or unavailable information. We found
56, 26, 33, and 22 cases fitting each of these categories,
respectively (Table S3). Thus, non-sister species (40.88%) reached
almost the same numbers as sister and closely related species
together (43.07%), suggesting that hybrid zones between non
closely related species are not uncommon in plants. To compare
phylogenetic proximity in animal and plant HZs, we focused on
vertebrates because they represent the most contrasting group in
terms of HZs (Table 1). We examined the phylogenetic relatedness
of hybridising vertebrate species involved in HZs in a subset of the
HZs detected in the literature search in Table S2, i.e., those papers
published between 2015 and 2022. A large percentage of the 101
HZs detected in this period involved hybridising species with close
phylogenetic position (Table S4). Specifically, 65 (79.1%) involved
sister or closely related species. This pattern was particularly
strong for the 39 avian hybrid zones, of which 31 (79.4%) involved
sister species and an additional 4 (10.2%) involved closely related
species. Thus, our survey suggests that in vertebrates, hybridising
species are often closely related, whereas this is not always the
case in plants.
However, genetic divergence and phylogenetic relatedness

between hybridising species have been widely explored as factors
influencing viability of hybridisation and hybrid speciation, and
the results are not entirely consistent. In animals, this relationship
appears to be stronger (Coyne and Orr 1989; Mendelson 2003). For
example, using 61 pairs of populations or species from different
animal groups, Roux et al. (2016) found that the level of genetic
divergence between hybridising species had a large effect on the
probability that their hybrids would evolve reproductive isolation,
and they further determined a specific range of molecular
divergence values that allow or are associated with gene flow.
In plants, intrinsic postzygotic isolation has also been found to be
correlated with genetic divergence of hybridising species (Sco-
pece et al. 2008; Widmer et al. 2009; Christie and Strauss 2018) and
with phylogenetic proximity (Costa et al. 2013), but not in all
groups (Moyle et al. 2004). Brown et al. (2023b) have recently
reported, from a meta-analysis of the British angiosperm flora, that
genetic distance between parental species is the strongest
predictor of hybridisation. However, our point is not that
hybridisation between non-closely related species is more
common than between closely related species in plants, but that
hybridisation between non-closely related species may be more
common than in animals. These authors report that hybridisation
between divergent species may still have important evolutionary
consequences. Also, in groups with a propensity to hybridise, such
as Boechera, hybridisation is largely unconstrained by phylogeny
(Li et al. 2017), and in others, strong postzgotic barriers can be
raised in recently diverged taxa (Sandstedt et al. 2021). Even in
animals, specifically in Drosophila, Comeault and Matute (2018)
found that populations of hybrids formed by parental species with
intermediate levels of divergence were more likely to survive and
exhibit effective premating reproductive barriers against each
parent. Therefore, the potential influence of postzygotic instrinsic
barriers on the lower number of reported plant HZs, while
remaining a potential factor, should be investigated with more
data. Comparative crossability tests of non-closely and closely
related plant species known to be involved in HZs could allow
assessment of this possible cause.

Lability of plant hybrid zones over time
Plant HZs may be more labile —less stable in space and time—
that animal HZs, in which case researchers would be less likely to
detect the HZ at any given time.
Despite the relative stability over time often associated with

HZs, dynamism is inherent to HZs in various ways (Wielstra 2019).
Hybrid zones have been reported to be forced to move by factors
such as environmental selection, competition, asymmetric hybri-
disation, dominance drive, hybrid fitness, human activity and
climate change (Buggs 2007). The type of dynamism that could
contribute to our puzzle is one that results in one of the two
hybridising species being currently absent. If reconstructing past
movements without direct observational evidence is challenging
(Buggs 2007; Brown et al. 2023a), it is even more difficult to do in
HZs that no longer exist as such, depending on, but not limited to,
how old the origin of the HZ is (Gao et al. 2012). While there is no
direct evidence that such HZ dynamics are more common in
plants than in animals, there are numerous cases in plants where
one or both hybridising species are no longer near hybrids. The
Qinghai-Tibet Plateau homoploid hybrid species Ostryopsis inter-
media (Wang et al. 2021) is currently hundreds of kilometres away
from one of its progenitors (O. davidiana). Liu et al. (2014)
proposed that its origin occurred during the Pleistocene, when a
climate-driven southward range shift of O. davidiana brought it
into contact with the other parental species. In the same vein,
Kadereit (2015) argued that the ecogeographic displacement of
hybrid lineages from parental lineages currently observed in some
28 revised plant studies may be due to climate-driven range shifts,
particularly of parental lineages. Isolation favoured by such shifts
could have driven homoploid hybrid speciation in dynamic
climatic scenarios during the Pleistocene. The breakdown of a
previous contact between hybridising species and hybrid off-
spring could also be caused by the extirpation of one or two of the
parental populations due to demographic competition (Wolf et al.
2001). This is the most likely explanation why the eastern Spanish
‘orphan’ populations of the hybrid daffodil N. ×perezlarae are
hundreds of kilometres east of its progenitor N. cavanillesii
(Marques et al. 2010). Current continental disjunctions of hybrid
and parental lineages represent extreme examples of the possible
occurrence of ancient but no longer existing HZs, for example in
allopolyploid cotton (Gossypium, Wendel 1989) and in peonies
(Paeonia, Sang et al. 1995). The capacity of plant dispersal, which is
relevant to the argument of plant HZs lability, is consistent with a
comparative biogeographic study of plant and animal groups in
the Southern Hemisphere (Sanmartín and Ronquist 2004). This
study concluded that dispersal was more important than
vicariance in explaining current distributions for plant groups,
while the opposite was true for animal groups. This is also
consistent with the notion of niche conservatism in plants
(Donoghue 2008), which implies that plants efficiently track their
niches through active dispersal. In contrast, in animal HZs,
especially those that fit tension models, outcomes of HZ dynamics
such as one progenitor being genetically swamped or demo-
graphically displaced by the other, or hybrid offspring dispersing
and establishing outside the HZ, are unlikely.
In addition, HZs involving annual or short-lived plants may be

particularly labile due to their fast life cycle and short generation
times. In Abbott’s (2017) compilation of plant HZs, only 5.8% (8) of
the cases involved annual species (Table S5). A possible
explanation for this is that hybrid zones of short-lived organisms
may be difficult to detect while they still contain parental and
hybrid classes, especially if selection pressures have been strong.
This is likely to be the case in the eastern Iberian populations of
the annual weedy Anacyclus, where two species meet at different
locations along the Mediterranean coast and hybridise, resulting
in considerable phenotypic variability. However, while some of
these populations are genetically similar to hybrid swarms, others
are much more homogenous, presumably due to repeated rapid
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backcrossing in one direction (Agudo et al. 2023). Although
attempts to characterise the spatiotemporal dynamics of HZs are
common, comparative studies, especially including annual spe-
cies, would help to assess whether plant HZs may indeed be less
stable than animal HZs. These studies would also help us to assess
whether, operationally, the HZ concept should be strictly time-
bound, i.e., only apply to situations where both progenitors and
hybrid offspring are currently occurring.

Botanists’ perception of hybridisation
Harrison (1993) noted that “Presumably as a consequence of their
different experiences with hybridisation in natural populations,
botanists and zoologists have developed rather different views of
the ‘evolutionary role’ of hybridisation”. There are many references
in the literature to Mayr’s (1942) ideas about the evolutionary role
of hybridisation, which he considered negligible (e.g., Sætre 2013;
Harrison and Larson 2014). The influence of Mayr’s views was
strong among evolutionary biologists working with animal groups,
but not among those working with plants. Zoologists largely
accommodated observations of natural hybridisation within a
hybrid zone framework until the 21st century. In contrast,
botanists over the last century have tended to view hybridisation
and introgression as potential driving mechanisms for generating
new diversity and promoting adaptation (Lotsy 1916; Anderson
1949; Stebbins 1959; Grant 1981), thus playing a creative role in
evolution. These contrasting views of the two scientific commu-
nities likely influenced zoologists to find and report higher
numbers of HZs. An anecdotal, or perhaps not, example of these
different perceptions concerns paloverde trees in California, where
botanists describe hybridisation between Cercidium floridum and
C. microphyllum (Fabaceae) without mentioning the term hybrid
zone in their paper (Jones et al. 1998), while entomologists
explicitly refer to a paloverde hybrid zone in the title of their paper
focusing on beetles (Fox et al. 1997).
However, biological differences may also have contributed to

these contrasting views too. Abbott (2017) argues that “only early
generation hybrids are likely to be recognised as such, with later
generation backcrosses resembling one or both parents missed”
and that “many bimodal HZs comprising mainly backcrosses and
parental types will not be recognised as HZs in the wild based on
morphological analysis alone”. Recognition of hybridisation in
floristic or faunistic studies, i.e., studies that are not focused on the
organism in question but on areas, may depend strongly on
whether F1 hybrids are found. Unlike backcrosses or even late-
generation hybrids, F1 hybrids may be distinguished morpholo-
gically by two types of patterns, depending on the character:
intermediacy (Gottlieb 1972; Wilson 1992; Rieseberg 1997) and
heterosis (Lippman and Zamir 2007; Chen 2013). Intermediacy is
the main cue for recording hybrids in floras (Ellstrand et al. 1996;
Whitney et al. 2010). It is therefore possible, as Abbott suggests,
that while botanists frequently observe F1 hybrids in the wild,
they may not observe HZs —even if they exist— if they consist of
a majority of genotypes close to the hybridising species. A HZ with
this type of genetic structure and a diffuse spatial structure, which
are common in plants (see above), would be even more difficult to
detect. Mimura and Suga (2020) have recently proposed another,
quite opposite, cause for the predominance of individuals
phenotypically similar to the parental species in a Japanese Rubus
hybrid zone, suggesting that this may contribute to the rarity of
reported plant HZs: selection pressures on leaf traits that causes
steeper morphological than molecular clines.
In addition, the frequency of hybrids in plants may also play a

role in the puzzle. Because botanists do not view hybrids as
oddities, but rather as something to be expected, finding one
hybrid plant individual does not necessarily indicate that other
hybrids should be found or sought. Thus, botanists working with
non-model organisms may have overlooked HZs, especially
bimodal and spatially dispersed ones. To avoid neglecting existing

HZs, botanists should consider them as a possible outcome of
hybridisation when first detecting hybrids, rather than just
recording them on an individual basis.

Deficit of population genetic data
The failure to study plant hybridisation under HZ frameworks may
also be due to insufficient genetic data for some plant groups.
Abbott (2017) pointed out that “population genetic analysis is
required to confirm the existence and structure of […] hybrid
zones, and this is likely to have imposed a constraint on the
number of hybrid zones detected, due to the scientific and
financial resources required for such analysis”. This factor may also
have influenced the number of reported plant HZs. However, to
assess how this might affect plant and animal studies differently,
additional factors might be considered. Number of species is one
of these. Resources for studying non-model species may be a
more limiting factor in a clade with about 390,000 species
(vascular plants) than in one with about 60,000 (vertebrates). This
is not the case for insects, where classical HZs have long been
known (e.g., Hewitt 1975; Moran 1979).
Population genetic studies are important for the plant sciences

community in general, and crucial for conservation (Ellstrand and
Elam 1993). However, in (micro) evolutionary-oriented studies
involving hybridisation, population genetics may have ‘competed’
over the past three decades with phylogeography, a discipline that
was explicitly introduced to merge the fields of population genetics
and phylogenetics (Avise et al. 1987). There are many phylogeo-
graphic studies dealing with plant hybridisation that do not adopt
the hybrid zone framework (e.g., Gutiérrez Larena et al. 2002; Choler
et al. 2004; Owens et al. 2016; Schneeweiss et al. 2017). However, a
survey in Clarivate Web of Science using the subject search terms
‘hybrid zone’, ‘hybridisation’, ‘population genetics’ and ‘phylogeo-
graphy’ in various combinations with or without ‘plants’, indicates
that phylogeographic studies have not caused a reduction in the
number of HZ studies using population genetics (Table S6).
‘Phylogeography’ is mentioned less often than ‘population genetics’
in papers mentioning either ‘hybrid zone’ or ‘hybridisation’, even
more so for plants than for animals. Furthermore, in searches using
either ‘population genetics’ or ‘phylogeography’, hits are reduced
when ‘plants’ is added to the search terms. However, this reduction
is stronger when ‘hybrid zone’ is included in the search instead of
‘hybridisation’, which is consistent with the alluded reports of
hybridisation without mention of hybrid zones in plant studies
discussed in the previous section. Therefore, these literature
searches do not indicate that phylogeography plays a role in the
puzzle. The important issue may be sampling depth. Population
genetic studies require and usually include good sampling, whereas
phylogeographic studies do not always include it for putative
hybrid individuals. Identification and, if so, taxonomic description of
hybrids does not usually involve dense sampling either.
The lack of sufficient data (including sampling) and appropriate

analytical approaches could delay the identification of a HZ. Re-
analysis of isozyme data from eastern Mediterranean Senecio
populations unveiled a HZ lying across a c.170 km aridity gradient
(Abbott et al. 2018), which had been missed in a previous study. Our
own work on non-model plants provides another example of a late
discovery of a HZ. A few samples from a peripheral population of a
coastal sand dune plant species —Armeria pungens— were initially
attributed to introgression from a congener in phylogeographic
studies without fine spatial analysis (Piñeiro et al. 2007, 2011). Only
when the area could be finely explored, phenotypic and genotypic
diversity could be assessed (Nieto Feliner et al. 2019), and genomic
cline analysis could be performed (Villa-Machío et al. 2023), was it
possible to collect enough information to indicate the presence of a
hybrid zone. To minimise the possible impact of poor data on the
puzzle, future studies should ensure representative sampling and
appropriate analytical approaches, including cline analysis, when-
ever hybrid plants are detected.
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CONCLUSIONS
There is no way to conclusively solve the puzzle except by re-
examining both all reported plant HZs and cases of plant
hybridisation where no HZ was reported, a task that is out of
reach. However, a review of the literature for possible factors,
based on both plant peculiarities and the ideas and practices of
plant and animal scientists, may give clues to the big picture.
Nevertheless, the proposed possible causal factors are non-
mutually exclusive working hypotheses. With this approach, our
conclusion is that the causes underlying the scarcity of recorded
plant hybrid zones, despite the propensity of plants to hybridise,
are most likely multifactorial. The potential factors listed above are
likely to be complementary, partially overlapping and interacting.
Factors such as the ‘botanical’ perception of hybridisation, which
would be probably supported by a majority of botanists over
decades, apply to most cases, and thus the weight of this factor in
explaining the puzzle is high. Others may be more case-
dependent. Looking at the features of plant hybrid zones
collected or inferred by Abbott (2017)—and from the features
we looked at additionally—it seems that there are no absolute
regularities, either in general or in relation to the type of hybrid
zone. However, considering the biological features that influence
hybridisation, where plants have been reported to be more or less
different from animals, the best-case scenario for departing from a
classical HZ structure may involve weaker postzygotic than
prezygotic barriers (Lowry et al. 2008; Widmer et al. 2009; Baack
et al. 2015) and environmental-dependent selection. The latter
was emphasised by Arnold (1997) and supported by several
studies (Johnston et al. 2001; Rieseberg et al. 2003; Pinheiro et al.
2010; Jacquemyn et al. 2012). In scenarios that include these two
features and a moderate seed dispersal capacity, even hybrid
genotypes that are less fit than parental species in their close
proximity and habitat would have improved chances of survival in
non-close proximity and/or different habitats. Such scenarios
could lead to dispersed spatial structures, close to the mosaic zone
model that Abbott (2017) concludes is the most frequent in his
review, to the ‘evolutionary novelty model’, or —depending on
the frequency of successful hybrid genotypes— to no HZ at all,
and would also fit Harrison’s (1993) notion of diffuse plant HZs.
Beyond this possible scenario, it is difficult to generalise further

causes for the puzzle discussed here. With the exception of a few
plant groups in which HZs have been studied in detail (e.g.,
Helianthus, Iris, Mimulus, Picea, Populus, Quercus, Senecio), the
information provided in studies is insufficient to investigate the
involvement of possible causes for the puzzle. Therefore, even though
some plant features suggest that plant hybrid zones are less common
than animal hybrid zones, we cannot at this point conclusively reject
the null hypothesis that the low number of plant hybrid zones is an
artefact, and we encourage future studies to address this issue in the
light of forthcoming more comprehensive data.
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