Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cauchy combination methods for the detection of gene–environment interactions for rare variants related to quantitative phenotypes

Subjects

Abstract

The characterization of gene–environment interactions (GEIs) can provide detailed insights into the biological mechanisms underlying complex diseases. Despite recent interest in GEIs for rare variants, published GEI tests are underpowered for an extremely small proportion of causal rare variants in a gene or a region. By extending the aggregated Cauchy association test (ACAT), we propose three GEI tests to address this issue: a Cauchy combination GEI test with fixed main effects (CCGEI-F), a Cauchy combination GEI test with random main effects (CCGEI-R), and an omnibus Cauchy combination GEI test (CCGEI-O). ACAT was applied to combine p values of single-variant GEI analyses to obtain CCGEI-F and CCGEI-R and p values of multiple GEI tests were combined in CCGEI-O. Through numerical simulations, for small numbers of causal variants, CCGEI-F, CCGEI-R and CCGEI-O provided approximately 5% higher power than the existing GEI tests INT-FIX and INT-RAN; however, they had slightly higher power than the existing GEI test TOW-GE. For large numbers of causal variants, although CCGEI-F and CCGEI-R exhibited comparable or slightly lower power values than the competing tests, the results were still satisfactory. Among all simulation conditions evaluated, CCGEI-O provided significantly higher power than that of competing GEI tests. We further applied our GEI tests in genome-wide analyses of systolic blood pressure or diastolic blood pressure to detect gene–body mass index (BMI) interactions, using whole-exome sequencing data from UK Biobank. At a suggestive significance level of 1.0 × 10−4, KCNC4, GAR1, FAM120AOS and NT5C3B showed interactions with BMI by our GEI tests.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Q-Q plots of the null distributions of the test statistics with two choices of beta weights and a sample size of 4000.
Fig. 2: Q-Q plots of the null distributions of the test statistic for CCGEI-O with a sample size of 4000.
Fig. 3: False positive rate of different GEI tests at nominal 0.05 level.
Fig. 4: Statistical power of test statistics with different sample sizes, proportions of rare causal variants, and scenarios for genetic and interaction effects.
Fig. 5: Manhattan plots of genome-wide GEI analyses of gene–BMI interactions in SBP.
Fig. 6: Manhattan plots of genome-wide GEI analyses of gene–BMI interactions in DBP.
Fig. 7: Q-Q plots of genome-wide GEI analyses of gene–BMI interactions in SBP.
Fig. 8: Q-Q plots of genome-wide GEI analyses of gene–BMI interactions in DBP.

Data availability

This research was conducted using the UK Biobank Resource under Application Number 44080. Corresponding R codes for testing GEI effects in this article are available at GitHub: https://github.com/jlyx53/CCGEI.

References

  • Barnett I, Mukherjee R, Lin X (2017) The generalized higher criticism for testing SNP-set effects in genetic association studies. J Am Stat Assoc 112(517):64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bays HE, Chapman RH, Grandy S, SHIELD Investigators' Group (2007) The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract 61(5):737–747

    Article  CAS  PubMed  Google Scholar 

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K et al. (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726):203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196–204

    Article  PubMed  Google Scholar 

  • Chen H, Meigs JB, Dupuis J (2014a) Incorporating gene-environment interaction in testing for association with rare genetic variants. Hum Hered 78(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Choi SH, Hong J, Lu C, Milton JN, Allard C et al. (2014b) Rare genetic variant analysis on blood pressure in related samples. BMC Proc 8(Suppl 1):S35

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    Article  CAS  PubMed  Google Scholar 

  • Cirulli ET, White S, Read RW, Elhanan G, Metcalf WJ, Tanudjaja F et al. (2020) Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts. Nat Commun 11(1):542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui JS, Hopper JL, Harrap SB (2003) Antihypertensive treatments obscure familial contributions to blood pressure variation. Hypertension 41(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Donoho D, Jin J (2004) Higher criticism for detecting sparse heterogeneous mixtures. Ann Stat 32(3):962–994

    Article  Google Scholar 

  • Ionita-Laza I, Makarov V, Yoon S, Raby B, Buxbaum J, Nicolae DL et al. (2011) Finding disease variants in Mendelian disorders by using sequence data: methods and applications. Am J Hum Genet 89(6):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Shi G (2021) Variance-component-based meta-analysis of gene-environment interactions for rare variants. G3 (Bethesda) 11(9):jkab203

    Article  PubMed  Google Scholar 

  • Johansson E, Martin LJ, He H, Chen X, Weirauch MT, Kroner JW et al. (2021) Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity. Clin Exp Allergy 51(6):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao PY, Leung KH, Chan LW, Yip SP, Yap MK (2017) Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj 1861(2):335–353

    Article  CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95(1):5–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA et al. (2012) Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91(2):224–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41(6):677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim E, Chen H, Dupuis J, Liu CT (2020) A unified method for rare variant analysis of gene-environment interactions. Stat Med 39(6):801–813

    Article  PubMed  Google Scholar 

  • Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH et al. (2022) A compressed variance component mixed model for detecting QTNs and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant 15(4):630–650

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z et al. (2016) Test for rare variants by environment interactions in sequencing association studies. Biometrics 72(1):156–164

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X (2019) ACAT: A fast and powerful p value combination method for rare-variant analysis in sequencing studies. Am J Hum Genet 104(3):410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li X, Zhou H, Gaynor SM, Selvaraj MS, Arapoglou T et al. (2022) A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods 19(12):1599–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Yang L, Romero R, Cui Y (2011) Varying coefficient model for gene-environment interaction: a non-linear look. Bioinformatics 27(15):2119–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N et al. (2017) Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol 186(7):753–761

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    Article  CAS  PubMed  Google Scholar 

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A et al. (2016) The Ensembl Variant Effect Predictor. Genome Biol 17(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615(1-2):28–56

    Article  CAS  PubMed  Google Scholar 

  • Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41(6):666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ et al. (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86(6):832–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135

    Article  CAS  PubMed  Google Scholar 

  • Ramos RG, Olden K (2008) Gene-environment interactions in the development of complex disease phenotypes. Int J Environ Res Public Health 5(1):4–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshyara NR, Scholz M (2014) fcGENE: a versatile tool for processing and transforming SNP datasets. PLoS One 9(7):e97589

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D (2005) Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15(11):1576–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields PG, Harris CC (2000) Cancer risk and low-penetrance susceptibility genes in gene-environment interactions. J Clin Oncol 18(11):2309–2315

    Article  CAS  PubMed  Google Scholar 

  • Smith PG, Day NE (1984) The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol 13(3):356–365

    Article  CAS  PubMed  Google Scholar 

  • Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14(7):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J et al. (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobin MD, Sheehan NA, Scurrah KJ, Burton PR (2005) Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 24(19):2911–2935

    Article  PubMed  Google Scholar 

  • Tzeng JY, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM et al. (2011) Studying gene and gene-environment effects of uncommon and common variants on continuous traits: a marker-set approach using gene-trait similarity regression. Am J Hum Genet 89(2):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh T, King MC (2007) Ten genes for inherited breast cancer. Cancer Cell 11(2):103–105

    Article  CAS  PubMed  Google Scholar 

  • Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F (2005) Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 45(5):907–913

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen H, Bartz TM, Bielak LF, Chasman DI, Feitosa MF et al. (2020) Role of rare and low-frequency variants in gene-alcohol interactions on plasma lipid levels. Circ Genom Precis Med 13(4):e002772

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu C, Cui Y (2013) A novel method for identifying nonlinear gene-environment interactions in case-control association studies. Hum Genet 132(12):1413–1425

    Article  PubMed  Google Scholar 

  • Wu C, Zhong PS, Cui Y (2018) Additive varying-coefficient model for nonlinear gene-environment interactions. Stat Appl Genet Mol Biol 17(2)

  • Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Jackson VE, Smith AV, Chen H, Bartz TM, Sitlani CM et al. (2021) Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function. Sci Rep 11(1):19365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Arcos-Burgos M, Baune BT, Arolt V, Dannlowski U, Wong ML et al. (2018) Low-frequency and rare variants may contribute to elucidate the genetics of major depressive disorder. Transl Psychiatry 8(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Zhang J, Sha Q, Hao H (2020) Testing gene-environment interactions for rare and/or common variants in sequencing association studies. PLoS One 15(3):e0229217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Ren J, Lu X, Ma S, Wu C (2021) Gene-environment Interaction: a variable selection perspective. Methods Mol Biol 2212:191–223

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Ku HC, Manning SE, Zhang M, Xing C (2023) A varying coefficient model to jointly test genetic and gene-environment interaction effects. Behav Genet 53(4):374–382. https://doi.org/10.1007/s10519-022-10131-w

Download references

Acknowledgements

We are very grateful to the editor and two reviewers for their insightful comments and suggestions, which helped improve the quality of this manuscript.

Funding

This work was supported by the National Thousand Youth Talents Plan.

Author information

Authors and Affiliations

Authors

Contributions

XJ and GS designed the study and conceptualized the idea for the analyses. XJ performed the analyses, analyzed data, interpreted the results and wrote the manuscript. XJ and GS supervised the study, and contributed to and reviewed the final manuscript.

Corresponding author

Correspondence to Xiaoqin Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Yuan-Ming Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Shi, G. Cauchy combination methods for the detection of gene–environment interactions for rare variants related to quantitative phenotypes. Heredity 131, 241–252 (2023). https://doi.org/10.1038/s41437-023-00640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00640-7

Search

Quick links