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Many of the world’s agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and
sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus).
Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic
predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles
to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP
alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and
B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are
not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly
improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we
were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle
fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace
subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies
SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.
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INTRODUCTION
A number of agriculturally important plant and livestock species
are hybrids of genetically diverse subspecies. An example of this
hybridisation is that many of the cattle currently in tropical and
sub-tropical regions of the world originate from two genetically
divergent subspecies, Bos indicus and Bos taurus (Davis 1993;
Bolormaa et al. 2011, 2013). These subspecies diverged between
275,000 (Bradley et al. 1996) and 2 million years ago (Hiendleder
et al. 2008). Therefore, it is quite likely that mutations affecting
complex traits (quantitative trait loci, QTL) arose independently in
the two subspecies. This may be problematic when performing
genomic selection and QTL mapping in populations of hybrids
and composites of subspecies, as it may result in “ghost” QTL
(Kemper et al. 2015a). Ghost QTL are SNP that track QTL in one
population, but not in another as the QTL may be absent in the
second population (Kemper et al. 2015a). If this is not accounted
for, the predicted SNP effect will be inaccurate in the second
population. Ghost QTL can decrease the accuracy of both
mapping precision and genomic predictions in these multi-
breed populations (Kemper et al. 2015a). Therefore, in order to
achieve accurate multi-breed and multi-subspecies genomic
selection, it will be essential to understand and quantify the

effects of differences in genomic architecture between subspecies
within genetically diverse populations.
It has been shown that haplotypes may be used to detect

regions of the genome that are either B. indicus or B. taurus in
origin (Bolormaa et al. 2011; Koufariotis et al. 2018). Haplotypes
are blocks of the genome encompassing SNP alleles that are in
close proximity and are likely to be inherited together (Hess et al.
2017). In Australian beef populations, haplotypes have been
shown to be able to trace B. indicus and B. taurus origins in
purebred and composite hybrid populations (Bolormaa et al.
2011, 2013; Koufariotis et al. 2018). These studies showed that in
Australian populations of B. indicus and B. taurus cattle, fixed
window haplotypes of 9–17 SNP (Bolormaa et al. 2011) or 250 kb
(Koufariotis et al. 2018) were sufficient to detect subspecies
differences. By assigning subspecies of origin to haplotypes,
previous studies have shown subspecies-specific QTL associations
in both purebred (Bolormaa et al. 2011; Bolormaa et al. 2013;
Koufariotis et al. 2018) and composite (Bolormaa et al. 2011, 2013)
tropically adapted beef populations. Bolormaa et al. (2011) also
demonstrated that subspecies of origin haplotypes alone could be
used to perform genomic selection in a hybrid population using
genomic best linear unbiased prediction (GBLUP), however the
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correlation between estimated breeding value and corrected
phenotype for body weight using this method was low (0.08).
In comparison, studies have shown that Bayesian analyses

with a prior assumption that SNP can have zero, very small or
moderate effects can be used to improve the prediction
accuracy of genomic selection in multi-breed populations (Erbe
et al. 2012; Kemper et al. 2015b; Rolf et al. 2015). It has been
demonstrated that analyses that allow unequal SNP variances
often result in improved accuracies in multi-breed genomic
selection, particularly for traits that have differing genomic
architectures between breeds (Rolf et al. 2015). One such
Bayesian analysis that has been shown to be effective in multi-
breed populations is BayesR (Erbe et al. 2012; Hayes et al. 2019;
Kemper et al. 2015b). BayesR has shown to result in more
accurate genomic predictions in multi-breed populations of
dairy (Kemper et al. 2015b) and beef cattle (Hayes et al. 2019),
especially when the validation population is not highly related to
the reference population (Hayes et al. 2019).
There is evidence to suggest that haplotype assigned sub-

species of origin can be used to improve the accuracy of QTL
association mapping in hybrid populations (Bolormaa et al. 2011).
However, there have been no studies investigating the accuracy of
QTL association mapping and genomic selection in genetically
diverse beef populations using haplotypes to assign subspecies of
origin for a Bayesian analysis. In this paper, we propose a novel
method of assigning subspecies of origin to SNP alleles using
haplotypes to map subspecies-specific genomic architecture in a
hybrid population, using a Bayesian analysis. The aims of this
research were twofold; (i) to determine the optimal haplotype
window to accurately trace subspecies of origin through the
genome; and (ii) determine if a model where SNP alleles are
assigned to subspecies of origin can be used to improve QTL
mapping precision and accuracy of genomic prediction for
puberty in a hybrid population of tropically adapted heifers.

MATERIALS AND METHODS
Data
Reference population. A reference dataset of 1181 purebred animals,
genotyped with the Bovine HD array (728,785 SNP, referred to hereafter as
800K), and mapped to reference genome ARS-UCD 1.2 were used for
haplotype assignment. This dataset consisted of 868 B. indicus animals
from a single breed, Brahman, and 313 purebred B. taurus animals from
five breeds, Angus (n= 100), Hereford (n= 43), Limousin (n= 62), Short-
horn (n= 95) and Charolais (n= 13). This dataset was used to calculate the
haplotype frequency of each haplotype in purebred animals from both
subspecies. These haplotype frequencies were consequently used to
allocate validation animal haplotypes to a given subspecies.

Validation population. Genotypes and puberty phenotypes were sourced
from 3695 heifers from three breeds: Brahman (n= 979), Santa Gertrudis
(n= 1802) and Droughtmaster (n= 914). Santa Gertrudis and Drought-
master heifers are stabilised B. indicus × B. taurus composites, and the
Brahman heifers are ‘graded up’ B. indicus, consisting of approximately
90% B. indicus and 10% B. taurus origins (Bolormaa et al. 2011; Koufariotis
et al. 2018). Full data recording and phenotype measurement have been
described in previous papers (Burns et al. 2016; Engle et al. 2019). Briefly,
reproductive maturity score (RMS) is a single ultrasound measurement
recorded when a heifer reaches approximately 600 days of age (Burns et al.
2016; Engle et al. 2019). It is measured on a 0–5 scale where 0 = infantile
reproductive tract, 1 = small ovarian follicles (<10mm), 2 = ovarian
follicles with a diameter larger than 10mm, 3 = corpus luteum present,
4= 10 weeks pregnant, and 5= > 10 weeks pregnant (Burns et al. 2016;
Engle et al. 2019). In previous studies, we have shown that RMS is a
moderately heritable trait in this population of heifers, with an estimated
heritability of 17% - 35% (Engle et al. 2019; Hayes et al. 2019; Warburton
et al. 2020).
All heifers were genotyped with the Geneseek GGP-LD array consisting

of 21,121 SNP. These genotypes were imputed up to the BovineHD array of
728,785 SNP (800 K) using FImpute software (Sargolzaei et al. 2014) and a
reference dataset of 1500 animals from Brahman, Droughtmaster, Santa

Gertrudis, Tropical Composites and other relevant breeds that have been
genotyped with the BovineHD array (Hayes et al. 2019).

Phasing. Reference alleles were arbitrarily set to ensure the reference
allele was the same between reference and validation populations.
Genotypes were converted into 0, 1, 2 format where 0 = no copies of
alternative allele at a locus, 1 = one alternative allele at a locus and 2 =
two copies of the alternative allele at a locus. Phased genotypes were
obtained using Eagle version 2.4.1 (Loh et al. 2016) for both the reference
and validation datasets.

Haplotypes. Haplotypes were generated for both the reference and
validation populations using fixed, non-overlapping windows for three
haplotype lengths, 50, 100 and 250 kb, using in-house Julia scripts
(Bezanson et al. 2017). These scripts take user input of the desired
haplotype size and then allocates SNP to a haplotype based upon
chromosome position. Each animal has two haplotypes per haplotype
window, one paternal and one maternal in origin. The average number of
SNP that occur within a haplotype are 13.90, 27.64 and 68.78 for the 50,
100 and 250 kb haplotype windows, respectively (Supplementary Table 1).
The average number of SNP assigned to each haplotype window are
consistent across chromosomes for each of the haplotype lengths.
A second Julia function was developed to calculate the frequency of

each haplotype variant in the reference population, within a haplotype
window, for each subspecies. Within each window there may be up to 2m

variants, where m is the number of SNP that fall within the haplotype
window (Bolormaa et al. 2011). To calculate the frequency of the
occurrence of each haplotype variant in each subspecies, our function
calculates the number of unique haplotype variants that occur within each
window. Haplotype frequencies were used to estimate the subspecies of
origin for each haplotype in the validation population, as described below.

Subspecies of origin calculations
Subspecies of origin was calculated using a method derived from
Bolormaa et al. (2011). In this method, each haplotype was assigned a b-
value, which is the probability that a haplotype variant was B. indicus in
origin (Bolormaa et al. 2011) (Eq. 1).

b ¼ pBij
pBij þ pBtj

(1)

Where pBi is the frequency of the jth haplotype in the B. indicus reference
animals and pBt is the frequency of the jth haplotype in the B. taurus
reference animals. Each of the m SNP within a haplotype were allocated to
either the B. indicus or B. taurus origin based upon haplotype b estimates.
Haplotypes were considered to be B. indicus in origin if b ≥ 0.5 and B. taurus
in origin if b < 0.5. In the instance that a haplotype within the validation
population did not occur within either of the reference subspecies,
Hamming distance methods were used to calculate the probability of the
haplotype belonging to each of the two subspecies (Van der Loo 2014;
Gomez 2015). The Hamming distances were summed to obtain the sum of
the B. indicus Hamming distances, sum(Bi), and the sum of the B. taurus
Hamming distances, sum(Bt), respectively. The probability of the undefined
haplotype belonging to either subspecies was calculated using Eqs. (2) and
(3). The undefined haplotype was henceforth allocated to the subspecies
of origin with the largest probability calculation; B. indicus (Prob(Bi)) or B.
taurus (Prob(Bt)).

Prob Bið Þ ¼ sumðBiÞ
sum Bið Þ þ sumðBtÞ (2)

Prob Btð Þ ¼ sumðBtÞ
sum Bið Þ þ sumðBtÞ (3)

As each animal has two haplotypes per window, b-values were used to
estimate if an animal was homozygous B. indicus (Bi), homozygous B.
taurus (Bt) or B. indicus × B. taurus (Bx) hybrid for each haplotype window.
Each of the m SNP within the haplotype window was assigned this
subspecies of origin (Bi, Bt or Bx). We then used this classification of
subspecies of origin when building the X-matrix for Bayesian analysis.

Breed subspecies content
After assigning b-values to each haplotype for each of the validation
heifers, we calculated the average B. indicus percentage of each of the
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validation heifers, based upon haplotype subspecies of origin. This data
was then used to calculate the average B. indicus percentage of each of the
three validation breeds, Brahman, Santa Gertrudis and Droughtmaster.
These averages were compared to the original theoretical breed
compositions from these hybrid breeds to determine if haplotypes were
able to track B. indicus content through the genome of these populations.

X-matrix
To account for genomic architecture in genetically divergent populations,
a customised X-matrix was designed to allow simultaneous estimation of
multiple subspecies-specific effects in a BayesR analyses. This X-matrix can
be used to estimate the effect of an animal being homozygous B. indicus,
homozygous B. taurus or the effect of being a composite B. indicus × B.
taurus (capturing heterosis) at each SNP, simultaneously. The X-matrix has
the dimensions of nanim × 3nsnp where nanim is the number of animals in
the validation population, and nsnp is the number of SNP on the marker
panel that were used to construct haplotypes. Within the X-matrix, each
SNP is represented by three columns, one for homozygous B. indicus (Bi),
one for homozygous B. taurus (Bt) and one for B. indicus × B. taurus (Bx)
(Fig. 1). Phased genotype data (0, 1 or 2) was used to populate the matrix,

with subspecies of origin (Bi, Bt, Bx) being used to allocate the phased
genotype information to the appropriate X-matrix column for each SNP
and animal (Fig. 1). For example, if an animal has been classified as being
homozygous B. indicus for a SNP, that SNP will have the count of the
alternative allele (0 or 2 from the phased genotypes) added to the Bi
column in the X-matrix, and both the Bt column and the Bx column will be
empty (0). The resulting X-matrix fits all SNP from the BovineHD array,
assigned to an estimated subspecies of origin, that was calculated from the
fixed window haplotype, using the reference population haplotype
frequencies.

BayesR models
BayesR analyses used the model:

RMS ¼ 1nμþ cgþ ageþ Xgþ e; (4)

where RMS is a vector of phenotypes, 1n is a vector of ones, µ is the
overall mean, cg is contemporary group defined as year, herd and season
and age is age at measurement fitted as a covariate. There were no mixed
breed contemporary groups in this dataset therefore, breed was not fitted

Genotypes
SNP 1 SNP 2 SNP 3

Animal 1 1 1 1

Animal 2 1 1 2

Animal 3 2 0 1

SNP 1 SNP 2 SNP 3
Animal 1 1 0 0

Animal 1 0 1 1

Animal 2 1 0 1

Animal 2 0 1 1

Animal 3 1 0 0

Animal 3 1 0 1

Haplotype
Animal 1 100

Animal 1 011

Animal 2 101

Animal 2 011

Animal 3 100

Animal 3 101

Haplotype 1
SNP 1 

Genotype
SNP 2 

Genotype
SNP 3 

Genotype
Subspecies-of-origin

Animal 1 1 1 1 Bi

Animal 2 1 1 2 Bt

Animal 3 2 0 1 Bx

SNP1 SNP 2 SNP 3
Bi Bt Bx Bi Bt Bx Bi Bt Bx

Animal 1 1 0 0 1 0 0 1 0 0

Animal 2 0 1 0 0 1 0 0 2 0

Animal 3 0 0 2 0 0 0 0 0 1

Step 1. BovineHD marker panel genotypes were obtained for all validation animals

Step 2. Obtain phased genotypes from Eagle

Step 3. Allocate phased SNP to a fixed haplotype window

Step 4. Assign haplotype subspecies-of-origin using b-values

Step 5. Use haplotype subspecies of origin assignment to allocate each SNP from each animal to a subspecies 

column in the X-matrix for BayesR analysis 

Fig. 1 Example showing the process of using haplotype defined subspecies of origin to assign SNP to a subspecies-specific X-matrix for
BayesR analysis. As each animal has two haplotypes per window, subspecies of origin is assigned using the combined subspecies assignment
from both haplotypes, where Bi is homozygous Bos indicus origin, Bt is homozygous Bos taurus origin and Bx is heterozygous Bos indicus x
Bos taurus origins.
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as a covariate in the model as contemporary group described all of the
variation due to breed in this analysis. X is the customised X-matrix
described above with dimension nanim x 3nsnp, g is a vector of SNP effects
with a distribution g� Nð0;σ2i Þ. The parameter σ2i is one of four
distributions: σ2i = {0, 0.0001, 0.001, or 0.01}´σ2g, for the ith SNP
distribution and σ2g is the estimated genetic variance of the trait (Erbe
et al. 2012). Erbe et al. (2012) described two latent parameters for BayesR,
the first parameter, bði; kÞ defines whether the estimated SNP effects
follow a normal distribution and k ¼ ð1; 2; 3; 4Þ:

p gi jb i; kð Þð Þ ¼
0;

1
ffiffi

2
p

πσ2i ½k�
exp g2i

2σ2i ½k�

b i; 1ð Þ ¼ 1

b i; kð Þ ¼ 1ðk ¼ 2; 3; 4Þ

(

(5)

The proportion of SNP that fall into each of the four distributions are
defined by the parameter Pr where the prior of is sampled from a Dirchlet
distribution, �DirchletðαÞ, and α¼ 1;1;1;1½ � (Erbe et al. 2012). Furthermore,
the probability that SNP i falls into each distribution can be defined as:

p gi jPrð Þ ¼ Pr1 ´N 0; 0 ´ σ2g
� �

þ Pr2 ´N 0; 0:0001´ σ2g
� �

þ Pr3 ´N 0; 0:001 ´ σ26
� �þ Pr4 ´Nð0; 0:01´ σ2gÞ:

(6)

BayesR analyses were conducted with Gibbs sampling using 50,000
iterations, discarding the first 20,000 as burn-in (Moser et al. 2015). BayesR
analyses are able to simultaneously estimate SNP effects and genomic EBV
(GEBV) of selection candidates (Moser et al. 2015) using the equation:

GEBV ¼ Xĝ: (7)

We compared results from this model to a control BayesR analysis, not
modelling different origins of QTL alleles. The X-matrix for this control
analysis was formed from the 800 K marker panel genotypes with no
subspecies of origin adjustments, and has the dimensions nanim × nsnp.

Genomic selection
Genomic selection was performed in the validation population animals
using both control and subspecies-specific BayesR analyses in a fivefold
cross-validation method. All the validation population heifers were
randomly split into five, even sized, mixed breed groups and the analysis
was repeated five times using 80% (n= 2956) as training and the
remaining 20% (n= 739) as validation, each time. This strategy of
allocating validation group was designed to reflect the mixed breed,
mixed subspecies populations in the north Australian beef industry and
was used to test the efficacy of our model at accurately predicting GEBV in
these mixed breed cohorts. Each animal only occurred in a single
validation group and the validation groups remained the same for each of
our analyses.
Prediction accuracy was calculated as the correlation of the GEBV and

the phenotype adjusted for both age at measurement and contemporary
group effects, divided by the square root of the heritability of the RMS trait.
We have previously estimated the heritability of RMS to be 0.20
(Warburton et al. 2020) and have chosen to continue to use this heritability
estimate for consistency. Standard errors were calculated as the standard
error of the mean of the prediction accuracy estimates of the five
validation groups. Similarly, bias was calculated for the five validation
groups as the regression of GEBV on adjusted phenotype.

QTL association mapping
In addition to genomic selection, BayesR was also used to conduct QTL
association mapping of subspecies-specific SNP in the validation popula-
tion heifers. This analysis used the model in Eq. (4) to estimate subspecies-

specific SNP effects and posterior probabilities using all animals in the
validation population. The design of our custom X-matrix allowed the three
subspecies of origin effects to be estimated simultaneously in the BayesR
analysis. This resulted in estimated SNP effects and posterior probabilities
for three subspecies for each SNP, B. indicus (Bi), B. taurus (Bt) and B. indicus ×
B. taurus (Bx). Similar to the genomic selection analysis, a multi-breed
control analysis was also performed where no subspecies-specific effects
were assumed. In addition, for comparison purposes, we also performed a
genome wide association study (GWAS) analysis in GCTA (Yang et al. 2011)
using the subspecies-specific X matrix SNP. This analysis was performed to
determine if the BayesR analysis and GCTA GWAS analyses identified the
same subspecies-specific SNP influencing RMS in this population of heifers
(Supplementary Fig. 1).
After performing Bayesian analyses, estimated SNP effects and posterior

probabilities of inclusion were plotted for the control analysis and each of
the three SNP origins, simultaneously, using the R package CMplot (Yin
et al. 2021). Posterior probability of inclusion of a SNP is calculated using
the equation:

PIPInclusion ¼ PIP2 þ PIP3 þ PIP4 (8)

Where PIP2, PIP3, and PIP4 are the posterior probabilities of a SNP falling
into distributions 2, 3 or 4 in the BayesR model. Alternatively, PIPInclusion can
be calculated as the probability of a SNP not having a zero effect
(PIPInclusion = 1− PIP1).

RESULTS
Optimal haplotype size
The Brahman breed was originally developed in the United States
of America after a number of B. indicus breeds were imported from
India, the Ongole, Krishna, Gujarat and Gir (Koufariotis et al. 2018).
During the Brahman breed formation these tropically adapted
breeds were crossed with the local B. taurus breeds, a process
referred to as ‘grading up’ the B. taurus breed to B. indicus (Briggs
and Briggs 1980; Koufariotis et al. 2018). Studies have shown that
due to the process of ‘grading up’ during the breed formation
(Briggs and Briggs 1980), the Australian Brahman genome is
approximately 10% B. taurus in origin (Bolormaa et al. 2011;
Koufariotis et al. 2018), so we have assumed the theoretical B.
indicus percentage of these heifers is 90%. Both the Drought-
master and Santa Gertrudis breeds are composite B. indicus × B.
taurus breeds, the Droughtmaster is approximately 50% B. indicus
(The Droughtmaster Society Australia, n.d) and the Santa Gertrudis
is approximately 37% B. indicus in origin (Mallett 1959).
Comparison of the average B. indicus percentage in Table 1

shows that both the 50 kb and 100 kb haplotype windows have
similar average B. indicus percentage to the theoretical B. indicus
percentage from the original breed compositions. In comparison,
the 250 kb window appears to consistently overestimate the B.
indicus percentage in each of the three breeds, when compared to
the theoretical B. indicus percentage. However, observation of the
standard deviations of these estimates show that the estimated B.
indicus percentage of the 250 kb haplotype window is not
significantly different from the theoretical breed percentage.
To further investigate the effect of haplotype length on

subspecies of origin assignment, we plotted the b-values of a
single Droughtmaster heifer from Chromosome 2, to observe the
difference in b-value distribution between the haplotype windows

Table 1. Theoretical Bos indicus percentage (%) from known breed origins and minimum (Min), maximum (Max), mean (μ) and standard deviation
(sd) of estimated Bos indicus percentage (%) of heifers within each of the three breeds across each of the haplotype window sizes (50, 100 and
250 kb).

Theoretical 50 kb 100 kb 250 kb

μ Min Max μ sd Min Max μ sd Min Max μ sd

Brahman 90 46 89 84 0.05 49 94 89 0.05 57 98 94 0.04

Droughtmaster 50 31 65 50 0.05 35 69 54 0.05 47 77 63 0.04

Santa Gertrudis 37 27 48 36 0.02 30 52 39 0.02 41 60 49 0.02
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(Fig. 2). Chromosome 2 was arbitrarily selected and plotted, and
the distribution of b-values was consistent across chromosomes
(results not shown). As the size of the haplotype windows
increases, the number of haplotype segments across the
chromosome decreases, n= 2735, 1368 and 548 for the 50 kb,
100 kb and 250 kb haplotype windows, respectively. However,
there is a more consistent distribution of b-values across the
continuum for the 50 and 100 kb than the 250 kb haplotype
windows. The 250 kb haplotype windows show more clustering of
b-values around the 0.5 threshold and towards the B. taurus axis.

Genomic selection
Accuracy of genomic prediction was not significantly improved
when using a subspecies-specific X-matrix, however, the 100 kb
haplotype window defined X-matrix resulted in the highest
prediction accuracy for RMS in this population of heifers (Table
2). Furthermore, there was a marked improvement in estimation
bias using the subspecies-specific X-matrix in genomic predic-
tions, particularly when using subspecies allocations defined with
the 100 and 250 kb haplotype windows.
One of the aims of this study was to determine the optimal

haplotype window length to estimate subspecies-specific effects
in this hybrid population. Based upon the ability to track B. indicus
content through the genome and the improvements in both
prediction accuracy and bias in genomic predictions, the 100 kb
haplotype window appears to be the optimal haplotype length in
this population. As such, we used the X-matrix created using the

100 kb haplotype windows for QTL association mapping to further
define subspecies differences in genetic architecture in this
population of heifers.

QTL association mapping
Similar to the genomic selection analysis, QTL association
mapping was performed using both the subspecies-specific X-
matrices defined by different haplotype windows, and a multi-
breed control analysis where the X-matrix does not contain
subspecies of origin effects. This multi-breed control analysis was
unable to identify some subspecies-specific SNP of moderate
effect and frequency that have an effect on the RMS trait in this
population of heifers (Fig. 3). The maximum posterior probability
of inclusion of any SNP in the control analysis was 0.20. Whereas,
in the subspecies-specific analysis, there were five subspecies-
specific SNP that had posterior probabilities of inclusion greater
than 0.20 (annotated in Fig. 3).
These results show that there are subspecies-specific effects for

RMS, with some SNP having a moderate effect upon the trait (Fig. 4).
In particular, there are B. taurus (Bt) and B. indicus × B. taurus (Bx)
specific SNP that appear to have a moderate effect upon RMS in
this population of heifers, and these SNP do not appear to have
the same magnitude of effect in the other subspecies.
There were five SNP in particular that had moderate to large

posterior probabilities of inclusion in the subspecies-specific
BayesR analysis. Two SNP were identified from B. indicus (Bi)
origins, BOVINEHD0400006614 and BOVINEHD1600012877, two
were identified from B. taurus (Bt) origins, BOVINEHD0200001401
and BOVINEHD030022359, and one was identified from B. indicus ×
B. taurus (Bx), BOVINEHD1200027774. Of these five SNP, four were
situated in protein-coding regions of genes (Table 3).

DISCUSSION
To our knowledge, this is the first instance where BayesR has been
used to perform QTL association mapping from multiple
subspecies in a hybrid population. This novel approach of
assigning subspecies of origin to SNP and using a customised
Bayesian analysis has allowed us to quantify the effect of differing
genomic architecture for RMS in a hybrid population of cattle. Our
results show that there are differences in SNP effects between

Fig. 2 Distribution of b-values for each haplotype within the three haplotype windows, 50, 100 and 250 kb, for a single Droughtmaster
heifer on Chromosome 2. X-axes show chromosomal position and y-axes show the distribution of b-values, with b-values between 0.5 and 1
indicating Bos indicus (Bi) origins and b-values less than 0.5 indicating Bos taurus (Bt) origins.

Table 2. Prediction accuracy and bias estimates from genomic
prediction analyses in BayesR using a multi-breed control and
subspecies assigned SNP on the BovineHD array, with subspecies of
origin being determined in the 50, 100 and 250 kb haplotype windows
with standard errors in parentheses.

Prediction accuracy Bias

Control 0.43 (0.05) 0.88 (0.10)

50 kb 0.44 (0.05) 0.86 (0.12)

100 kb 0.45 (0.04) 1.00 (0.10)

250 kb 0.43 (0.03) 1.02 (0.09)
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each of the subspecies, and these differences are not being
reflected in the multi-breed control analysis of the same population
of heifers. Furthermore, our results have also demonstrated that
there are some SNP that show interactions when inherited from
both subspecies, most notably BOVINEHD1200027774. This SNP

had minimal effect upon RMS in homozygous B. indicus or
homozygous B. taurus heifers, however, it had an increased effect
in heifers that were heterozygous B. indicus × B. taurus at this locus.
One of the main advantages of our method is the ability to detect
both subspecies-specific effects, and any interactions that may

Fig. 3 Posterior probability of inclusion (PIP Inclusion) of multi-breed control SNP (Control) and of subspecies-specific SNP effects, Bos
indicus (Bi), Bos taurus (Bt) and Bos indicus × Bos taurus (Bx), using the 100 kb haplotype-defined X-matrix from BayesR analysis. X-axes
show chromosomal position and y-axes show posterior probability of inclusion for each SNP. The first panel shows the multi-breed control
analysis (Control) SNP followed by the Bos indicus (Bi) SNP, Bos taurus (Bt) SNP and Bos indicus × Bos taurus (Bx) SNP posterior probabilities.
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occur at hybrid loci simultaneously, to more accurately understand
the underlying genomic architecture of diverse populations.
Studies in other species have shown that using breed of origin

allele assignment can increase the prediction accuracy in
simulated (Ibánez-Escriche et al. 2009) and pig populations
(Sevillano et al. 2019). However, the magnitude of this improve-
ment in prediction accuracy has been low (Ibánez-Escriche et al.
2009; Sevillano et al. 2019). Similarly, our study has shown that use
of subspecies of origin assignment to alleles has resulted in small,
but not significant improvements in prediction accuracy for
reproductive maturity score, a lowly heritable trait (h2= 0.20). Our
results show that, despite the small improvements in prediction
accuracy, there were marked improvements in the bias estimates
of genomic selection when subspecies of origin effects of alleles
were accounted for. This finding is in accordance with a recent
study in broiler chickens that showed that the incorporation of
breed of origin alleles in crossbred genomic evaluations reduced
bias in breeding value estimation (Duenk et al. 2019). These results
show that consideration of ancestral origins in genomic prediction
models can result in less biased, if not more accurate, multi-breed
and multi-subspecies genomic evaluations.
By accounting for ancestral allele origins in our analysis, we

have identified five subspecies-specific SNP that have an effect
upon reproductive maturity score and occur quite commonly
within our hybrid populations. The SNP with the largest posterior
probability of inclusion was identified as being B. indicus × B.
taurus in origin, BOVINEHD1200027774, which falls within the
protein-coding region of the gene FLT (Fms Related Receptor
Tyrosine Kinase 1). This gene has been associated with
folliculogenesis in rats (Celik-Ozenci et al. 2003) litter size in
sheep (Xu et al. 2018; Ghiasi and Abdollahi-Arpanahi 2021), and
pre-eclampsia in women (Ashar-Patel et al. 2017). The SNP with
the second largest posterior probability of inclusion was identified
as being from B. taurus origins, BOVINEHD0200001401. This SNP
falls within the protein-coding region of the gene MY07B (Myosin
VIIB) which has been shown in human studies to be upregulated
in the placental tissues of pre-eclampsia patients (Mohamad et al.
2020) and to be one of the predicted targets for one of the top ten
most abundant microRNA’s in human ovaries (Xu et al. 2016). The
third most significant SNP was identified again in B. taurus origins,
BOVINEHD0300022359. This SNP is in the protein-coding region of
the gene WLS (WNT Ligand Secretion Mediator). In mice, a study
has shown that WLS knockout animals had a significant decrease
in fertility due to reduced ovary sizes, decreased number of
follicles and lower numbers of corpus luteum, which are all
essential for female fertility (Chen et al. 2021). Finally, a B. indicus
SNP, BOVINEHD0400006614, is in the protein-coding region of the
gene DGKβ (Diacylglycerol kinase β). In the pituitary of rats, DGKβ

is expressed in the dopamine receptors which is involved in the
phosphoinositide cycle within the pituitary, which is involved with
downstream signalling cascades involved in hormone action
(Hozumi et al. 2010). One of the downstream hormones that is
affected by this signalling pathway is luteinising hormone
(Johnson et al. 1993; Hozumi et al. 2010), which is a hormone
that has a strong regulatory function in oestrus in cattle
(Stevenson and Pulley 2016). Interestingly, these five SNP fall
within protein-coding regions of genes that are associated with
pituitary or fertility in other species, but have not been previously
associated with fertility in cattle (Celik-Ozenci et al. 2003; Hozumi
et al. 2010; Ashar-Patel et al. 2017; Xu et al. 2018; Mohamad et al.
2020; Chen et al. 2021; Ghiasi and Abdollahi-Arpanahi 2021). These
results show that, by accounting for the ancestral origin of SNP in
hybrid populations, we were able to map novel, subspecies-
specific QTL affecting RMS to genes that have a biological function
in fertility in other species. In contrast, in other studies in beef
cattle, a SNP in the region of the PLAG1 gene was very significantly
associated with early puberty (Fortes et al. 2013), but this SNP was
not detected in our QTL association mapping results. However,
after further investigation we observed that this SNP was almost
fixed in the validation population, thus explaining why we were
unable to detect it in our analysis.
Our method differs from many other multi-breed, allele breed

of origin models in that (i) it uses a Bayesian approach, with a prior
assumption of zero, very small or moderate effect of QTL, and (ii)
no correlation between allele effects between subspecies is
assumed. The latter seems appropriate for subspecies which
diverged so long ago (Bradley et al. 1996; Hiendleder et al. 2008). It
could be argued that the latter assumption may decrease accuracy
of genomic predictions and precision of QTL mapping; however,
all the evidence thus far points to different QTL segregating in B.
indicus and B. taurus (Bolormaa et al. 2011). In cases where the
same QTL segregates in both subspecies the QTL is clearly an
introgression, usually from B. taurus into B. indicus, for example
PLAG1 (Fortes et al. 2013; Utsunomiya et al. 2017) and the polled
mutation (Koufariotis et al. 2018). Note that our method does not
preclude the effects of a SNP being correlated across subspecies, it
just does not use this information. Our method could be extended
to estimate correlations between pairs of marker effects across
breeds.
It has been previously demonstrated that haplotypes may be

used to detect regions of the genome that are either B. indicus or
B. taurus in origin (Bolormaa et al. 2011; Koufariotis et al. 2018).
Haplotypes can be constructed in a number of ways, such as using
a fixed number of SNP per haplotype (Hayes et al. 2007; Villumsen
et al. 2009), fixed chromosome lengths in cM (Boichard et al.
2012), fixed base-pair lengths (Hess et al. 2017) or by using linkage

Fig. 4 Estimated subspecies-specific SNP effects, Bos indicus (Bi), Bos taurus (Bt) and Bos indicus x Bos taurus (Bx), from BayesR analysis
using the 100 kb haplotype window-defined subspecies-specific X-matrix. X-axes show chromosomal position and y-axes show estimated
SNP effect. Bos indicus SNP are shown in green, Bos taurus SNP are in red and Bos indicus x Bos taurus SNP are in blue.
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disequilibrium information to determine haplotypes of various
lengths (Cuyabano et al. 2015). Furthermore, a number of studies
have shown that optimising haplotype size is critical for the
accuracy of genomic predictions and QTL mapping (Villumsen
et al. 2009; Calus et al. 2009; Hess et al. 2017; Bian et al. 2021).
Previous studies in Australian populations of B. indicus and B.
taurus cattle have shown that fixed window haplotypes of 9–17
SNP (Bolormaa et al. 2011) or 250 kb (Koufariotis et al. 2018) were
adequate at detecting subspecies differences in these popula-
tions. Our study also shows that use of fixed window haplotypes
of 100 kb is optimal for tracing subspecies of origin effects
through the genome of a hybrid population of tropically adapted
cattle. The 100 kb window is smaller than the 250 kb proposed by
Koufariotis et al. (2018) but slightly larger than the 9–17 SNP
proposed by Bolormaa et al. (2011), which is equivalent to the
50 kb haplotype window size used in this study (Supplementary
Table 1). Our results show that both the 50 kb and 250 kb
haplotype window were able to trace subspecies of origin regions
through the genome of this hybrid population, but the 100 kb
haplotype window resulted in more accurate and less biased
genomic predictions, whilst also being slightly more consistent
with theoretical estimates of subspecies content. Studies in the
literature have shown that optimisation of haplotype size is critical
for obtaining the most accurate and unbiased genomic predic-
tions (Villumsen et al. 2009; Calus et al. 2009; Hess et al. 2017; Bian
et al. 2021). It is likely that longer haplotypes are persistent across
closely related populations (Tang et al. 2006; Kling and Tillmar
2019), however in more distantly related populations, it is more
likely that a recombination event will occur in long haplotypes
over time (Villumsen et al. 2009). As such, smaller haplotype
windows are more likely to persist across genetically distant
populations (Hill and Weir 2011). It was beyond the scope of this
paper to test the efficacy of different methods of defining
haplotypes in this population to account for subspecies of origin
effects. However, it may be beneficial to investigate the effect of
defining haplotypes using other methods, such as linkage
disequilibrium pruning, in a future study.
Haplotypes were only used to allocate SNP to a subspecies of

origin and therefore genomic prediction was performed using SNP
and not haplotypes. As haplotypes encompass a region of the
genome containing neighbouring genetic markers, it is likely that
haplotype alleles are in higher linkage disequilibrium with QTL
than the single SNP alleles used in SNP genomic predictions
(Zondervan and Cardon 2004). Linkage disequilibrium between
SNP and QTL is essential for accurate genomic selection (Goddard
2009). Thus, if haplotypes increase the LD with QTL, it is
hypothesised that the accuracy of genomic selection will be
improved using haplotypes rather than single SNP (Hess et al.
2017). However, previous genomic predictions using haplotypes
rather than SNP have shown mixed results in admixed populations
(Hess et al. 2017; Araujo et al. 2021). A simulation study of a
genetically diverse, admixed sheep population showed that there
was no added benefit to using haplotype genomic prediction over
SNP predictions in both prediction accuracy and bias (Araujo et al.
2021). In comparison, a study of an admixed dairy population,
consisting of B. taurus breeds only, Hess et al. (2017) demonstrated
that haplotype genomic predictions can result in improvements in
the accuracy of genomic selection for a number of milk traits. It
was noted, however, that the computation time of the haplotype
genomic prediction analysis was significantly increased due to the
increased number of covariates within the model (Hess et al.
2017). Particularly given the last point, with a view to implement-
ing our predictions in routine genomic evaluations, we have
elected to go with SNP based predictions.
One of the limitations to using haplotypes in genomic selection

is the increased computing time required to phase haplotypes,
define haplotype windows and to convert haplotypes to bi-allelic
SNP format that can be used in existing genomic predictionTa
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pipelines (Teissier et al. 2020; Araujo et al. 2021). Haplotypes are
more polymorphic than SNP as they are often multi-allelic
(Meuwissen et al. 2014). In genetically diverse populations, such
as B. indicus and B. taurus beef cattle populations, it is expected
that there will be many unique haplotype alleles per loci. As such,
many more rare haplotype alleles per loci may require further
filtering before performing genomic predictions (Hess et al. 2017;
Araujo et al. 2021). Hess et al. (2017) demonstrated the benefit of
using a Bayesian analysis that allowed for unequal variant
variances in haplotype genomic selection. As many Bayesian
analyses allow variants to have no effect upon the trait of interest,
rare haplotypes will have a small affect upon the trait and
therefore, their effect will be shrunk towards zero (Gianola 2013).
Hess et al. (2017) demonstrated that not filtering rare haplotype
variants in Bayesian analyses had little impact upon the prediction
accuracy of genomic predictions. However, it did result in
improved computational times as there were fewer variants in
the genomic prediction analyses. The BayesR framework used in
our analysis allows variants to belong to one of four distributions:
variants with no effect, variants with very small effect, variants
with small effect and variants with moderate to large effect. As this
framework allows rare variants to have no effect, we did not use
MAF filters to filter out rare haplotypes in this study. It may be
beneficial to investigate improvements in computation times
using this analysis after rare variants have been filtered, in future
studies.
The B. taurus reference population used in this study

consisted of 313 animals from 5 pure B. taurus breeds, Angus
(n= 100), Hereford (n= 43), Limousin (n= 62), Shorthorn
(n= 95) and Charolais (n= 13) whereas the B. indicus reference
population consisted of 868 animals from a single breed,
Brahman. Within breeds it is expected that animals will share
more haplotypes as there is increased probability that they have
recent ancestors in common (Hill and Weir 2011). In the multi-
breed B. taurus reference population, frequencies of haplotypes
may vary between breeds which may potentially result in a lot of
haplotypes with low frequency at each loci in this population. In
comparison, the B. indicus population has a large number of
animals from only a single breed, which may result in fewer
haplotype alleles with higher frequencies, as it is more likely that
these animals will share recent common ancestry and thus share
haplotypes in common. In this study, reference population
haplotype frequency is used to assign validation population
haplotype subspecies of origin. If a haplotype occurs in both
subspecies, Bi and Bt, it will be more likely to be assigned to the
subspecies with the highest frequency haplotype in the
reference population. Therefore, the single breed B. indicus
population may be biasing the assignment of some haplotypes
towards a B. indicus subspecies of origin. Also, as previously
stated, the 250 kb haplotype window may be too long to
accurately differentiate between these genetically divergent
subspecies and, coupled with this potential B. indicus subspecies
allocation bias, more of the 250 kb haplotypes may have been
allocated to the B. indicus subspecies of origin. Particularly in
comparison to the 100 kb and 50 kb haplotype windows and in
reference to the theoretical breed origins. In future studies, it
would be beneficial to use larger reference populations, with a
multi-breed B. indicus reference population, to reduce any
potential impact of population structure when assigning
haplotype subspecies of origin.
There were three main limitations to our study, the absence of

mixed breed contemporary groups, the lack of purebred B. taurus
animals in our validation population, and the absence of a
purebred B. indicus breed in our reference population. Accurate
multi-breed genomic selection requires direct comparisons
between breeds. Our validation dataset consisted of single breed
contemporary groups, thus there were no direct head-to-head
comparisons between each breed to enable accurate comparison

of breed effects. Secondly, as there were no purebred B. taurus
animals in our validation population, all B. taurus haplotypes in our
validation dataset originated from the B. indicus × B. taurus
stabilised composite breeds. More research is required to
determine if the inclusion of purebred B. taurus animals in our
validation dataset would further improve the accuracy of our
subspecies-specific BayesR analyses. Finally, the Australian Brah-
man population has a known proportion of B. taurus introgression
(~10%) (Bolormaa et al. 2011; Koufariotis et al. 2018). As Brahmans
are not a purebred B. indicus breed, there may be error in the
subspecies of origin assignment of some B. indicus haplotypes in
this study. The impact of this incorrect assignment is likely to be
minimal, as our results have shown that the subspecies of origin
haplotype assignment was able to assign 10% of the Brahman
genome to B. taurus origins. However, future studies using a
purebred B. indicus breed in the reference population will be
required to test the efficacy of this method.
In this paper, we have developed a method to simultaneously

map subspecies-specific effects in hybrid populations, in order to
better understand the underlying genomic architecture of
genetically diverse populations. It is essential to identify the
appropriate haplotype window size to use in each population to
optimise accuracy of both QTL mapping and genomic evaluations.
However, our method demonstrated that, in the absence of
pedigree information, marker haplotypes can be used to
accurately assign ancestral subspecies of origin to genomes.
When used in conjunction with our BayesR analysis, we were able
to identify novel QTL that have not previously been identified in
cattle, but were closely linked to genes biologically involved with
fertility in other species.

DATA AVAILABILITY
Summary statistics of the Bayesian analyses described in this study are publicly
available in Dryad https://datadryad.org/stash/share/07ONnitFJ3EZOVOG7nnAC5yee
FbpJ3HPWWTtZfgSb0Q. Scripts used to produce haplotypes, calculate subspecies of
origin and create X-matrices will be publicly available on GitHub https://github.com/
cwarburton85/Subspecies_Xmatrix.
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