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Landscape genomics reveals adaptive genetic differentiation
driven by multiple environmental variables in naked barley on
the Qinghai-Tibetan Plateau
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Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists.
Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local
adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley
landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157
diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality
SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population
structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of
naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136
signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects.
We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were
detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on
QTP and thus improve our current understanding of the genetic basis of local adaptation.
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INTRODUCTION
Natural and artificial selection have varying degrees of influence
on plant genomes. The effects on genetic polymorphisms are
reflected in adaptive differences among different crop cultivars
(Zhao et al. 2013; Li et al. 2020a, 2020b). Identifying the genomic
and geographic extent of adaptation to better understand the
genetic regulation of crop adaptation to the environment is one of
the enduring goals of evolutionary genetics. Natural selection is
one of the key processes by which plants adapt to the
environment, and it directly affects the adaptive traits and
associated regions in the genome (Zhao et al. 2013). In this
process, alleles that provide an adaptive advantage to the specific
environment become prevalent. Identification of these adaptive
genes is critical for understanding plant adaptive evolution and
crop improvement.
Landscape genomics offers an approach to understanding local

adaptation. It is an emerging research field that combines landscape
factors and genomics to identify the environmental factors that
shape adaptive genetic variation and the gene variants that drive
local adaptation (Allendorf et al. 2010; Schoville et al. 2012; Rellstab
et al. 2015). Its development has been facilitated by next-generation
sequencing (NGS) and improvements in datasets describing
environmental factors. Of late, numerous analytical methods for

environmental association studies have been developed, and outlier
loci based on population genetic differentiation have been found
based on environmental associations. These provide not only a basis
for understanding the impact of geographic and ecological factors
on spatial genetic patterns and adaptation but also a foundation for
gaining insights into the genetic mechanisms of local adaptation (Li
et al. 2018; Zhang et al. 2019a; Zhao et al. 2020). For instance, Abebe
et al. (2015) reported several outlier loci in Ethiopian barley
associated with temperature and altitude. Lasky et al. (2015) used
genome−environmental associations in sorghum landraces to
predict adaptive traits. Their results suggested that genomic
signatures of environmental adaptation might be useful for crop
improvement, enhancing germplasm identification and marker-
assisted selection. Russell et al. (2016) identified signatures highly
associated with environmental factors, and these signatures
clustered in different genomic regions. This study provided insights
into the environmental adaptation of geographically diverse barley.
Six previously reported adaptive loci were identified using Fst outlier
and mixed-model association analysis, and 282 new barley genes
were also identified by this method (Lei et al. 2019). Chang et al.
(2022) identified significant correlations with environmental vari-
ables and strong genetic differentiation in the pericentromeric
regions on chromosomes 3H, 4H, and 5H of southern Levant wild
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barley. On the other hand, landscape genomics could be useful to
evaluate the adaptability potential of crops to current and future
climate and to identify the areas where crops would be at great risk
under future climate conditions. Thus, the breeders could evaluate
the agro-biodiversity potential of local varieties to mitigate the
impact of climate change and propose suggestions for breeding
efforts targeting crops' local adaptation (Rhoné et al. 2020; Caproni
et al. 2023). In addition, landscape genomics could provide a basis
for understanding the evolutionary history of species (Zhao et al.
2020). Gutaker et al. (2020) used population-genomic analyses to
examine the environmental factors associated with the geographic
distribution of rice diversity, thus reconstructing the ancient
distribution of rice in Asia and the history of rice spreading outward
from its origin center. These studies have identified markers and
genes potentially involved in local adaptation and demonstrated the
utility of landscape genomics in detecting and understanding the
adaptive biology of plants.
The Qinghai-Tibetan Plateau (QTP) is famous for being the

highest and largest plateau in the world, with an average altitude
exceeding 4000m. The high altitude results in strong solar
radiation, low temperature, a large temperature difference between
day and night, dry climate, low annual precipitation, and an obvious
regional microclimate. The harsh habitats force plants living on QTP
to adapt to extreme conditions. Therefore, QTP provides an ideal
ecological environment for dissecting the genetic basis of plant
ecological adaptation. Barley (Hordeum vulgare L.) is one of the
founding crops of Old-World agriculture (Badr et al. 2000). Naked
barley is the main crop on QTP and has been used as a major staple
food by Tibetans for generations (Dai et al. 2012). It was derived
from eastern domesticated barley, which most likely passed
through northern Pakistan, India, and Nepal between 4500 and
3500 years ago and had been cultivated on QTP for at least 3500
years (Zeng et al. 2018). Naked barley is generally sown in April and
harvested from August to September, and grows once a year on
QTP. The growth period involves a summer with high levels of UV-B
radiation (approximately 65 kJ/m2 in summer) (Norsang et al. 2009)
and low temperatures (average yearly temperature 7.6 °C) (Zhang
et al. 2015). Therefore, naked barley has been domesticated under
natural and artificial selection pressures that are quite different from
those for cultivated barley from other regions (Zeng et al. 2018).
Tibetans usually sow their own harvested grain as seeds from year
to year, thus establishing farmers’ varieties (landraces) adapted to
different ecological environments across QTP.
Recently, landscape genomics has developed vigorously and has

been popularized and applied to barley (Abebe et al. 2015; Russell
et al. 2016; Lei et al. 2019; Chang et al. 2022; Caproni et al. 2023), rice
(Gutaker et al. 2020), sorghum (Lasky et al. 2015), and pearl millet
(Rhoné et al. 2020), but the cultivation of naked barley on QTP has
been still relatively scarce. In this study, our specific aim was to use a
landscape genomics approach to detect the local adaptation
characteristics of naked barley populations on QTP. Here, we
describe the population structure of naked barley landraces from
QTP. Then, we characterize the relative contributions of environ-
mental variables and geographic distance using partial redundancy
analysis (pRDA). Finally, we report on several putative adaptive loci
associated with environmental variables and identify candidates for
local adaptation-related genes. We assumed that under the harsh
environment of high altitude, cold, and strong ultraviolet radiation
on QTP, the adaptation of naked barley might be jointly regulated
by multiple genes. Detection of these signatures of local adaptation
will help in understanding the adaptation mechanism of naked
barley and other major crops on QTP.

MATERIALS AND METHODS
Sample collection and genotyping
A total of 157 naked barley landraces originating from QTP were used as
the study samples. The accessions originated from the following QTP areas:

Qinghai (51), Tibet (38), Gansu (46), Sichuan (15), and Yunnan (7) (Fig. 1A
and Table S1). In general, the 157 naked barley accessions provided a good
representation of the landraces in QTP geographically.
DNA was extracted from young leaves using the CTAB protocol (Doyle

and Doyle 1990). Genotyping-by-sequencing (GBS) was performed
following the procedure reported by Elshire et al. (2011). Briefly, genomic
DNA was digested with the restriction enzyme ApeK I (G|CWCG), barcoded
libraries were prepared to track each accession, and the DNA sequence
corresponding to the region flanking the ApeK I site was obtained using
the Illumina HiSeq 2000 platform. The raw sequence data were filtered by
SOAPnuke (http://soap.genomics.org. cn/). Then, clean sequences were
mapped to the Hordeum vulgare Hv IBSC PGSB v2 reference genome
(Mascher et al. 2017) using BWA (Li and Durbin 2009), and raw SNPs were
generated by GATK (McKenna et al. 2010). The SNPs generated by GATK
were further filtered using VCFtools ver. 0.1.13 (Danecek et al. 2011). In
total, 118,183 polymorphic sites for each accession were discovered. The
data used for the population structure analysis and pRDA were filtered as
follows: missing values ≤ 0.2, heterozygosity rate (Het. Rate) ≤ 0.2, and
minor allele frequency (MAF) ≥ 0.1. Then, the selected 28,022 SNPs were
pruned using PLINK ver. 1.9 (Purcell et al. 2007) to remove SNPs in linkage-
disequilibrium (LD) with an r2 threshold of 0.5, a window size of 150, and a
step size of 5, which eventually resulted in 3123 SNPs. For outlier analysis,
SNPs with MAF ≤ 0.05, heterozygosity rate (Het. Rate) ≥ 0.2, and missing
data rate ≥ 0.2 were removed from 118,183 SNPs. After filtering, 37,636
high-quality SNPs were retained, and they were annotated for functional
effects based on the reference genome using SnpEff (Cingolani et al. 2012).

Extraction of environmental variables
Environmental variables can be divided into two parts: geographic factors
and climate variables. The geographic factors included latitude, longitude,
and altitude. Data for the climate variables (temperature, precipitation, and
solar radiation) during the growth period were downloaded from
WorldClim (http://www.diva-gis.org/climate) for 1970–2000 at 30-s resolu-
tion, and 30 variables (Tables S2 and S3) were extracted using DIVA-GIS ver.
7.5 (Hijmans et al. 2001).

Population structure analysis
A phylogenetic tree was constructed based on the distance matrix
calculated by MEGA ver. 11 (https://megasoftware.net/), and the output
was visualized using iTol (https://itol.embl.de/) (Letunic and Bork 2016).
Genetic groupings of samples were identified with discriminant analysis of
principal components (DAPC) using the R package “adegenet” (Jombart et al.
2010). Principal component analysis (PCA) was performed with EIGENSOFT
ver. 7.2.1 (Patterson et al. 2006). Analysis of the hierarchical population
structure was done using ADMIXTURE ver. 1.3.0 (Alexander et al. 2009) for K
values from 2 to 10; for each value of K, 5 independent runs were performed.
The CV error values were calculated for K values from 2 to 10.
To analyze the genetic differentiation, we calculated Fst and AMOVA

between genetic clusters defined by population structure analysis. Fst
values were calculated using VCFtools ver. 0.1.13 and AMOVA was
undertaken using Arlequin ver. 3.5 (Excoffier and Lischer 2010).

Partial redundancy analysis
Partial redundancy analysis was performed using the function rda of the
classic R package “vegan” (Oksanen et al. 2022). We used the set of LD-
pruned SNPs (r2= 0.5) as response variables, while geography, climate, and
genetic structure were treated as explanatory variables. First, the missing
values of the SNP dataset were obtained by simple imputation, and then,
the 3123 SNPs were converted to 0, 1, and 2 forms, which represented
homozygosity for the most frequent allele, and heterozygosity and
homozygosity for the least frequent allele (Capblancq and Forester
2021). Geography was represented by the latitude and longitude of the
naked barley landraces; the climate was represented by noncollinear
climate variables at each material sampling point; genetic structure was
represented by the first three axes of the genetic PCA marked with the
same set of LD-pruned markers. To examine how much of the genetic
variation in naked barley landraces could be explained by geography,
climate, genetic structure, and the combination of the three, we used
pRDA. The variance components of RDA were partitioned by four different
models. The first model used geography, climate, and genetic structure as
explanatory variables; the second model used genetic structure as the
explanatory variable, and climate and geography as covariates; the third
model used geography as the explanatory variable and was conditioned
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on climate and genetic structure; the fourth model used climate as the
explanatory variable and controlled the remaining components (Cap-
blancq and Forester 2021). We then used pRDA to look for genotype
−environment associations, by employing a pure neutral population
structure model (controlling genetic structure) and the six noncollinear
climate indicators as explanatory variables. The adaptive loci were
determined based on their position along the Mahalanobis distance
distribution calculated for each marker and the center of the RDA space
using the first four axes; the distances were then corrected for the inflation
factor to derive p-values using a chi-squared distribution with two degrees
of freedom (Capblancq et al. 2018). The Bonferroni threshold with a
nominal p-value of 10% was used to identify outliers. The analysis was
carried out using the R package “vegan” (Oksanen et al. 2022) and outliers
were detected with the R function rdadapt.

Genome−environment association
To detect the associations between the environment and SNPs, we used
two conceptually different methods: latent factor mixed model (LFMM)
(Caye et al. 2019) and environment genome-wide association study
(EnvGWAS) (Li et al. 2019).
LFMM is a univariate genome−environment association method. This

analysis was performed using the R package “lfmm” (Caye et al. 2019).
Before performing the analysis, the 37,636 high-quality SNPs were
converted to 0, 1, and 2 forms; the missing values of the SNP dataset
were assigned by simple imputation as in RDA. The 30 original
environmental variables were used for association analysis. We chose the
first two principal components generated for genetic markers as latent
factors to estimate the population structure effect. The analysis was run
five times to increase the credibility of the association. To detect the

Fig. 1 Inference of population genetic structure. A Distribution of 157 naked barley landraces. Blue, yellow, orange, and green dots
correspond to Group 1, Group 2, Group 3, and Group 4, respectively. B The first two axes of the principal component analysis on SNP markers.
Individual genotypes were colored based on the cluster allocation of the discriminant analysis of principal components (DAPC). Colors are
explained in the legend to the right. The axes denote the relative proportions of explained genetic variance. C Individual ancestry coefficients
of 157 naked barley landraces estimated using Admixture with K= 2–6. With K= 4, blue, yellow, orange, and green bars correspond to Group
1, Group 2, Group 3, and Group 4, respectively. D Principal component analysis. E Neighbor-joining tree.
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differential adaptive loci, we used Storey’s q-values method (Storey et al.
2023) and the false discovery rate (FDR= 0.05) as the significance level. In
addition, we determined the fitting degree based on QQ plots.
EnvGWAS represents the association between SNP alleles and the

original environment. In this analysis, we used a Fixed and random model
Circulating Probability Unification (FarmCPU) implemented by a memory-
efficient, visualization-enhanced, and parallel accelerated tool (MVP,
https://github.com/xiaolei-lab/rMVP). FarmCPU is a method aimed at
overcoming the limitation of the general linear model (GLM) and mixed
linear model (MLM) in dealing with population structure, so as to generate
a higher statistical capacity (Liu et al. 2016). The EnvGWAS was run on
37,636 high-quality SNP markers and the missing values of the SNP data
were imputations by the native program. The set of SNP markers pruned
by LD at a threshold of r2= 0.5 were used to calculate the kinship and
genetic PCs. The genetic structure in the panel was corrected using 2−4
genetic PCs. The 30 original environmental traits were used as response
variables. For each trait, the most suitable number of PCs was obtained
based on the fitting degree of the QQ plots. When the SNP markers
surpassed the stringent threshold of a Bonferroni correction with α= 0.05
and the less stringent threshold of FDR= 5%, these markers were
identified as significantly associated loci. FDR was computed with the R
package “qvalue” (Storey et al. 2023). For each of these 30 test traits, we
estimated the proportion of phenotypic variance explained by each
significant SNP after FDR correction (Teslovich et al. 2010).

Detection of candidate genes
Linkage disequilibrium (LD) was evaluated as the pairwise r2 of 37,636 SNPs
using PopLDdecay ver. 3.40 (Zhang et al. 2019b) with a maximum distance
of 300 kb. The search for positional candidate genes was performed based
on the chromosome-specific LD decay distance. The candidate interval
corresponding to each significance locus was defined within the
chromosome-specific LD decay distance flanking each SNP marker that
was associated with the environmental traits. The genes located in the
candidate intervals were considered candidate genes. We used the BLASTp
function of the protein sequence analysis to find genes homologous to the
candidate genes and used the Pfam database (https://pfam.xfam.org/) to
find the function of the protein domain. Enrichment of these genes could
be performed using the “GO Enrichment” option implemented in TBtools
(Chen et al. 2020).
We used a sliding window approach (window size = 20,000 bp, step

size = 10,000 bp) to describe the pattern of variation and over-divergence
across the genome (Cortés et al. 2018a, 2018b). We used Tassel ver. 5
(Bradbury et al. 2007) to compute per-window averages of SNP density,
nucleotide diversity (pi) (Nei 1987), Tajima’s D (Tajima 1989), and
Watterson’s theta estimator (θ) (Watterson 1975). Then we calculated the
whole-genome SNP density, pi, Tajima’s D, and θ differences between
candidate intervals and no-candidate intervals in the genome window.

RESULTS
Genotyping-by-sequence
Approximately 1.31 TB of clean reads were generated by GBS, with
an average of 18,544,144 reads per sample aligned to the barley
reference genome (Mascher et al. 2017), and the genomic coverage
for each sample ranged from 2.31% to 5.12% (Table S4). The entire
set of original sequence data has been deposited in the Genome
Sequence Archive (https://ngdc.cncb.ac.cn/gsa/) in the BIG Data
Center at the Beijing Institute of Genomics (BIG), Chinese Academy
of Sciences, under accession number CRA007788. For analysis of
population genetic structure and pRDA, we selected 3123 SNPs
with MAF ≥ 0.1, Het. Rate ≤ 0.2, missing values ≤ 0.2, and overall
missingness of 6.42%; this dataset was LD-pruned with PLINK using
an r2 threshold of 0.5. In this dataset, 707 (22.64%) SNPs were
located in the exon region (Table S5). For analysis of genome
−environment association, after filtering for MAF ≥ 0.05, Het. Rate ≤
0.2, and missing data ≤ 0.2, 37,636 high-quality SNPs with an overall
missingness of 6.04% were retained. Most SNPs (49.97%) were
presented in intergenic regions, and 17.38% of the SNPs were
presented in coding regions. There were 3138 (0.83%) missense
variants, 8 (0.02%) start-loss mutations, 55 (0.15%) stop-gain
mutations, and 7 (0.02%) stop-loss mutations capable of leading
to significant functional mutations (Table S6).

Analysis of population genetic structure
To provide an unbiased representation of the existing diversity, a
smaller set of 3123 SNP markers was derived by LD pruning. The
analysis of population structure among 157 naked barley land-
races with DAPC (Jombart et al. 2010) identified four groups (Fig.
S1A). The first two principal components (PCs) axes explained
6.67% and 4.93% of the variation, respectively (Fig. 1B). At the
same time, the CV error values showed a turning point at K= 4
(Fig. S1B). We plotted a hierarchical population structure with
K= 2–6 and identified 12 mixed individuals at K= 4 (Fig. 1C),
which were mostly located at the border of the provinces (Fig. 1A).
Then, we combined the results of DAPC and population structure
analysis to ultimately divide 145 naked barley landraces into four
groups. The four groups included 48, 16, 57, and 24 individuals,
respectively. With K= 4, 64 of 145 (44.1%) individuals had a higher
ancestry coefficient of more than 0.8. There were 17 (35.4%), 9
(56.3%), 28 (49.1%), and 10 (41.7%) individuals with membership
coefficients of Q ≥ 0.8 in Group 1, Group 2, Group 3, and Group 4,
respectively. The first two PCs represented the groups correspond-
ing to the previously determined results. On the first PC axis,
Group 3 was separated from the other three groups. On the
second PC axis, Group 1, Group 4, and Group 2 could be
distinguished from each other. The confidence interval was 0.95
and the two PC axes explained 10.54% and 7.76% of the variation,
respectively (Fig. 1D). The phylogenetic tree displayed the same
hierarchical structure as the population structure analysis (Fig. 1E).
In terms of the geographical distribution of each group of naked
barley landraces, we found that the geographical sources of
accessions in Groups 1 and 2 were similar, both including the
regions of one river and two streams. The difference was that the
extension area of Group 1 covered the border of Qinghai, Tibet,
Sichuan, and Yunnan, while the extension area of Group 2 was
mainly located within Yunnan. The individuals in Group 3 were
mainly from Hehuang Valley in Qinghai and Hexi Corridor of
Gansu. The landraces in Group 4 mainly correspond to southern
Gansu. In addition, the results showed that the first and second
groups were distributed in low latitudes, while the third and
fourth groups were distributed in high latitudes (Fig. 1A), which
indicated that the distribution of the naked barley group had a
certain correlation with the latitude of its origin. From the
perspective of geographical distribution, Groups 1 and 2 could be
categorized as the southern group, while Groups 3 and 4 could be
categorized as the northern group (Fig. 1A).
To quantify the extent of genetic differentiation among the four

groups, we calculated Fst and performed AMOVA. Group 2 was
most strongly isolated from the other three groups, and there was
a moderate degree of genetic differentiation among Group 1,
Group 3, and Group 4 (Table S7). The AMOVA results showed that
genetic variation within the populations accounted for 82.81% of
the total variation, indicating a relatively rich genetic diversity
within the populations (Table S8).

Genetic variation explained by geographic and climate
The six nonredundant climate variables were identified using
ordiR2step function, srad4 (solar radiation in April), srad5 (solar
radiation in May), srad6 (solar radiation in June), and srad7 (solar
radiation in July) related to solar radiation, while prec4 (precipita-
tion in April) and tmax6 (maximal temperature in June) described
the precipitation and temperature patterns, respectively (Table
S9). The climate variables showed an extensive difference
throughout the entire sampling area, which can be observed by
PCA. The first climatic PC was positively correlated with prec4 and
negatively correlated with srad5, srad6, and srad7, accounting for
65.29% of the climatic variance on the collecting sites of naked
barley landraces. The second climatic PC was positively associated
with tmax6 and explained 17.19% of the climatic variance (Figs. 2A
and S2A). Climatic PC variables could detect the groups identified
by population structure analysis, and the distribution pattern was
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related to ultraviolet radiation, temperature, and precipitation (Fig.
2A). The southern groups (Groups 1 and 2) were cultivated in
strong ultraviolet radiation and warmer climates, while the
northern groups (Groups 3 and 4) were cultivated in low
ultraviolet radiation, and colder and dry climates. Group 2 was
cultivated in the wettest, warmest, and highest ultraviolet
radiation conditions compared with the other groups, while
Group 4 was cultivated in the coldest and lowest ultraviolet
radiation climates (Table S10).
Four different partial redundancy models were used to

validate the genomic variations accounted by genetic structure,
geographic distance, and climate variables. Model 1 indicated
that the combination of genetic structure, climate, and
geographic distance explained 24.42% of the variation (Table
S11). In this model, the biplot showed a population structure
consistent with the four groups identified by population
structure analysis, with the ratios of axes 1 and 2 being 29.36%
and 21.62%, respectively (Fig. 2B). Model 2 showed that the
influence of genetic structure accounted for almost half (45.58%)
of the explained variation (Table S11). Model 3 indicated that the
geographical coordinate was only responsible for 6.86% of the
explainable variance, while the effect of climate on the control of
neutral genetic structure and geography was significant and
accounted for up to 21.73% of the genotypic variation (Model 4),
which suggested that climate variables might play a more
significant role in explaining genomic variation (Table S11).
When controlling for genetic structure, the first RDA axis was
strongly correlated with the variables tmax6 and srad7 (Fig. S2B
and Table S12). In addition, we found that 25.83% of the
explainable variance was not directly related to genetic structure,
geography, and climate variables (Table S11).

Detecting putative adaptive loci
We regressed the set of LD-pruned SNP markers against the six
nonredundant climate variables using pRDA with control on the
genetic structure. Finally, we found only one candidate SNP. The
adaptive locus is located at 492,394,013 bp on chromosome 5H
and was identified in 5’-UTR (Table S13 and Fig. S3). In LFMM, a
total of 92 candidate SNPs were detected and associated with five
climate variables. Of the 92 loci, the largest number of loci (21)
was located on chromosome 7H, while the lowest number (8) was
located on chromosomes 4H and 5H. In addition, the largest
number of loci (42) was associated with prec5, and only one locus

was associated with tmax9 (Table S13 and Fig. S4). In total, five loci
had pleiotropic effects and all of them were only associated with
temperature or precipitation variables. Among them, four loci
were associated with precipitation variables in different months
and only one locus at 183,999,899 bp on chromosome 3H was
associated with temperature variables, tavg9 and tmax9 (Table
S13). The significant SNPs identified by LFMM showed a high ratio
of loci (55.43%) located in the intergenic regions, and 10 (10.87%)
were located in the exon (Table S14). In the EnvGWAS, the
associations were identified using the first 3 PCs, and a total of
45 signatures were distributed across the naked barley genome
that was associated with 11 climate variables (Table S13 and Fig.
S5). Of the 45 loci, 8 loci had pleiotropic effects, of which 7 loci
were only associated with temperature, precipitation, or ultraviolet
radiation in different months, while only 1 locus could be co-
associated with precipitation and ultraviolet radiation. For
example, a locus with pleiotropic effects located at
650,367,670 bp on chromosome 5H was only associated with
temperature variables, while the locus at 452,485,038 bp on
chromosome 5H was related to the five climate variables, prec6,
prec7, prec9, srad7, and srad8 (Table S13). Of the 45 significant
SNPs, 37.78% were identified in intergenic regions and 26.67%
were located in genic regions (Table S14). It is worth mentioning
that one locus at 623,414,235 bp on chromosome 7H was
identified in a stop-gained mutation (Table S13).
In general, a total of 136 loci were identified by the 3 methods,

of which 13 loci had pleiotropic effects and were associated with
more than 2 climate variables (Table S13). The largest number of
SNPs (32) was located on chromosome 7H and the lowest number
of loci (9) was located on chromosome 4H. The largest number of
loci (48) was associated with prec5 and only 1 locus was
associated with tmax9 (Table S15). Two common SNPs were
identified by LFMM and EnvGWAS: one locus at 720,353,705 bp on
chromosome 2H was associated with prec5 and was located in the
upstream gene region; the other locus at 628,314,429 bp on
chromosome 4H was associated with srad4, prec4, and srad9, and
was identified in missense mutation (Table S13). The annotation
conducted on the 136 significant SNPs showed that a high ratio of
loci (50%) was identified in intergenic regions and 15.44% were
located in genic regions. In addition, a total of 21 (15.44%) and 8
(5.88%) loci were located in the upstream and downstream gene
regions, respectively, and 5 (3.68%) loci were located in the intron
regions (Table S14).

Fig. 2 Results of principal component analysis of climate variables and RDA biplot. A Principal component analysis of the climatic diversity
of 145 georeferenced barley landraces. The axes denote the proportion of explained climatic variance; the dots’ colors represent the groups
corresponding to the results of population structure analysis, and the vectors represent the scale, diversity, and direction of drivers of
differentiation. B RDA showed that the six nonredundant climate variables were correlated with the observed population structure and might
have had selective impacts in the past. The biplot depicted the eigenvalues and length of eigenvectors for the RDA. Blue, yellow, orange, and
green dots correspond to Group 1, Group 2, Group 3, and Group 4, respectively.
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Identification of candidate genes
To find the genes corresponding to the signatures identified by
the three methods, we calculated the LD decay distance of the
seven chromosomes as a scale. The LD decay distances of the
seven chromosomes ranged from 115 to 145 kb (Fig. S6A).
Potential candidate genes were identified in the flanking sections
of significant SNPs located on chromosomes 1H–7H, which were
246 kb, 250 kb, 278 kb, 230 kb, 290 kb, 238 kb, and 234 kb,
respectively. In total, 447 known genes were mapped, and most
of them were assigned to the “molecular function,” “cellular
component,” and “biology process” categories in the gene
ontology (GO) analysis (Fig. S6B). The locus identified by RDA
was 13 kb upstream of HORVU5Hr1G063410, and the common
locus at 628,314,429 bp on chromosome 4H was 57 kb upstream
of HORVU4Hr1G084360; both the genes encode an MYB transcrip-
tion factor, which has been reported to be involved in
physiological processes such as plant growth and development
(Table 1). A locus identified by EnvGWAS at 67,766,605 bp on
chromosome 7H associated with prec7 was found to be located
34 kb downstream of HvSs1 (Table 1 and Fig. 3A), a known gene
induced by cold temperatures (Barrero-Sicilia et al. 2011). In
addition, the two loci at 497,024,530 bp and 523,730,536 bp on
chromosome 1H were both associated with prec9 and were
located 1.8 Mb and 3.7 Mb downstream of the cold stress
pathway-related genes PAH1 (Han and Carman 2017) and CHO2
(Koipally et al. 1996), respectively (Table 1 and Fig. 3B). A locus at
630,451,224 bp on chromosome 2H significantly associated with
prec5 was found to be located 3.3 Mb downstream of the cold
stress pathway-related gene CHO1 (Han and Carman 2017) (Table
1 and Fig. 3C). We also found two candidate loci associated with
prec7 that were close to cold stress genes. The locus (3H:
654,682,638) was located 1.3 Mb upstream of HvICE2 (Skinner et al.
2006) and the locus (5H: 558,372,123) was located 1.3 Mb
upstream of HvCBF2A and HvCBF4B (Stockinger et al. 2007) (Table
1 and Fig. 3A). Furthermore, three significant SNPs associated with
precipitation variables were located near the genes that regulated
the barley flowering time. Two loci at 600,493,261 bp and
600,578,658 bp on chromosome 5H were located 1.3 Mb and
1.4 Mb downstream of HvVrn-H1 (Cockram et al. 2007), and IDI7
(Yamaguchi et al. 2002) was located 0.4 Mb upstream of these two
loci (Table 1 and Fig. 3C), which was an iron ABC transporter. The
locus (7H: 38,883,869) was located 0.8 Mb upstream of HvVrn-H3
(Comadran et al. 2012) (Table 1 and Fig. 3B).
We used a sliding window analysis (window size= 20,000 bp, step

size= 10,000 bp) to explore the patterns of the seven chromosomes’
diversity. The average SNP density was 17 SNPs per million base
pairs, the average nucleotide diversity (pi) was 0.30 per million base
pairs, the average Watterson’s theta estimator (θ) was 0.18 per
million base pairs, and the average Tajima’s D was 1.87 per million
base pairs (Fig. 4A). Then, these statistics were compared between
candidate and noncandidate intervals. We found that the SNP
density of candidate intervals was one more than that of no-
candidate intervals (18 ± 1 vs. 17 ± 1); nucleotide diversity
(0.308 ± 0.088 vs. 0.300 ± 0.093) and Watterson’s theta estimator (θ)
scores (0.1841 ± 0.001 vs. 0.1839 ± 0.001) of candidate intervals were
slightly higher than those of no-candidate intervals; and Tajima’s D
scores (1.882 ± 1.342 vs. 1.776 ± 1.413) of candidate intervals were
more positive than those of-candidate intervals (Fig. 4B).

DISCUSSION
Changing environmental conditions force organisms to become
phenotypically plastic, migrate, or adapt to avoid extinction
(Rellstab et al. 2015). Local adaptation is a response to selection
pressure between populations and habitats, acting on genetically
controlled fitness differences between individuals (Kawecki and
Ebert 2004; Savolainen et al. 2013). Landscape genomics has
developed rapidly in the past decade and has been proven to beTa
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an effective method for studying the adaptive evolution of species
(Li et al. 2017). In the present study, we aimed to identify the
climatic drivers of 157 naked barley landraces and putative
adaptive loci driving local adaptation through landscape genetics
and to make predictions for candidate genes.

Correlation between the population structure of naked barley
landraces and environmental variables
Understanding the role of environmental variables in forming the
genetic structure of spatial populations within species is a major
concern in landscape genetics (Barley et al. 2015; Leamy et al. 2016).
Although such studies are popular in landscape genetics, it is still
challenging to accurately determine the role of environmental
factors in spatial genetic structure. The spatial genetic structure of
species is the result of a combination of multiple factors, such as
natural selection, genetic drift, gene flow, population demographic
history, geographical or ecological distance, geographical or
ecological isolation, and geologic events (Ohsawa and Ide 2008;
Yang et al. 2017). In this research, population structure analysis was
done using DAPC and the admixture program, supported by the

principal component analysis approach and phylogenetic tree. The
results showed a significant genetic divergence of naked barley
landraces; the 145 landraces were significantly clustered into four
genetic groups and the other 12 were mixed individuals (Fig. 1).
Group 2 exhibited a high degree of genetic differentiation with the
other three groups, while the other three groups exhibited a
moderate degree of genetic differentiation (Table S7). At the same
time, pRDA supported the division of four subgroups (Fig. 2B). The
groups detected by the above results revealed a population
structure that might relate to geography, which was generally
divided into two major distribution areas, the south and north
groups (Fig. 1A). Wang et al. (2014) also showed that the population
structure of naked barley landraces on QTP was closely related to
their geographic origin. Although the differentiation of the naked
barley landraces on QTP might be related to the geographical
origin, the interpretation of the spatial distribution of the
population structure of naked barley landraces needs to consider
natural selection under more environmental factors.
pRDA was performed to further verify the correlation between the

population structure of naked barley landraces on QTP and

Fig. 3 Identification of outliers. A The signatures identified using EnvGWAS on the 37,636 SNPs with MAF ≥ 0.05 for precipitation in July. The
dark red line refers to Bonferroni correction based on α= 0.05 (− log10 (p) = 5.877), while the green line is based on a false discovery rate with
a q-value > 0.05. The red dots indicate the significant loci. B, C The candidate SNPs identified using LFMM on the 37,636 SNP markers with
MAF ≥ 0.05 for precipitation in September and May, respectively. The dark green line is based on a false discovery rate with a q-value > 0.05,
specific for each trait. The red dots indicate the significant loci.
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environmental factors. The variance partitioning of partial RDA
models showed that the variation contributed by climate variables
was higher than the variation introduced by geographic variables
(Table S11). Previously, Temunović et al. (2012) proposed the
positive association of climate variables with genetic markers when
controlling the variance caused by geographic variation, thus
suggesting the importance of climate diversity in shaping genetic
variation. Lasky et al. (2012) detected that the climate variation
among sites of Arabidopsis thaliana origin explained the slightly
more genomic variation than geographical distance. A similar
finding was reported by Abebe et al. (2015), who found that climate
factors accounted for 37.4% of the explained variation, whereas
geographic position was considered to have less impact on the
genetic structure of barley landraces in Ethiopia. Caproni et al. (2023)
argued that climate variables had a more profound impact on barley
differentiation in Ethiopia. Furthermore, the results of the forward
selection process and climatic PCA demonstrated that the
combination of srad4, srad5, srad6, srad7, prec4, and tmax6 was
correlated with the observed population structure and might have
had a selective impact in the past (Fig. 2). In the process of naked
barley adaptation, temperature and precipitation are not only the
two most important environmental selection pressures but also the
main driving factors for the spatial distribution pattern of the
population structure of barley landraces (Yahiaoui et al. 2008;
Hübner et al. 2009; Jones et al. 2011).

Identification of adaptive loci
The detection of adaptive loci is another key issue in landscape
genetic research. Although adaptive loci and their environmental
drivers have been identified in landscape genetic research in recent

years (Di Pierroa et al. 2017; Yoder and Tiffin 2017), little attention
has been given to understanding why these loci are important.
Several recent studies hypothesize that environmental changes
related to species' ecological habitats are the key drivers of the
potential adaptive differentiation of species (Savolainen et al. 2007;
Yang et al. 2017). Whether this hypothesis is universal remains to be
confirmed. In this study, the association of climate variables with
SNP markers using pRDA, LFMM, and EnvGWAS returned several
significant loci in relation to the climate variables. We conducted a
comparison between the candidate SNP markers reported in the
literature and identified in our study against the barley Hordeum
vulgare Hv IBSC PGSB v2 reference genome (Mascher et al. 2017).
Notably, our study successfully reported a novel set of 136 SNP
markers, which have not been previously documented. The
increased number of newly identified SNP markers in our study
can be attributed to several factors that warrant consideration. First,
it is important to acknowledge that the field of naked barley
genomics still remains relatively understudied. Second, for some
reported QTLs based on SSR markers, their precise physical positions
could not be found, and some reported QTLs developed using
internal SNP arrays exhibited inconsistencies with the versions
documented in public databases (Li et al. 2020b). Lastly, it is crucial
to note that our study relied on GBS data, which inherently possess
limitations associated with lower coverage. Consequently, it is
possible that some previously reported SNP markers may not have
been successfully identified in our analysis.
Furthermore, the intersection of SNP markers identified using

three different methods was relatively less, which might be
attributed to the following reasons. First, the influence of
population structure needs to be considered. While LFMM and

Fig. 4 Patterns of the seven chromosomes’ diversity. A Patterns of the seven chromosomes’ diversity in 145 naked barley landraces based on
37,636 SNP markers. A sliding window analysis (window size = 20,000 bp, step size = 10,000 bp) was used to compute the SNP density, nucleotide
diversity (pi), Watterson’s theta estimator (θ), and Tajima’s D (from top to bottom). The red lines represented the selected intervals. Gray dashed
horizontal lines indicated genome averages. B Comparison of seven chromosomes’diversity between associated and nonassociated intervals. The
associated intervals contained at least one marker associated with climate variables. SNP density, nucleotide diversity (pi), Watterson’s theta
estimator (θ), and Tajima’s D (from left to right) were calculated in a sliding window (window size = 20,000 bp, step size = 10,000 bp).

T. Chen et al.

323

Heredity (2023) 131:316 – 326



FarmCPU algorithms attempt to account for population structure
during analysis, self-pollinating crops can produce false positives
due to a strong genetic drift. In addition, even with corrections for
population structure during computation, LFMM and EnvGWAS
may still yield false positives due to the strong correlation between
population structure and environmental factors (Chang et al. 2022).
Second, the limitations of the dataset should be acknowledged. We
selected a representative set of 157 naked barley varieties, but the
sample size of this population might be insufficient. Moreover, due
to the large and complex nature of the barley genome (5.5 GB), and
the lower coverage of GBS data, which is not powerful enough for
pinpointing the genomic targets of local adaptation (Rajendran
et al. 2022; Chang et al. 2022), we may have missed strong adaptive
loci among the SNP markers identified.

Detection of candidate genes
Although there is a causal relationship between genes and
phenotypes, dissecting the genetic components of a phenotype
is not straightforward. With improvements in genome-wide DNA
markers and genome sequencing, it has become possible to
precisely reveal the mechanisms by which genes regulate
phenotypes at the molecular level. In this study, we proposed
447 putative candidate genes associated with candidate SNP
markers that were tightly associated with environmental variables.
We annotated these genes and found that although these genes do
not directly show sensitivity to temperature, precipitation, or
ultraviolet radiation, these proteins are involved in maintaining
the stability of cell membranes, capturing reactive oxygen species,
synthesizing antioxidants, accumulating and regulating osmotic
substances, and they have shown good performance in stress
resistance potential (Fig. S6B). Fang et al. (2014) identified that the
SNP markers associated with temperature adaptation were located
in genes such as HvCbf4B, HvPpd-H1, and HvVrn-H1 through the Fst
outlier methods. Russell et al. (2016) detected several SNPs near the
flowering-related genes such as HvPRR59, HvELF4, and HvCO1.
Contreras-Moreira et al. (2019) identified two SNP markers
associated with temperature that were located in the well-known
cluster of cold acclimation CBF genes. In this study, a locus at
67,766,605 bp on chromosome 7H associated with precipitation
was found to be located 34 kb downstream of HvSs1 (Table 1 and
Fig. 3A), a known gene induced by cold temperatures. In addition,
eight SNPs were located near cold stress-related genes or
flowering-regulating genes. For example, the loci at
600,493,261 bp and 600,578,658 bp on chromosome 5H were
located not only 1.3 Mb and 1.4Mb downstream of HvVrn-H1 but
also 0.4 Mb downstream of IDI7 (Table 1 and Fig. 3C). The locus (7H:
38,883,869) was located 0.8 Mb upstream of HvVrn-H3 (Table 1 and
Fig. 3B). Caproni et al. (2023) believed that loci related to flowering
time could also explain environmental adaptation. These results
indicated that cold stress-related genes and flowering-regulating
genes might play an important role in the naked barley population,
and should be given priority consideration in studying the adaptive
differentiation of naked barley on QTP. We believe that these data
reveal preliminary insights into identification of major putative
candidate genes for adaptation to major climate variables on QTP.

CONCLUSION
In this study, we explored the climatic factors driving the genetic
differentiation of 157 naked barley landraces using 3123 SNPs in a
genotyping-by-sequencing assay. Using the pRDA model, we
revealed the significant role of natural selection (geographic
isolation and climatic factors) in shaping the population structure
of the 157 naked barley landraces. By applying outlier methods to
37,636 SNP markers, we identified potential signatures contributing
to local adaptation. Within the naked barley landraces, we identified
136 significant loci associated with temperature, precipitation, and
ultraviolet radiation, of which 68 (50%) were located in intergenic

regions and 13 had pleiotropic effects. Furthermore, we mapped
447 genes, including a known cold stress-responsive gene HvSs1.
Genes involved in cold stress and flowering time regulation were
found in proximity to eight SNP markers. The findings of this study
contribute to a better understanding of the genetic mechanisms
underlying adaptive traits and provide potential markers for
marker-assisted selection of important traits in naked barley
breeding. The identification of adaptive loci that respond to
environmental factors through landscape genomics demonstrated
how landscape genomics could help explain genetic components
and adaptive processes. In the near future, whole-genome
sequencing of naked barley landraces and the development of
the naked barley pangenome will greatly facilitate the discovery of
adaptive genes. This could contribute to naked barley breeding and
germplasm improvement and lay a foundation for discovering the
loci that contribute to climate adaptation in wheat and other
cereals on QTP. In addition, in the case of global warming,
landscape genomics can be used to assess the adaptability
potential of naked barley to the future climate. Further, breeders
can assess the agricultural biodiversity potential of local varieties to
mitigate the impact of climate change, and put forward suggestions
for naked barley breeding for local adaptation.
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