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Intragenomic rDNA variation - the product of concerted
evolution, mutation, or something in between?
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The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo
homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected
given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a
range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many
organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected
intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined.
In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals,
fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete
concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of
pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles,
rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic
modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic
phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional
consequences of intragenomic variation in rDNA.
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INTRODUCTION
Ribosomal DNAs (rDNAs) are best known for being the most
conserved and heavily utilized house-keeping genes, encoding in
eukaryotic organisms four types of structural ribosomal RNAs
(rRNAs), i.e. 5S, 5.8S, 18S, and 28S/26S/25S rRNA. Three of these
(5.8S, 18S, and 28S/26S/25S) are derived, respectively, from 18S-
5.8S-28S/26S/25S rDNA (in this order) that are always linked in a
single unit known as 45S rDNA in animals and 35S rDNA in plants.
By convention, the nomenclature of rRNA/rDNA is derived from
sedimentation rates of rRNA macromolecules which differ
between the groups (Hemleben et al. 2021). The 45S/35S rDNAs
will hereafter be referred as “45S rDNA(s)” and the 28S/26S/25S
rDNAs as “28S rDNA(s)” for reading convenience. In eukaryotes,
rDNAs form a multi-copy family of sequences organized in tandem
repeats across one or several loci. The individual genes are
separated by internal transcribed (ITS1 and ITS2) and intergenic
(IGS) spacers (Fig. 1). The active 45S rRNA genes constitute
important chromosomal landmarks called nucleolar organizer
regions (NORs). In mammals and in most seed plants 5S rDNA,
coding 5S rRNA, is separated from 45S rDNA at independent loci.
However, a physical linkage of 5S with 45S genes is found in some
plant groups (Garcia et al. 2009; Garcia and Kovařík 2013)
especially in early diverging plants (Sousa et al. 2020; Wicke

et al. 2011), some vertebrates (Davidian et al. 2022) and
invertebrates (Drouin et al. 1987, 1992) and is commonly
encountered amongst yeasts (Petes 1980; Szostak and Wu 1980).
In eukaryotic genomes, there is amazing sequence similarity

between rDNA units observed within the genomes, indicating that
each unit does not evolve independently from others, i.e. their
evolution is concerted (Brown et al. 1972; Zimmer et al. 1980). The
high similarity of units, i.e. homogenization, has been explained by
repeated unequal crossovers (Dover 1982) and modeled in
computer simulations almost 50 years ago, where mutations
arising in repeats are erased over generations (Smith 1974).
However, similarity does not mean complete sequence identity
and in many natural situations we witness variable levels of unit-
to-unit variation. Such variation has been reported in a broad
range of eukaryotes, including plants (Chelomina et al. 2016;
Harpke and Peterson 2006; Mayol and Rosselló 2001; Osuna-
Mascaró et al. 2022; Shao et al. 2018; Vazquez 2019; Wang et al.
2016; Weitemier et al. 2015; Xiao et al. 2010), mammals (Robicheau
et al. 2017), fish (Pinhal et al. 2011), insects (Keller et al. 2006) and
fungi (Sultanov and Hochwagen 2022; West et al. 2014) (for a
more complete list, see Supplementary Table 1). In some
genomes, mutations in coding regions render rDNA units inactive.
For example, humans carry c. 300 copies of 45S rDNA (1 C
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genome), out of which 14 (5%) are pseudogenes harboring
various mutations (Robicheau et al. 2017) and the number of
pseudogenized copies of 5S rDNA is even higher (Sørensen and
Frederiksen 1991). In the plant Cycas revoluta, it has been
estimated that the fraction of 45S rDNA pseudogenes is even
larger, reaching almost five thousand copies, c. 50% of the total
number of rDNA copies (Wang et al. 2016). Sequence variation
between rDNA units has been widely used to determine
phylogenetic inference (Poczai and Hyvonen 2010). However,
rDNA polymorphisms can provide both invalid phylogenetic
relationships (Won and Renner 2005) and overestimation of
species diversity (Sun et al. 2013). On the other hand, they can be
utilized to map evolutionary histories in hybrid species (Rauscher
et al. 2004; West et al. 2014) and resolve cryptic introgressants
(Garcia et al. 2020).
Extensive studies have investigated and speculated upon the

underpinning causes of intragenomic rDNA variations in a range
of organisms (reviewed, e.g. in Smirnov et al. 2021; Symonová
2019), but much information remains to be collated and further
developed, in particular a need for complete sequencing through
rDNA loci. In this work, we initially summarize studies showing
intragenomic polymorphisms in rDNA in animal, fungi, and plant
species, occurring widely across much eukaryotic diversity. We
then discuss biological factors influencing concerted evolution
and contributing to rDNA diversity. Finally, intra-array diversity, i.e.
nucleotide variation between the units within a single array, is
proposed as a hallmark of inefficient or even failing concerted
evolution.

INTRAGENOMIC RDNA VARIATIONS OCCUR IN DIVERGENT
GENERA ACROSS THE EUKARYOTE TREE-OF-LIFE
We collected publications by searching “intragenomic variation,
non-concerted/incomplete concerted evolution of rDNA, rDNA
polymorphism” in Google Scholar (up to 2022). This identified 136
records covering plants (32%), animals (36%), fungi (28%), protists
(1%), and some prokaryotes (3%), and involving about 300 species
in total (Supplementary Table 1). It is significant to note the
following:

(i) Frequent intragenomic variations of 45S rDNA were found in
ITS subregions (57% of all reports) (Supplementary Table 2).
This might explain the occurrence of poor support for
branch positions when using ITS markers in phylogenetic
studies (Poczai and Hyvonen 2010). For instance, Song et al.
(2012) investigated 178 plant species and found that

intragenomic variation of ITS2 was frequent, with an
average of 35 variants in each species’ genome. Exception-
ally high intragenomic polymorphism in ITS was reported
in Mammillaria (Harpke and Peterson 2006), Asclepias
(Weitemier et al. 2015), and Cycas (Xiao et al. 2010). The
extent of ITS intragenomic diversity may vary significantly
among genera and even species within the same genus
(Vazquez 2019; Weitemier et al. 2015).

(ii) Species with rDNA polymorphisms in plants, animals, and
fungi (Supplementary Table 2) do not have close
phylogenetic relationships, i.e., rDNA variations are scat-
tered across eukaryote diversity and do not show apparent
variation with genome size. Some genera had only a few
variants (indicated as Single Nucleotide Polymorphisms,
SNPs) in a few subregions, whereas other genera have
extensive variation across the whole rDNA unit (Supple-
mentary Table 1).

(iii) Variation in rDNA coding regions was generally several-
fold lower than that of non-coding regions of rDNA units
(Stage and Eickbush 2007). This is explained by the fact
that ITS (and IGS) is under relaxed selection compared to
the coding regions, the latter with high functional
constraints and lacking third codon redundancy as is
found in protein coding genes. However, both 18S and
28S rRNA genes contain subdomains, termed “core” and
“expansion” regions (Hancock and Dover 1988), differing
in the degree of sequence uniformity. Variation in
expansion regions is more frequent than in cores (Stage
and Eickbush 2007) which exhibit purifying selection
signatures (Sultanov and Hochwagen 2022). Of note,
differences between coding and non-coding regions were
more obvious when using high frequency variant call cut-
offs rather than low-frequency call cut-offs, underlining
the importance of variant calling parameters in data
interpretation.

(iv) The rDNA copy number can change rapidly over a few
generations despite being similar, on average, between
parents and offsprings (Rabanal et al. 2017 and reviwed in
Kindelay and Maggert 2023; Salim and Gerton 2019).
Indeed, shifts in copy number may significantly influence
genome size such that it is visible to selection, as shown in
the plant Arabidopsis thaliana, which has a relatively small
genome (Long et al. 2013). In addition, the size of the array
may influence non-ribosome-related functions of rDNA,
such as the maintenance of genome integrity (Kobayashi
2008).

(v) Finally, variation between units is not limited to 45S rDNA,
but it also occurs at 5S rDNA loci (Kellogg and Appels
1995; Schneeberger and Cullis 1992; Stepanenko et al.
2022; Tynkevich et al. 2022). In humans and mice, the copy
number of 5S and 45S rDNA (occupying separate loci)
seems to be harmonized between populations/strains
(Gibbons et al. 2015) while at the genus level both loci
tend to undergo independent evolution (Fehrer et al.
2021; Mahelka et al. 2013; Volkov et al. 2017) though both
are likely to be influenced by similar genetic processes,
namely amplification, recombination and elimination.

Certainly, there is no doubt of the occurrence of intra and
intergenomic variations in rDNA unit copies. However, many
observations of “rDNA diversity” need to be interpreted with
caution. For example, the employment of different technical
approaches used to identify rDNA variation may lead to results
that are differentially interpreted, and it is difficult to compare the
conclusions of these studies. For example, it is unclear to what
extent different methodologies used to quantify polymorphisms
or variations in rDNAs impact the results, e.g., it is not easy to
compare results from RFLP (restriction fragment length

Fig. 1 Scheme of 45S rDNA unit structure and their genomic
organization. The rDNA (green dots) at the nucleolar organizer
regions (NOR) at interphase and on metaphase chromosomes
represent rDNA loci, with each rDNA locus comprised of arrays of
rDNA units (green squares) separated by intergenic spacer
sequences (IGS). Each unit is comprised of the 18S, 5.8S, and 28S
rDNA subunits, separated by the internally transcribed spacers (ITS).
TSS, transcription start site.
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polymorphism), PCR-cloning, high throughput sequencing (short
and long reads) and the different bioinformatic methods used
(e.g. SNP calling parameters). Moreover, artifacts stemming from
PCR and amplification processes induce mutations or chimeras
and the extent of biased amplification of pseudogenes is not
known (Cronn et al. 2002). High throughput sequencing is also not
without its problems. For example, rDNA units are inherently GC-
rich, and contain microsatellites and other tandem repeats,
particularly in the IGS. All these features negatively influence
sequencing efficiency, resulting in low coverage of rDNA and even
erratic base calls (Fan et al. 2022; Guiblet et al. 2018). Thus, ideally,
a common methodology needs to be employed to accurately
assess and compare the efficiency of concerted evolution in
individual species.

FACTORS LEADING TO INCOMPLETE CONCERTED EVOLUTION
OF RDNAS
The incomplete concerted evolution of multigenic families results
from inefficient homogenization processes (Eickbush and Eick-
bush 2007; Liao 1999). Here we discuss possible biological
processes (Fig. 2) that influence homogenization within rDNA.

Interspecific hybridization and whole genome duplication
Interspecific hybridization linked with subsequent whole genome
duplication (WGD), termed allopolyploidy, immediately results in
rDNA heterogeneity since parental genomes contain different
rDNA variants. Persistence of parental variation generates
intragenomic heterogeneity and “incomplete concerted evolu-
tion” phenotypes. Evidence for this comes from a range of studies.
For example, in Saccharomyces cerevisiae, hybrid strains have
mosaic-like genomes and, on average, a nearly 3-fold higher rDNA
variation than non-hybrid strains with “clean” structured genomes
(James et al. 2009). In the plant Malus toringoides, a hybrid
descendent of M. transitoria and M. kansuensis, ITS sequences of
both parents are retained (Liang et al. 2015). We should bear in
mind that the timing and extent of genomic changes following
hybridization and WGD events vary between species and that
these can affect the extent of rDNA homogenization. Some
genomic alternations take place immediately with the onset of
genome merger or WGD, whereas others take many generations
(Adams and Wendel 2005). For example, only two generations
were needed to homogenize rDNA in Armeria hybrids (Fuertes
Aguilar et al. 1999). Also, significant differences exist between
allopolyploid populations of independent origin (Borowska-
Zuchowska and Hasterok 2017; Kovarik et al. 2005; Lowe and
Abbott 1996; Sochorova et al. 2016) and even between individuals
of the same origin (Bao et al. 2010) suggesting that changes at
rDNA loci may be astonishingly fast upon ‘genomic shock’
induced by interspecific hybridization. However, intragenomic

variation in IGS seems to be never entirely removed, possibly
because of the inherent instability of the elements in its sequence
structure (Lunerova et al. 2017). The adaptive significance, if any,
of variation in IGS is debatable, since except for promoters and
splicing site regions, the function of IGS is mostly unknown or
absent (Fedoroff 1979).
WGD generates a large rRNA gene dosage change in a newly

formed polyploid. It can be hypothesized that rDNA loci are
particularly sensitive to WGD since the number of active genes
needs to be harmonized with cellular requirements and organism
physiology. In support of this hypothesis, the physical elimination
of rDNA loci (both 5S and 45S) following WGD is commonly
encountered and well-documented in multiple animals (Gromicho
et al. 2006; Knytl et al. 2023; Roco et al. 2021; Symonová et al.
2017a; Tagliavini et al. 1999; Ye et al. 2017) and plant (Garcia et al.
2017; Kotseruba et al. 2003; Lim et al. 2007; Volkov et al. 2007)
polyploid systems. Significantly, in some cases, uniparental
elimination of loci has occurred even in synthetic polyploid
lineages (Guo and Han 2014; He et al. 2012; Malinska et al. 2010;
Pontes et al. 2004). Such locus loss is actually reducing
intragenomic rDNA heterogeneity following allopolyploidy and
could potentially have adaptive significance.
Figure 3 outlines short (immediate) and later divergence events

apparent in rDNA loci of hybrids and allopolyploids. Central early
players in rDNA divergence are likely to be epigenetic mechan-
isms, which appear to have dual, contrasting roles. The epigenetic
marks signposting active rDNA units (Fig. 3, right) with transcribed
genes may contribute to array homogeneity by facilitating
recombination and gene conversion. Active decondensed chro-
matin may also be vulnerable to DNA breaks leading to locus loss
and rearrangements. In contrast, repressive epigenetic marks, such
as methylcytosine (5 mC) and histone H3K9 methylation (Fig. 3,
left) may not only stabilize rDNA silencing (NOR inactivity, termed
nucleolar dominance in allopolyploids, reviewed in Borowska-
Zuchowska et al. (2023) but may also inhibit recombination
(Melamed-Bessudo and Levy 2012; Underwood et al. 2018) and
sequence homogenization. Over time, 5 mC, either passively or
actively, deaminates and converts into thymine (T) in what is
thought to be a random process. A consequence is that
recombination is further inhibited because of insufficient similarity
between the units, manifesting in an incomplete concerted
evolution phenotype.

Frequency of meiotic cycles and asexual reproduction
Organisms with asexual (apomictic) reproduction might be
expected to show low frequencies of concerted evolution due
to a reduced rate of meiotic crossovers (Pringle et al. 2000). In
support of this hypothesis, some apomictic species display
increased diversity of rDNA units compared to their sexual
counterparts (Fehrer et al. 2009; Machackova et al. 2022), although

Fig. 2 Biological processes leading to complete and incomplete concerted evolution phenotypes. Left panel: Processes increasing the
heterogeneity of rDNA arrays. Right panel: Processes decreasing their heterogeneity.

W. Wang et al.

181

Heredity (2023) 131:179 – 188



in other systems, differences are not so pronounced (Zaveska
Drabkova et al. 2009). Elsewhere, in parthenogenetic lizards (Hillis
et al. 1991) and some plant species with prevalent vegetative
propagation (e.g., strawberry, onion, iris) (Fredotovic et al. 2014;
Hizume et al. 2002; Lim et al. 2007; Liu and Davis 2011) or impaired
meiosis (e.g., dogroses, Herklotz et al. 2018) there are normal
(high) levels of rDNA homogeneity. It should be mentioned that
asexual and sexual modes of reproduction may occasionally be
switched in plants and ‘a little bit of sex may help to avoid
genomic decay and extinction of apomictic populations’
(Hojsgaard and Hörandl 2015). Thus, rDNA diversity in apomictic
species can be explained by inherited variation from past
hybridization events rather than having accumulated with
apomixis (discussed further below). Nevertheless, in the crusta-
cean genus Daphnia, different spectra of rDNA variants can arise
within 90 generations of apomictic reproduction (McTaggart et al.
2007). These observations indicate that rDNA may also be a target
of some form of somatic recombination. It has been hypothesized
that the nucleolus serves as a niche for this process due to
intensive transcription of 45S rDNA leading to double-strand
breaks (Kovarik et al. 2008). The subsequent repair process may
both increase or decrease array homogeneity (Sims et al. 2021).

The effects of life span, genetic drift and genome size
Life span may also play a role in homogenization frequency, since
herbaceous plant lineages have ITS substitution rates almost twice
as high as woody plants (Kay et al. 2006), which are much longer
lived. There is also evidence that long-lived species such as

gymnosperms display a high diversity of repeats in their genomes
(Nystedt et al. 2013). Indeed, amongst gymnosperms, the cycads
(genus Cycas) show extraordinary intragenomic rDNA heteroge-
neity, high rDNA copy numbers and high pseudogene content
(Wang et al. 2016). It has been speculated that many gymnos-
perms have expanded genomes (>18 Gb/1 C on average) because
of failing or reduced recombination processes that would
otherwise remove non-functional DNA, especially retroelements
(Leitch and Leitch 2012). Such a phenomenon might also maintain
non-functional rDNA copies. However, some short-lived animals
such as the grasshopper Podisma pedestris also show a high
diversity of rDNA repeats in its large (18 Gb/1 C) genome (Keller
et al. 2006). Species in Cycas and to a lesser extent Podisma
pedestris, occur in relatively isolated populations today (both
perhaps from much larger ancestral populations) where the
effects of genetic drift are likely to be significant. These
observations argue that long life spans, small population sizes,
large genome sizes and infrequent meiotic cycles are associated
with incomplete homogenization.

Developmental factors and premeiotic recombination
Although generally rDNA units show faithful Mendelian inheri-
tance, newly amplified variants of IGS not present in parental
lineages have been reported among siblings in animals (Cluster
et al. 1987; Reeder et al. 1976) and in lineages of synthetic
allopolyploid plants (Lin et al. 1985; Skalicka et al. 2003). While
these case examples remain unexplained, studies in Xenopus laevis
(African clawed frog) point to developmental effects. In this

Fig. 3 Hypothetical model showing complex evolutionary trajectories of rDNA in hybrids and allotetraploids. Top: parental A and B arrays
(thick horizontal arrows) are unified in a newly formed nucleus after a hybridization event. The arrays take either a non-concerted evolution
route leading to decreased homogeneity and incomplete homogenization phenotypes (left) or a concerted evolution route leading to
increased homogeneity and complete homogenization phenotypes (right). In the left panel, only array A is shown for simplicity.
Heterochromatic marks such as dimethylation of histone H3 lysine 9 (H3K9m2) (ovals in left) and cytosine methylation (“m” in left) may
contribute to increased array heterogeneity and its subsequent degeneration. The “T” in bold indicates C > T mutations.
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organism, primordial germ cells amplify huge amounts of
extrachromosomal rDNA through recombination which has cell-
to-cell sequence variation, especially in the IGS (Kalt and Gall 1974;
Bird 1978). Although extrachromosomal rDNA copies are lost
during development, some of these molecules can potentially
recombine with chromosomal rDNA arrays at the premeiotic
stage, giving rise to new variants (Haig 2021). Concerted evolution
of these variants can then increase rDNA homogeneity within the
cell and increase heterogeneity among them. Variable rDNA
genotypes arising from such a process can then be subjected to
cellular selection in development. Selection for preadult develop-
mental variation in intergenic spacers of X chromosome-linked
rDNA loci have also been proposed in Drosophila (Cluster et al.
1987) and certain rDNA unit length variants have been correlated
with development rates. In this context, Haig (2021) proposed that
non-coding IGS sequences are subject to positive intranuclear
selection for persistence and spread through arrays. It will be
interesting to investigate plants, which lack true germline and
determine if somatic mutations are transmitted to the next
generation.

The contribution of environmental factors to rDNA variation
There is some evidence that environmental factors may also
contribute to the occurrence of rDNA variation, or perhaps rDNA
variation may increase the environmental adaptability of certain
organisms. This is because rDNA variation may influence rDNA
transcription, which may in turn affect translation of protein
coding genes and cell physiology (Kurylo et al. 2018). For instance,
high level of intragenomic variation of rDNA sequences was found
and postulated to be associated with adaptability to severe
environments in extremotolerant and extremophilic microorgan-
isms (Lopez-Lopez et al. 2007). Relationships between IGS variants
and environmental factors such as drought, rainfall, soil composi-
tion and different habitats have also been documented in several
plant systems (Cluster and Allard 1995; Govindaraju and Cullis
1992; Saghai-Maroof et al. 1984; Sharma et al. 2004) and reviewed
in Nieto Feliner and Rosselló (2012). However, it remains to be
determined if variation in non-coding regions of rDNA units
modifies the transcriptional efficiency of units and if these have
adaptive significance.

GENETIC AND EPIGENETIC BARRIERS INTERFERING WITH
RDNA HOMOGENIZATION PROCESSES
As discussed in the previous section, inhibition of recombination
might lead to rDNA variation/polymorphism. Alternatively, the
same outcome can be expected if the mutation rate overcomes
the frequency of recombination. Indeed, individual units in
tandem arrays are vulnerable to degeneration and loss of
functionality, and can be blind to selection until they accumulate
to such an extent that the fitness of the organism is impaired. We
argue that concerted evolution functions as a correction
mechanism, secondary to DNA repair, that has evolved to better
control the fidelity of multigenic, tandemly repeated, families. This
may be particularly significant in multicellular eukaryotic organ-
isms whose genomes are overcrowded with repeats. It is likely
that recombination would be most frequent in a homogeneous
array than in an array that contains a diversity of repeats, since
recombination is dependent on sequence identity. In other words,
it can be hypothesized that the excision of deleterious variant(s)
by recombination is more likely if they occur in a homogeneous
array. This hypothesis is supported by several observations in
plants, where species bearing a diversity of repeats in their
genomes tend also to have tremendously expanded genome sizes
(Novak et al. 2020; Nystedt et al. 2013). Based on this theoretical
supposition, we suggest the following factors as potential barriers
hindering homogenization and giving rise to subsequent incom-
plete concerted evolution (Fig. 4):

Chromosome barriers
The number of rDNA loci could impact rDNA homogenization, since
there is evidence that interlocus homogenization is less frequent than
intralocus homogenization. Consequently, species with fewer rDNA
loci are more likely to display complete homogenization of units than
those with more rDNA loci. Indeed, the relationship between
intragenomic diversity and locus number has been demonstrated in
a number of plant species including Asclepias (Weitemier et al. 2015),
Arabidopsis (Copenhaver and Pikaard 1996; Riddle and Richards 2005),
Nicotiana (Matyasek et al. 2012) and Ephedra (Wang et al. 2016).
Nevertheless, fungi bearing relatively few rDNA copies in their
genomes show considerable heterogeneity of rDNA (Supplementary
Table 1), and incomplete homogenization may be driven by other
processes in these species (discussed further below).
Homogenization of rDNA is also likely to be influenced by the

chromosome location of rDNA loci (Brownell et al. 1983). In cotton
and tobacco allotetraploids, terminally located 45S rDNA loci were
homogenized to near completion by interlocus gene conversion
(Lim et al. 2000; Volkov et al. 1999; Wendel et al. 1995). Of note,
gene conversion seems to be the only mechanism reducing rDNA
diversity without changing locus numbers. Either terminal
positions could be (or are) more favorable to recombination, or
other positions could be (or are) unfavorable to recombination, or
both. Certainly, recombination rates are not equal across the
genome. However, active sites of recombination differ between
species. Members of the Mus genus (mouse) bear high number of
45S loci with homogenized rDNA that are almost exclusively at
pericentromeric position of telocentric chromosomes (Cazaux
et al. 2011). Also, in Northern pike (fish) the highly amplified and
homogenized 5S rDNA occur at pericentromeric positions of most
telocentric/acrocentric chromosomes (Symonová et al. 2017b).
Potentially the tendency towards homogenization could be
determined by the physical proximity of rDNA clusters to
telomeres or centromeres. The position of the individual rDNA
unit within the rDNA array may also influence their likelihood to
be homogenized. The edge-located copies in a single rDNA cluster
apparently do not undergo homogenization or undergo it at a
lower frequency, resulting in their pseudogenization in humans
(Robicheau et al. 2017) and wheat (Tulpova et al. 2022). Horizontal
transfers of DNA may also introduce rDNA variation. In grasses, an
rDNA horizontal transfer resulted in the fast erosion of an rDNA
array and its colonization by transposable elements (Mahelka et al.
2017). Conversely, another recently described rDNA horizontal
transfer from the eudicot Potentilla to the monocot Erythronium
dens-canis generated an intact and even partially expressed rDNA
array from Potentilla (Bartha et al. 2022).
Theoretical models predict that the time needed for array

homogenization increases roughly linearly with the initial size of

Fig. 4 Molecular factors influencing rDNA homogeneity. They
operate at different levels, through different mechanisms and vary
between the organisms.
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the array (Smith 1974). The number of rDNA copies within
eukaryotic genomes is variable but is positively correlated with
genome size (Prokopowich et al. 2003). Recombination, including
unequal crossing-over, can result in one recombinant chromo-
some having more rDNA copies and the other fewer copies.
Chromosomes that have too few rDNA units might be selected
against, perhaps as a result of accumulated deleterious mutations
or insufficient copy numbers of functional units. Indeed, in
allohexaploid wheat bearing multiple rDNA loci, the very small
A-genome loci are more heterogeneous compared to larger B and
D genome loci (Tulpova et al. 2022). However, too large an rDNA
array may be prone to deletion mediated by intralocus
recombination between distal units. Perhaps, there might be an
optimal size for the array functionality, given the frequency of and
position of recombination in the species.
Processes related to homology searches in DNA repair/

recombination also need to be considered. In the filamentous
fungus Neurosporra crassa, 5S rDNA unit copies can be targeted by
Repeat Induced Point mutations (RIP) in the premeiotic phase of
the life cycle (Selker and Stevens 1985). Loci exposed to RIP exhibit
high rates of G→ A and C→ T transitions, elevating sequence
divergence. The mechanism of repeat recognition for RIP involves
direct interactions between homologous double-stranded DNA
(dsDNA) segments in somatic cells (Gladyshev and Kleckner 2017).
It should be noted that, in contrast to animals and plants, 5S rDNA
does not form typical tandems in N. crassa and units are dispersed
across multiple chromosomes. Nevertheless, RIP may potentially
account for an unusually high level (18–83%) of 5S rDNA
pseudogenes in these filamentous fungi (Rooney and Ward
2005), giving rise to deleterious mutations that are reversed by
new copies that appear, consistent with the birth-and-death
model of multigene family evolution (Nei and Rooney 2005).
Whether RIP (or analogous mechanisms) accounts for rDNA
pseudogenization in other multicellular eukaryotes remains to
be determined.
Collectively, physical barriers including the position and site

numbers of rDNAs on the chromosomes, chromosome rearrange-
ments, intrinsic structure of arrays and the number of rDNA copies
within one locus, are more likely functioning together rather than
independently, and all are likely to influence recombination and
homogenization of rDNAs.

rDNA structural barriers. Natural sequence variation is found in
each of the rDNA unit subregions in most species (Fig. 1), although
it is typically several-fold higher in IGS than in the rest of the unit
(Ambrose and Crease 2011; Draisma et al. 2012; Krawczyk et al.
2017; Lunerova et al. 2017). IGS regions can be very large (up to
tens of kb in some species) and provide a natural niche for alien
sequence insertions, e.g. tandem repeat (sub-repeat) and even
functional 5S rRNA genes (Drouin et al. 1992; Galián et al. 2012).
The GC-rich minisatellites residing in many species’ IGS can be
particularly polymorphic, indeed in Cucurbita moschata (pumpkin)
IGS displays both high levels of intra- and inter-array hetero-
geneity (Matyasek et al. 2019). Similarly, most IGS polymorphisms
in human rDNA are located at CT and TG repeated sequences (Fan
et al. 2022). Indeed, much intra-genomic variation in rDNA is
primarily driven by structural elements residing in the IGS,
especially involving short tandem repeats.
Epigenetic modifications of chromatin, such as DNA methyla-

tion and histone modifications might occur in a step-wise manner
and influence for example DNA condensation, chromatin
structure, ultimately affecting recombination and homogeniza-
tion processes (Potapova and Gerton 2019). The differential
condensation of active vs inactive rDNA chromatin, which is
driven by epigenetic status of the rDNA units, will also impact
rates of recombination and hence frequency of rDNA
homogenization.

Effector gene barriers. A large number of genes control genetic
recombination, transcription, epigenetic modification, and DNA
repair. The involvement of these genes should be considered to
better understand mechanisms of incomplete concerted evolution
of rDNAs.
Recombination and transcription-relevant genes are critical for

our understanding of concerted evolution given their role in
unequal crossovers and/or gene conversion and in the transcrip-
tional activity of NORs (Cockrell and Gerton 2022). In budding
yeast, it is well known that mutations in the SIR2 (encoding
histone deacetylase) and FOB1 (a replication fork blocking factor)
genes respectively increase and decrease recombination within
rDNA repeats (Gottlieb and Esposito 1989; Kobayashi and Horiuchi
1996). Both genes exhibit multiple functions in a cell and
particularly SIR2 has been relatively well described. Briefly, SIR2
encodes an NAD+ -dependent histone deacetylase that catalyzes
and accelerates the de-acetylation of histones H3 and H4 (Blander
and Guarente 2004). Hypoacetylation of histones, limiting the
accessibility of chromatin, is a heterochromatin hallmark in a wide
range of organisms, from yeast to humans. With hypoacetylation
of histones, rDNA transcription is silenced and the sister chromatid
recombination on rDNA sites is inhibited (Smith and Boeke 1997).
This may prolong the persistence of silenced parental rDNAs after
the interspecific hybridization (Kovarik et al. 2008). Finally, a
relationship between DNA damage and rDNA instability is
evidenced by experiments in Drosophila, where experimentally
induced DNA breaks by I-CreI endonuclease altered the rDNA
copy number (Paredes and Maggert 2009).
Cytosine deamination processes are an abundant source of

genetic variability in eukaryotic cells (Duncan and Miller 1980). In
particular, methylated cytosines residues are mutation hot spots
since deamination of 5mC leads directly to T (C→ T substitution)
while deamination of C leads to C→ U substitutions (Fig. 3). Thus,
mutation load might be higher in densely methylated genomes
than in genomes with no or low levels of methylation. Indeed, the
C→ T transitions are the most abundant SNPs seen in plants
(Buckler et al. 1997) and grasshoppers (Keller et al. 2006) rDNA.
Both plants (Meyer 2011) and grasshoppers (Robinson et al. 2011)
also bear high level of methylation in their DNA.
Such unit divergence is likely to inhibit homology searches and

recombination (Fig. 3, left). In animals, cellular cytosine deami-
nase also known as (Aid)/apolipoprotein B mRNA-editing enzyme
(APOBEC3) family (Pecori et al. 2022) converts C to T (or 5 mC to T)
giving rise to T/G mismatches. These mismatches can be
recognized and ultimately removed by the methyl-CpG-binding
domain 4 (Mbd4) glycosylase or thymine DNA glycosylase (Tdg)
(Kunal et al. 2008). Hypothetically, increased cytosine deaminase
activity or base excision repair (BER) defects would elevate
mutation rates in rDNA leading to incomplete homogenization. In
Arabidopsis thaliana active demethylation is performed by the
activity of DNA glycosylase, mainly referred to as DEM/ROS1
family glycosylases and the BER pathway (Ikeda and Kinoshita
2009; Zhu 2009). Briefly, DNA glycosylases (DME/ROS1 family)
involved in the BER process first recognize and then directly
remove various substrates, including T/G mismatches that in most
cases are generated during deamination (Baute and Depicker
2008). However, the relationship between the APOBEC3 activities,
(methyl)cytosine deamination and rDNA pseudogenization
remain to be established. It should also be mentioned that
strategies dealing with mismatches caused by cytosine deamina-
tion may differ between plants and animals (Law and Jacobsen
2010).
Taken together, we suggest that screening of the genes above

and comparing across a range of species their sequences and
activities with the levels of rDNA polymorphisms, would lead to a
better understanding of the processes leading to incomplete
concerted evolution of rDNAs.
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CONCLUSIONS AND PERSPECTIVES
In the vast majority of eukaryotes, evidence of concerted
evolution is observed in rDNAs arrays. However, numerous
examples of rDNA sequence and copy number variations
observed in a wide range of genera and in different subregions
of rDNA units raise several questions, which include: can unbiased
criteria discriminate between complete, incomplete, and even
failing concerted evolution? To what extent (threshold) can
intragenomic variation/polymorphisms in rDNA units be attrib-
uted to “incomplete” concerted evolution? How might we
discriminate variants that could go to fixation (functional) from
those that contribute to array heterogeneity and are non-
functional? How strong is selection along the different sequence
categories of rDNA units? What is the level of unit-to-unit
variation within active and non-active arrays? What is the
relationship between rDNA copy number and nucleotide
variation?
In order to address these questions, it will be essential to

improve methodical approaches used for scoring rDNA variation
within and across the arrays establishing clearly defined,
biologically relevant threshold values, e.g., specific number of
variations, SNPs per DNA sequence length. MinION technology,
generating >200 kb reads, appears to be a suitable method for
long-scale analyses of rDNA arrangement and unit structure
(McKinlay et al. 2021), as was applied to the latest human T2T
genome assembly including rDNA assembly (Nurk et al. 2022).
However, its per-base error rate is still high (5–15%) (Istace et al.
2017) preventing unambiguous base calling. Therefore, assem-
bling the highly repetitive rDNAs at least covering several 18S-
5.8S-28S-IGS units (each of these “units” has a size of c. 10–50 kb in
general) with lower sequencing errors, requires with expensive
and high coverage sequencing. The HiFi PacBio technology
(PacBio Biosciences, USA) generating long reads seems to
overcome the accuracy problem (the claimed accuracy of >99%
is comparable to short reads or Sanger sequencing) and could
become a method of choice for determining single nucleotide
variation within rDNA arrays. In the course of manuscript revision a
near complete reconstruction of Arabidopsis thaliana 5S rDNA
clusters by employing the above-mentioned approach was
reported (Rabanal et al. 2022). We believe that the phenomenon
and potential mechanisms of incomplete concerted evolution of
rDNA identified here may only represent the tip of the iceberg to
fully understand the evolution and functional diversity of rDNA in
the future.
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