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petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection
and association of SNP loci from ddRAD-seq data
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Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species’ significant role in
the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is
imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While
large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly
informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA
sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of
SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering
heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected
highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced
diversity among them but showed a north–southeast gradient. Selection tests showed nine outlier SNPs positioned in different
functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations,
explaining 2.4–16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection
in the examined Q. petraea populations.
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INTRODUCTION
Forest ecosystems are undergoing unprecedented changes in
environmental conditions due to global change impacts (González
de Andrés 2019; Pouresmaeily 2022; Pörtner et al. 2022). These
changes involve the simultaneous and rapid alteration of several
key environmental parameters that control the dynamics of forests
(Thom and Seidl 2022). As a result, modifications in tree species’
dominance and distribution, productivity, and nutrient cycles are
expected (Gea‐Izquierdo and Sánchez‐González 2022; Boonman
et al. 2022; Elsen et al. 2022). It is important to determine how the
life processes of trees will be affected by new specific competitive
and climatic conditions, since large-scale, consistent monitoring of
forest ecosystems plays a key role in preparing for the impact of
extreme events (Kijowska-Oberc et al. 2020).
Economic evaluation based on the output of the large-scale

scenario model EFISCEN grouped major European tree species
according to their economic performance (https://efi.int/
knowledge/models/efiscen). Among seven groups of tree species,
Quercus petraea (Matt.) Liebl. was ranked fourth in terms of
economic importance, being of considerable productivity

(Hanewinkel et al. 2013). In addition to its economic importance,
the species is highly valued in nature conservation terms (Mölder
et al. 2019). In terms of adaptation, on one hand, sessile oak is
widely regarded as a forest species with high adaptiveness (Kohler
et al. 2020) since its drought tolerance and storm resistance are
superior to those of other common trees (Kunz et al. 2018). On the
other hand, the climate is shifting rapidly (Loarie et al. 2009) and
due to the long lifespan of oaks, shifts in the genetic composition of
populations are slow, opportunities for adaptation are limited,
making the predictions about its response to climate change
contradictory (Sáenz-Romero et al. 2017). Considering oaks adap-
tiveness, important works (Temunović et al. 2020; Lang et al. 2021;
Guichoux et al. 2013) analyse potential candidate genes for stress
responses. Available resources on functional drought candidate
genes are considered the works of Homolka et al. (2013),
Lepoittevin et al. (2015) and Rellstab et al. (2016). However, as
future adaptedness requires beneficial alleles from habitats
currently matching future climatic conditions, the importance of
collecting more information about the Balkans in terms of
adaptation of sessile oak has high priority in genetic research.
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The genetic diversity of Q. petraea has been evaluated using
different markers at different scales by numerous authors,
including but not limited to the morphological research of Streiff
et al. (1998), Bruschi et al. (2003), isoenzyme research of Zanetto
and Kremer (1995) and Kremer and Zanetto (1997); microsatellite
research of Muir et al. (2004); research using chloroplast genetic
markers of Petit et al. (1993), Bordács et al. (2002), and Mátyás and
Sperisen (2001); markers developed from EST databases (Lang
et al 2021) or by using next generation sequencing of the whole
genome (Leroy et al. 2020).
Reduced representation sequencing (Miller et al. 2007; Lewis

et al. 2007; Baird et al. 2008) is a simple, cost-effective approach
for generating large amounts of SNP data and is gaining
popularity in species conservation (Fuentes‐Pardo and Ruzzante
2017) and phylogenetic studies (Hipp et al. 2018). Such genome-
wide studies can also provide valuable information on adaptive
gene flow, selection and speciation (Hipp et al. 2014, 2018;
Cavender-Bares et al. 2015; Eaton et al. 2015; Fitz-Gibbon et al.
2017; Pham et al. 2017; Deng et al. 2018; Kim et al. 2018; Ortego
et al. 2018; Jiang et al. 2019; Blanc-Jolivet et al. 2020; Degen et al.
2021).
As we mentioned in our previous work (Tóth et al. 2021), while

sessile oak populations are well studied in Europe, the Central-
Eastern European region, including the Balkan Peninsula, with the
exception of some important works (Zanetto and Kremer 1995;
Gömöry et al. 2001; Bordács et al. 2002; Slade et al. 2008;
Neophytou et al. 2010) has been less investigated with high-
resolution and genome-wide genetic markers. The genetic
diversity in the Balkan region is generally high due to many
refugia in this area harbouring differentiated genetic lineages and
high environmental heterogeneity (Birks and Willis 2008; Gömöry
et al. 2020). For this reason, the area is considered an important
source of genetic material not only for forestry (Tzedakis 2004;
Feliner 2011; Fassou et al. 2020) but also for research on the
genomic architecture of adaptation.
Local adaptation occurs when individuals from a population

have higher average fitness due to genetic changes in their local
environment than individuals from other populations of the same
species (Savolainen et al. 2013). Exploring this phenomenon, to
identify the environmental factors responsible for genetic varia-
tion and gene variants that drive adaptation to the environment,
are the most important aims. While some models predict that
specific genes with large effects may be more important than
other loci, other theoretical works emphasize the importance of
polygenic traits in mediating local adaptation (Kawecki and Ebert
2004). However, to apply any of these approaches to elucidate the
genetic variation underlying local adaptation, generation of large
numbers of SNPs is required.
To address the need for optimal marker resolution, RAD

sequencing (Peterson et al. 2012) fulfils the requirements for
determining individual sequence genotypes that can be tuned to
sample a wide range of randomly distributed regions genome-
wide. Nevertheless, while the approach clearly permits genotyping
of multiple individuals, it has its limit, namely, the ability to
genotype for only the number and type of markers needed for the
experiment. To overcome this deficiency, RAD sequencing data
can be coupled with a reference genome or a study-specific
annotated sequence database, which is advantageous for several
reasons: improving the reliability of genotype calls (Torkamaneh
et al. 2016), reducing the required coverage for accurate
genotyping (Davey et al. 2011), providing a greater number of
SNPs, improving downstream population genetic inferences
(Shafer et al. 2017) and allowing SNP annotation with gene
information (Gurgul et al. 2019). SNP annotation can identify the
target genes of the analysis and to separate the functional vs. non-
functional diversity of the genome, with high conservation
implications (Johnson et al. 2018).

One of the major interests of current quantitative genetics is to
explore the exact number, distribution and interaction of loci
affecting the variations in adaptively important traits. The first step
in this exploration process is SNP discovery. The second is to
distinguish the molecular variation of the SNPs that are neutral
from those that are subject to selection since selection is the
predominant driver of differentiation in phenotypic traits (Darwin
1859; Rieseberg et al. 2002; Matesanz et al. 2010; Kremer and Hipp
2020). However, species have different sensitivity in terms of
growth, survival and reproduction. Changes in environment are
not always reflective on the selection signature and moreover, one
SNP could have multiple associations with different environmental
variables (Ahrens et al. 2018). Still, searching for loci under
selection with important considerations regarding the underlying
neutral genetic structure may provide valuable information on the
adaptation to local conditions, as adaptation can cause subtle
changes in allele frequencies (Rellstab et al. 2015). For this
purpose, various specific strategies have been developed. These
approaches include DNA-based, mRNA-DNA, protein-DNA, DNA-
environment, and phenotype-based methods (Vasemägi and
Primmer 2005). The FST-based method is a DNA-based approach
that uses multiple-population tests to estimate outliers (Beaumont
2005). During the identification of outlier loci by this method, it is
necessary to use different approaches to minimize the false-
positive rate since the validation of the detected outliers is highly
important (Tsumura et al. 2012). However, even by different
approaches, outlier tests make the assumption that selection
pressures differ among populations and also do not link specific
selection pressures that underlie adaptation (Rellstab et al. 2015).
Additionally, identifying outlier loci is complicated by the
occurrence of asymmetric introgression between oak species,
which may be attributed to differences in colonization history and
result in outliers retaining signatures of past introgression events
(Bierne et al. 2011; Guichoux et al. 2013). For this reason, another
way is needed to identify loci under selection, to see which of
them are correlated with environmental gradients using allele
distribution models (Joost et al. 2007; Holderegger et al. 2008;
Manel and Segelbacher 2009). The basic hypothesis of allele
distribution models is that natural selection due to heterogeneity
generates changes in allele frequencies at loci linked to selected
genes (Endler 1986; Hirao and Kudo 2004; Schmidt et al. 2008).
The highly differentiated markers assessed by these methods
become candidate genes for adaptation to the environmental
factors in question, tracing the patterns of fundamental evolu-
tionary processes: differential survival or reproduction of geneti-
cally based phenotypes in response to environmental challenges.
However, environmental association analyses also have important
limitations. Their main limit is that they might result in high rates
of false positives (Frichot et al. 2015, Rellstab et al. 2015), requiring
preliminary assessments of population structure to avoid false
positive associations (Ahrens et al. 2018, Capblancq and Forester
2021). To avoid false positives, rather than contrasting association
analyses and outlier detection methods, a more effective
approach may be to combine them and link the positively
identified SNPs to gene function using gene ontology analyses
(Rellstab et al. 2015).
In this study, we identified and investigated the genetic

variation at several stress-response loci in natural sessile oak
populations from the Central-Eastern European region. The
objectives of the study were (i) to reveal the genetic structure,
diversity and differentiation of the sampled populations; (ii) to
identify stress-response loci in our RAD sequencing dataset after
mapping paired-end reads to the Q. robur reference genome; (iii)
to explore the number and distribution of loci affecting the
variations in the adaptively important traits by FST outlier
detection and associations of SNP allele frequencies with
environmental variation; and (iv) by annotating these loci, to
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describe the biological process, molecular function and cellular
component, assuming the same function in both the resulted,
already annotated model species, and Q. petraea.

MATERIALS AND METHODS
Plant materials
Sampling was designed to cover heterogeneous climatic conditions in the
southeastern natural distribution range (CE-Europe) of Q. petraea,
extending to Bulgaria, Hungary, Romania, Serbia, Bosnia and Herzegovina,
Kosovo and Albania (Fig. S1). Altogether, 180 individuals from 18 natural
populations were sampled in the framework of a former project, aiming to
genotype a large number of samples and single-nucleotide polymorph-
isms (SNPs) from key geographic regions by RAD-seq (restriction-site
associated DNA sequencing) (Table S1). Sampling was carried out using the
classification system and taxonomic descriptors of Schwarz (1936).
Detailed information on the sampling strategy can be found in Tóth
et al. (2021).

Genotyping
A variation of RAD sequencing, that is suitable for high-confidence
genome-wide SNP loci discovery, double-digest RAD-seq (ddRAD-seq), was
used to genotype all individuals (Peterson et al. 2012). The details of the
wet-laboratory procedure, sequencing and raw sequence editing are
described in Tóth et al. (2021). Key wet-laboratory steps are provided in the
Supplementary Materials. Raw data have been deposited in the NCBI
Sequence Read Archive (SRA); BioProject ID: PRJNA699096. The dataset can
also be accessed at https://doi.org/10.5281/zenodo.3908963.

Sequence editing and genome mapping
Bioinformatics processing was carried out on a Silicon Computers (SGI)
Unix-based HPC server, allocating 40 cores (80 threads) and 38 GB of RAM.
Key steps of the bioinformatics pipeline are shown in Fig. 1.
Short read sequences (~77M) were demultiplexed and adaptor-trimmed

by using MiSeq Control Software (Illumina, San Diego, CA, USA). The
resulting sequences (69,993,001) were 3′ and 5′ end-trimmed using the
FastQ Toolkit. Reads with a mean quality score <30 and shorter than
200 bp were filtered. Computational processing of short-read data was
carried out with Stacks 2.0 (Catchen et al. 2013; Rochette et al. 2019).
Whole reads were quality filtered using a sliding-window method (15% of
read length) implemented with ‘process_radtags’ (Rochette et al. 2019).
Reads having a quality score below 90% (raw Phred score of 10) were
discarded (Catchen et al. 2011). Using ‘process_radtags’, reads were
truncated to 200 bp as a prerequisite for further processing and to avoid
the lower-quality bases present at the ends of the reads (Catchen et al.
2011). During this filtering step, 42,273 sequences were discarded. In
addition, one individual was removed from the dataset (BU2-10) since an
insufficient number of high-quality reads remained after filtering.
Paired-end reads were mapped to the Q. robur reference genome (PM1N

[haploid version]; http://www.oakgenome.fr; Plomion et al. 2018) using BWA-
MEM v0.7.17 (Li 2013), which is designed for mapping reads (70 bp to 1 Mbp)
against large reference genomes and has already been successfully used in
oak studies (Fitz-Gibbon et al. 2017; Konar et al. 2017; Ramos et al. 2018).
During mapping, parameters were set to default (Li 2013), and the
unassigned scaffolds of the reference genome were excluded. Sequences
of individual samples in SAM format were sorted with SAMtools
v1.10 software (Li et al. 2009) and then converted to a BAM file. Reads
with a mapping quality less than five were removed (MAPQ>= 5). The result
of mapping was evaluated with the SAMtools ‘flagstat’ option and used for
calculating the individual- and population-level summary statistics presented
in Table S2, Table S3 and Fig. S2. The successfully mapped sequences
(~64M), later termed RAD loci, were kept for further downstream processing.
In Stacks, the ‘gstacks’ programme reconstructs loci and creates a SNP

catalogue by incorporating paired-end reads that have been aligned to the
reference genome using a sliding window algorithm (Catchen et al. 2013;
Rochette et al. 2019). Unpaired reads were removed to avoid reads
supporting a variant aligned to only one strand (strand-bias error). The
‘populations’ programme was used to call SNPs across the whole sample
set. In this step, SNP markers with a minor allele frequency <0.05, a missing
individual rate >0.8, and significant deviation from Hardy–Weinberg
equilibrium (HWE, p < 1 × 10−5) were filtered out (Xiong et al. 2009;
Marees et al. 2018). In addition, only a single SNP per locus was kept to
have independent loci for later model-based statistical approaches. The

‘minimum number of populations’ parameter was set to 18 to identify loci
that were present in all populations.

Genetic structure and diversity
Population groups were estimated using three different methods, namely
the Bayesian model-based clustering algorithm of fastStructure v 1.0 (Raj
et al. 2014), fineRADstructure (Malinsky et al. 2018), and Principal
Component Analysis (PCA).
fastStructure was run with default settings and 100-fold cross-validation on

the 179 samples, testing for the best number of groups of populations (K)
ranging from K= 2 to 9. The Python script ‘ChooseK’, included with the
fastStructure package, was used to choose the number of groups that
maximize the log-marginal likelihood lower bound (LLBO; Beal 2003)
according to Raj et al. (2014). The mean population membership probability
was manually calculated in MS Excel based on the Q-matrix values produced
by fastStructure. fineRADstructure infers population structure via shared
ancestry based on the autosomal loci, and focuses on the most recent
coalescent events providing information on relatedness (estimates co-
ancestry), which is informative in situations of contemporary gene flow.
Individuals were assigned to populations using 1,000,000 iterations sampled
every 1000 steps with a burn-in of 100,000. Estimated co-ancestry values
were sorted according to populations and plotted as a heatmap. Principal
component analysis (PCA) was performed using the ‘factoextra’ (Kassambara
and Mundt 2017) and ‘FactoMineR‘ (Lê et al. 2008) packages in R (R Core
Team 2013) to assess genetic differentiation among populations. The results
were visualized using the ‘pophelper’ (Francis 2017) and ‘ggplot2’ (Wickham

Fig. 1 Schematic representation of the workflow used in this
study. The main bioinformatic steps are visualised, including data
processing, assembly, mapping, filtering, variant calling, reference
mapping, diversity-differentiation analyses, outlier SNP detection
and association.
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et al. 2016) packages and also plotted on a topographic map using ESRI
ArcGIS (ArcMap 10.2.2, Redlands, CA, USA).
Expected heterozygosity (He), observed heterozygosity (Ho), and the

inbreeding coefficient (FIS) were calculated for each population and for
each genetic cluster in R using the ‘adegenet’ package (Jombart and
Ahmed 2011). The significance of FIS values was calculated separately with
the ‘hierfstat’ package (Goudet 2005) using 1000 permutations. Allelic
richness (Ar) was calculated using the ‘popgenreport’ package (Adamack
and Gruber 2014). Private alleles (PAs) were counted in each population
using the ‘poppr’ package (Kamvar et al. 2014). The diversity statistics are
presented in Table S4. Genetic differentiation between populations and
clusters was measured using the fixation index (FST) (Nei 1973) by creating
a pairwise distance matrix using the ‘hierfstat’ package and visualized as a
heatmap (Fig. S3). In addition, an unweighted pair group method with
arithmetic mean (UPGMA) dendrogram was created, with 1000 bootstrap
resampling, based on the FST distances using the ‘ggdendro’ package in R
(de Vries and Ripley 2013).

FST outlier detection
Since the application of multiple selection tests (distinct approaches; e.g.,
FST frequency or Bayesian based) can outperform single tests in the
detection of loci under directional selection, we applied distinct
approaches to see if they converged and detected the same outliers
(Tsumura et al. 2012; De La Torre et al. 2019). Altogether, two tests were
performed: the PCA-based procedure implemented in PCAdapt 4.3.3 (Privé
et al. 2020) and the FST frequency-based approach used by Outflank
(Whitlock and Lotterhos 2015).
PCAdapt performs a PCA of a scaled genotype matrix and regresses all

SNPs against the PCs to obtain a matrix of Z scores. Then, the robust
Mahalanobis distances of these Z scores are computed to integrate all PCA
dimensions into one multivariate distance for each SNP. Distances
approximately follow a chi-squared distribution, thus enabling the
calculation of a p value for each SNP (Privé et al. 2020). PCAdapt was
found to be more powerful than former genome scans (Luu et al. 2017;
Privé et al. 2020). Outflank identifies FST outliers, loci with atypical values of
FST, by inferring a distribution of neutral FST using likelihood on a trimmed
distribution of FST values. In this analysis, the ‘number_of_samples’
parameter was set to 18 (a number equal to the populations sampled),
the ‘LeftTrimFraction’ was set to 0.08, the ‘RightTrimFraction’ to 0.30, and
the Hmin parameter was left at the default setting (0.1). The false discovery
rate threshold for calculating q-values first was 0.05, as set by default
(Whitlock and Lotterhos 2015), however in our final analysis a more
stringent value of 0.01 was used.
The loci containing the significant SNPs was extracted from the initial

dataset and annotated using the NCBI’s BLASTN and BLASTX services
(https://www.ncbi.nlm.nih.gov/), as an example presented in Table S5.
Finally, the type of nucleotide change, substitution type (synonymous or
non-synonymous) and product change were determined by DnaSP (Rozas
et al. 2017). The sequence of each locus can be accessed at https://doi.org/
10.5281/zenodo.7763329.

Outlier association
To test for associations of loci (SNPs) with environmental variables (GEA;
genotype–environment associations), five different regression approaches
were applied.
First, an environmental dataset of 84 monthly, seasonal, and annual

variables was created by extracting climate data from WorldClim 1.4
(current: 1960–1990 based on De La Torre et al. 2019) in 30 arcsec-
resolution (≤1 km) layers (Hijmans et al. 2005) and from ENVIREM 1.0
(current: 1960–1990) in 30 arcsec-resolution (≤1 km) layers (Title and
Bemmels 2018) using the ‘raster’ (Hijmans and van Etten 2015), ‘rgeos’
(Bivand et al. 2017), and ‘rgdal’ (Bivand et al. 2015) R packages. The
environmental variables were filtered for co-correlation between the
environmental variables using Pearson’s correlation with the ‘caret’
package in R (Kuhn 2009), and by a step-by-step VIF (variance inflation
factor) calculation, using a VIF threshold of 10, as implemented in the
‘usdm’ (Naimi 2017) and ‘fmsb’ (Nakazawa 2022) packages in R. Of the 84
variables, 14 variables were co-correlated with a r2 value below 0.75 and
with a VIF < 10, thus were subsequently used for the association analyses.
Selected environmental variables are detailed in Table S6.
Then, a matrix regression model (GDM) implemented in the ‘gdm’

package (Fitzpatrick et al. 2021), a latent factor mixed model (LFMM)
implemented in the ‘LEA’ package in R (Frichot et al. 2013), a single-factor
analysis of variance (SFA), a general linear model (GLM) (controlling for Q)

and a mixed linear model (MLM) (controlling for Q + k) using TASSEL
5.2.73 (Bradbury et al. 2007) were performed.
GDM is a non-linear distance-based approach that models GEAs and

adapts to a variable rate of change in allele frequencies along
environmental gradients (Fitzpatrick and Keller 2015; Varas-Myrik et al.
2022). The method uses flexible splines (three as default) for fitting
nonlinearity relationships between population dissimilarity and environ-
mental variables as predictors (Ferrier et al. 2007). To investigate each
outlier SNPs separately, we applied the protocol published in Fitzpatrick
and Keller (2015) using the ‘gdm’ R package (Fitzpatrick et al. 2021). To
measure population dissimilarities for each outlier SNP, locus-specific FST
between all pairs of populations were calculated, as suggested by
Fitzpatrick and Keller (2015), and using the ‘hierefstat’ R package. Best-
fitted predictor’s spline present significant curvilinear relationships and
indicates the total magnitude of change as a function and how the rate of
change varies (Fitzpatrick and Keller 2015).
The LFMM approach uses a hierarchical Bayesian mixed model that

accounts for covariation of alleles and the environment and for hidden
population structure (via the K-value in the algorithm) while maintaining a
relatively low false detection rate (de Villemereuil et al. 2014). For the
analysis, our fastStructure-detected genetic clusters were chosen for the
demographic background model. One hundred independent LFMM runs
for each value of K with 10,000 iterations of the Gibbs sampling algorithm
and a burn-in period of 5000 cycles were performed. |z | -scores for all loci
were combined using the Fisher-Stouffer method (Brown 1975), and the
resulting p values were adjusted using the genomic inflation factor (λ)
(Devlin and Roeder 1999). A false discovery rate (FDR) correction of 1% was
further used in p value adjustment using the ‘q-value’ package in R (Storey
et al. 2021).
SFA, which does not consider population structure, was performed using

each marker as the independent variable. Mean performance was
compared between allelic classes using the general linear model (GLM),
similarly to Kwon et al. (2013). The GLM (controlling for Q) and MLM
(controlling for Q + k) analyses, for correcting population structure and
relatedness, were performed using the Q-matrix (Q), which was obtained
from the former fastStructure analysis, and a kinship (k) matrix which was
calculated by the tool ‘Kinship’ with the Scald_IBS method built in TASSEL
(Bradbury et al. 2007). We applied 1000 permutations for each test, and the
p values of associated markers were tested against non-adjusted,
Bonferroni-adjusted and FDR-adjusted significance thresholds at 0.05
(conservative), 0.01 and 0.001 (stringent) significance levels. Corrections of
p values were carried out using the ‘dplyr’ (Mailund 2019) package in R.

RESULTS
Bioinformatics data processing
Our pipeline yielded 64,378,333 short read sequences after filtering
that were mapped onto the Q. robur reference genome with an
average success rate of 92.43% (Table S2, Table S3 and Fig. S2).
After processing, we reconstructed 5370 loci from an initial set of
410,445 loci, of which none had passed the filtering protocol
(missing rate of sample/population and below the minor allele
frequency (MAF) threshold). The final dataset consisted of
2,615,792 sites, in which we identified 2627 highly polymorphic
variant sites (SNPs). The mean genotyped sites per locus was 474.24
base pairs (S. E.= 1.77). The Variant Call Format (VCF) file can be
accessed at https://doi.org/10.5281/zenodo.7763329.

Population structure and diversity
The Bayesian clustering algorithm of fastStructure resulted in
K= 4 as the number of groups that maximized the log-marginal
likelihood lower bound (LLBO) for the SNP data. At this LLBO, we
identified three main genetic clusters (Clusters 1, 2 and 3) and few
introduced individuals as a separate group (Fig. 2; within SE1 and
SE3 populations). While the populations of Cluster 1 (AL, RO, SE,
KO, and BU1–3) and Cluster 3 (BU4) were clearly separated, the
individuals of Cluster 2 (populations of HU, BH1 and BH2) were
highly admixed (Fig. 2). This pattern was also evident on the co-
ancestry heat map of fineRADstructure. BU4 represented close
familial relationships as indicated by an island of high co-ancestry
values. In addition, high values were detected at the admixed
populations of HU, BH1 and BH2. PCA, by explaining 27.56% of the
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variance at PC1 vs. PC2 and 19.87% of the variance at PC2 vs. PC3,
separated Cluster 1 and 2, as well as Cluster 3 (BU4) in both
ordinations (Fig. 2). The geographic extent of detected clusters
indicated a north–southeast gradient, along which the southern-
most Mediterranean Cluster 3 (red) towards the west, Cluster 1
(yellow) became dominant in continental regions and Cluster 2
(blue) increased towards Central Europe (Fig. 2).
Genetic differentiation was generally low among populations

(FST ranging from 0.003–0.119) and among the genetic clusters
(FST ranging from 0.022–0.083). Cluster 3 showed the highest
differentiation compared to Clusters 1 and 2 (FST= 0.065 and
0.083), while differentiation between Clusters 1 and 2 was much
lower (FST= 0.022) (Fig. S3). The UPGMA dendrogram of Nei’s
genetic distance showed the closest relationship (shortest genetic
distance) between Cluster 1 and Cluster 2, while Cluster 3 was
positioned on a separate branch with a much greater genetic
distance (Fig. S3).
Moderate levels of genetic diversity were observed, and the

values were balanced at the population level (He= 0.181–0.223;

Ho= 0.166–0.210), as detailed in Table S4. Allelic richness values
were also balanced (Ar= 1.570–1.746). Interestingly, BU4 showed
the lowest diversity values (He= 0.181; Ho= 0.166; Ar= 1.570).
Significant inbreeding depression was not detected (p < 0.05).
Private alleles were absent, and only HU3 had a unique allele.
Diversity among genetic clusters was similar; only Cluster 3, which
contained only the BU4 population, showed slightly lower
diversity values (Table S4).

FST outlier detection
Outlier detection methods revealed different numbers of SNPs as
being under selection with different levels of significance.
PCAdapt identified 34 SNPs, while Outflank identified 38 SNPs.
In both approaches, thresholds were highly stringent with q-
values < 0.01 and p ≤ 0.001, respectively. However, we considered
robust outliers to be the SNPs detected jointly with the two
different approaches. In this way, nine SNPs (0.34%) located at
different loci, and at six different chromosomes (Chr. 2: 50083_64,
96506_153, 96534_88; Chr. 5: 180975_104; Chr. 6: 227780_278,

Fig. 2 Estimates of genetic structure and differentiation. a Bayesian estimation of population structure in 18 populations of Quercus petraea
using reference-mapped loci at K 2-4, as determined by fastStructure (Raj et al. 2014). The most likely number of clusters is defined by the
‘ChooseK’ method that maximizes the log-marginal likelihood lower bound (LLBO) according to Raj et al. (2014). b Estimated co-ancestry
heatmap of fineRADstructure (Malinksy et al. 2018), individuals are ordered according to the fastStructure output. c Principal component
analysis (PCA) of populations (PC1-PC2 and PC2-PC3 axes). d Geographic map of estimated population structure at K= 4 (mean population
probabilities). Population abbreviations are as explained in Table S1.
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238771_249; Chr. 7: 277051_56; Chr. 7: 277051_56; Chr. 9:
361438_297; Chr. 12: 437832_228) were considered robust outliers
(Table 1, Fig. 3). Those SNPs that were presented in NCBI
databases resided in four different functional regions. Two SNPs
found in titin homologues, one in bHLH162 transcription factor,
one in hydroxymethylglutaryl-CoA synthase coding region, and
one in a hypothetical protein coding region (possible double-
strand damage repair) (Table 2). Functional regions with known
CDS parts (96506_153, 96534_88, 277051_56) consisted three
non-synonymous substitution (Table 2).

Genotype–environment associations
GEAs were determined by five different methods, including GDM,
LFMM, SFA, GLM where population membership (Q) served as a
covariate, and last MLM where the average relationship was
estimated by kinship (Q + k). Table 3 presents the significance
levels at p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for all SNPs for each
analysis.
By using the nine robust SNPs, a total of 102 significant marker-

environment associations were detected, 21 with GDM, 48 with
the LFMM, 9 with SFA and 14–10 with the GLM and MLM.
However, similar to outlier analysis, we considered only those
marker-environment associations that were detected with at least
two different methods. Among the 53 jointly detected associa-
tions, the significance levels were different and ranged from 0.05
to 0.001.

The GDM method found relationships only for four SNPs
(180975_104, 227780_278, 277051_56, 361438_297). In these
relationships, PETCQ, prec6_16, bio3_16 were the most frequent,
and presented the highest relative importance (‘highest magni-
tude of biological change’; Fitzpatrick and Keller 2015) (Fig. 4). The
rate of change in allele frequencies (shape of function) were
different in each environmental variable. For all SNPs, in
decreasing importance, PETCQ showed rapid change in allele
frequencies at the beginning of the spline, while no change
elsewhere. On the other hand, prec_6_16 showed rapid turnover
at the end of the gradient. In case of bio3_16, the frequency of
change was gradually increasing (Fig. 4).
The LFMM revealed associations for all nine outlier SNPs, in

these |z | -score values ranged from 2.232 to 6.414 (S.D.: 4.182). The
highest |z | -score values (i.e. the highest significance of an
environmental effect) were found for three SNPs, namely for
227780_278, 277051_56 and 361438_297, in association with
PETCQ (6.036 and 6.289), prec6_16 (6.022) and aridity (6.414). The
single-factor analysis (SFA) was similar to LFMM, where the LFMM |
z | -scores values were high, the SFA adjusted R2 values were also
high. Thus, the highest R2 values were detected for 227780_278,
277051_56 and 361438_297, in association with PETCQ (0.166 and
0.219 R2), prec6_16 (0.167 R2) and aridity (0.189 R2), and explaining
16.6–21.9% of variance (Table 3).
The GLM and MLM detected much less numbers of associations

(14 and 10), also the significance thresholds were largely different.

Table 1. Summary of outlier SNPs detected jointly by PCAdapt (Luu et al. 2017) and Outflank (Whitlock and Lotterhos 2015).

PCAdapt Outflank

SNP p-value q-value -Log10(p-value) He FST q-value p-value

50083_64 6.110E-07 1.665E-04 6.214E+ 00 0.125 0.830 0.000E+ 00 0.000E+ 00

96506_153 3.770E-08 1.620E-05 7.423E+ 00 0.165 0.227 2.584E-04 5.086E-06

96534_88 7.720E-09 1.080E-05 8.113E+ 00 0.190 0.217 6.549E-04 1.450E-05

180975_104 1.810E-08 1.200E-05 7.742E+ 00 0.251 0.237 2.574E-04 4.855E-06

227780_278 8.270E-07 1.969E-04 6.083E+ 00 0.338 0.233 1.968E-04 3.551E-06

238771_249 2.240E-08 1.200E-05 7.650E+ 00 0.115 0.908 0.000E+ 00 0.000E+ 00

277051_56 1.010E-08 1.080E-05 7.997E+ 00 0.296 0.313 5.945E-07 8.775E-09

361438_297 1.440E-05 1.618E-03 4.843E+ 00 0.371 0.264 1.427E-05 2.224E-07

437832_228 2.880E-06 4.415E-04 5.540E+ 00 0.132 0.200 3.994E-03 1.015E-04

Fig. 3 Detection of loci being under selection (outlier SNPs). Loci marked with yellow are significant for the specific approach, and loci with
red are common among different approaches, as indicated in Table 1, and thus considered to be robust outliers. a The PCA-based method
implemented in PCAdapt by Luu et al. (2017), and b the FST frequency-based method by Outflank (Whitlock and Lotterhos 2015).
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The GLM detected associations with significant FDR and
Bonferroni-adjusted thresholds (p values ranging from 0.05 to
0.001), however, the same associations detected by MLM, were
not significant with FDR and Bonferroni-adjusted significance
thresholds. The highest R2 values were detected for 50083_64 and
238771_249 in association with mCBTemp10 (both 0.150 R2).
MLM, similarly to LFMM and SFA, revealed the highest significant
association between 277051_56 and PETCQ (0.045 R2).
Altogether, the environmental variables explained 2.4–16.6% of

the genetic variation (Table 3; average adjusted R2). SNP
50083_64, 180975_104 and 227780_278 was explained chiefly
by PETCQ (avg. R2adj= 10.7, 10.1 and 16.6%), 96506_153,
96534_88, 361438_297 and 437832_228 by aridity (avg. R2adj=
10.8, 11.6, 10.9 and 14.4%), 238771_249 by mCBTemp10 (avg.
R2adj= 8.2%), 277051_56 by bio8_18 (avg. R2adj= 11.2%). By
summarizing the environmental predictors, in decreasing order,
aridity (81.7%), PETCQ (79.9%), bio8_16 (51.9%) and prec6_16
(49.7%) explained the highest amount of the genetic variation,
thus considered to be the most important (Tables 3, S7).

DISCUSSION
Previous studies on Q. petraea suggest on the one side generally
high genetic diversity in the Balkan region due to the large
number of refugia in this area and the high environmental
heterogeneity (Zanetto and Kremer 1995; Gömöry et al. 2001;
Tzedakis 2004), on the other side differential population responses
to climate change (Sáenz-Romero et al. 2017). Although popula-
tions possess characteristics that can facilitate adaptation (prolific
seed production and masting, high levels of genetic diversity,
extensive gene flow) (Kremer 2016), they are becoming detached
from the local climatic conditions to which they have previously
adapted (Cheaib et al. 2012).The results of our study may provide
information on how, despite continuous gene flow, populations
from this area continued to differentiate as they successfully
adapted to their new distinct environments. This may also suggest
that adaptation to the climate might have occurred via many
changes in the frequency of alleles for genes related to moisture
deficit, temperature, and precipitation.
One important step of our method consisted of mapping our

short reads to the Q. robur reference genome. Restriction-site-
associated DNA sequencing or RAD-seq is increasingly used to
identify large numbers of single-nucleotide polymorphisms
(SNPs) (Allendorf et al. 2010; Davey and Blaxter 2010). Certainly,
for the identification of genes under selection, the functional
annotation of these genes and their location in the species’
genome are possible only through sequencing of the reference
genome of a given, or a closely related species. Lacking a Q.
petraea genome, we mapped our paired-end reads to the
haploid version of the Q. robur genome (PM1N; http://
www.oakgenome.fr; Plomion et al. 2018). After filtering, the
short-read sequences were mapped onto the genomic reference
with an average success rate of 92.43%. This percentage was
relatively high considering that López de Heredia et al. (2020)
managed to align their Quercus suber L. filtered reads to only
67.8% of the available Q. suber genome assembly. However,
since PstI/MspI were selected as restriction enzymes in both
studies, the mapping difference can be attributed to the
different types of sequencing [single-end in the work of López
de Heredia et al., paired-end in the work of Tóth et al. (2021)].
Another reason for the difference may be attributed to the
different lengths and quality scores of the reads [mean quality
score of at least 30 and length of at least 200 bp in our previous
work, 20 and at least 20 bp in the work of López de Heredia et al.
(2020)]. Finally, we must not forget the fact that the reference
genomes assemblies were also different. Mapping our reads to
the Q. robur genome allowed precise location of many of the loci
in specific genes of known function.Ta
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Population structure and diversity
Three main clusters were identified based on our results. The
geographic extent of all clusters indicated a north–southeast
gradient. The first cluster (Cluster 1) (yellow cluster in Fig. 2a) is
dominant in continental regions, while the second cluster
(Cluster 2) (blue) was found mainly in Central Europe (Fig. 2d).

The southernmost Mediterranean group proved to be the third
cluster (Cluster 3) (red) positioned at the border of Black Sea
region. This geographical distribution corresponds with results
from the work of both Zanetto and Kremer (1995) and Petit et al.
(1993), in which longitudinal appeared to be more pronounced
than latitudinal gradients. Regarding current knowledge of

Table 3. Outlier SNP markers associated with environmental variables using GDM, LFMM, SFA, GLM and MLM regression approaches.

SNP Env. GDM LFMM SFA GLM MLM Avg.

(Marker) variable (Imp.) (|z|-score)sig. (adj. R2)sig. (adj. R2)sig. (adj. R2)sig. (adj. R2)

50083_64

~ bio15_16 ns 2.875** 0.050*f 0.063***f ns 0.057

~ minTempWarm ns 2.232* ns 0.044***bf 0.019** 0.032

~ mCBTemp10 ns 3.865*** 0.090***bf 0.150***bf 0.016* 0.085

~ PETCQ ns 4.199*** 0.107***bf ns ns 0.107

~ PETseas ns ns ns 0.065***f 0.026** 0.046

96506_153

~ prec6_16 ns 2.948*** 0.055*f ns ns 0.055

~ bio8_16 ns 2.603** 0.062*f ns ns 0.062

~ aridity ns 4.311*** 0.108***bf ns ns 0.108

~ PETCQ ns 3.206** 0.076**f ns ns 0.076

96534_88

~ prec6_16 ns 3.249*** 0.062*f ns ns 0.062

~ bio8_16 ns 2.984** 0.081**f ns ns 0.081

~ aridity ns 4.415*** 0.116***bf ns ns 0.116

~ PETCQ ns 3.721*** 0.110***bf ns ns 0.110

~ PETWetQ ns 2.695** 0.061*f ns ns 0.061

180975_104

~ prec6_16 0.116 3.112*** ns ns ns -

~ bio8_16 0.050 2.887** ns ns ns -

~ alt ns 3.675*** 0.064*f ns ns 0.064

~ aridity 0.055 4.593*** 0.095***bf ns ns 0.095

~ PETCQ 0.262 4.716*** 0.101***bf ns ns 0.101

~ PETseas 0.105 2.895** ns ns ns -

227780_278

~ prec6_16 0.279 4.587*** 0.127***bf ns ns 0.127

~ bio3_16 0.204 2.262* 0.078**f ns ns 0.078

~ bio8_16 0.060 5.041*** 0.115***bf ns ns 0.115

~ aridity 0.042 4.857*** 0.128***bf ns ns 0.128

~ PETCQ 0.322 6.036*** 0.166***bf ns ns 0.166

~ PETWetQ 0.090 4.430*** 0.095***bf ns ns 0.095

238771_249

~ bio15_16 ns 3.017** 0.059**f 0.077***bf 0.021* 0.052

~ aridity ns 2.669** 0.045*f ns ns 0.045

~ minTempWarm ns ns ns 0.034**f 0.013* 0.024

~ mCBTemp10 ns ns 0.082***bf 0.150***bf 0.015* 0.082

~ PETCQ ns 4.341*** 0.118***bf 0.022*f ns 0.070

~ PETseas ns ns ns 0.048**f ns 0.048

277051_56

~ prec5_16 ns ns ns 0.064***bf 0.025** 0.045

~ prec6_16 0.253 3.608*** 0.068*f ns 0.017* 0.043

~ bio3_16 ns 2.505* 0.068*f 0.055*f 0.031* 0.051

~ bio8_16 ns 4.772*** 0.112***bf ns ns 0.112

~ alt 0.021 3.517*** 0.060*f ns ns 0.060

~ aridity ns 3.951*** 0.076**f ns ns 0.076

~ PETCQ 0.423 6.289*** 0.219***bf 0.045***f 0.045*** 0.103

~ PETseas 0.036 2.878** ns ns ns -

~ PETWetQ 0.094 4.325*** 0.088**bf ns ns 0.088

361438_297

~ prec6_16 0.703 6.022*** 0.167***bf 0.031*f ns 0.099

~ bio8_16 0.097 3.678*** 0.080**f ns ns 0.080

~ alt ns 3.150** 0.073**f ns ns 0.073

~ aridity 0.157 6.414*** 0.189***bf 0.029*f ns 0.109

~ PETCQ 0.113 3.491*** 0.066*f ns ns 0.066

~ PETseas ns 2.901** 0.078**f ns ns 0.078

~ PETWetQ 0.090 3.448*** 0.068*f ns ns 0.068

437832_228

~ prec6_16 ns 3.795*** 0.111***bf ns ns 0.111

~ bio8_16 ns 3.235** 0.069*f ns ns 0.069

~ alt ns 3.248** 0.071*f ns ns 0.071

~ aridity ns 4.600*** 0.140***bf ns ns 0.140

~ PETWetQ ns 3.014** 0.060*f ns ns 0.060

SNPs that are associated with at least two different methods are marked in dark grey.
*p ≤ 0.05.
**p ≤ 0.01.
***p ≤ 0.001.
b: Bonferroni adjusted, p ≤ 0.05.
f: FDR adjusted, p ≤ 0.05.
ns non-significant.
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potential glacial refugia, in case of oaks, the western Balkans
constituted a major refugium during the glacial periods (Bennett
et al. 1991; Bordács et al. 2002; Petit et al. 2002). Recolonisation
pathways probably followed a north-western postglacial migra-
tion route from the Balkans and Black Sea refugia. (Zanetto and

Kremer 1995). These recolonization patterns may explain not only
the north–southeast gradient but also the tendency to increase
in probability towards the west of Cluster 3. The highly admixed
nature of Cluster 2 (populations of HU and BH) could be a
consequence of a transition zone, shown not only by Hewitt

Fig. 4 Associated outlier SNPs revealed by the matrix regression approach of GDM (Fitzpatrick et al. 2021). a Heatmap of the relative
importance of each environmental predictor (darker colours indicate higher importance) and the relationship of ecological and genetic
distances (left: relationship between predicted ecological distance and observed compositional dissimilarity; right: predicted versus observed
genetic distance). b–e The three most important environmental predictors for each of the four outlier SNPs (180975_104, 227780_278,
277051_56, 361438_297), where associations were detected. Variable abbreviations are as explained in Table S6.
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(1993) but also by Zanetto and Kremer (1995). The fact that
Cluster 3 not only showed the highest differentiation but was
also positioned on a separate branch with a much greater
genetic distance from Clusters 1 and 2 also supports this
assumption. We observed moderate levels of genetic diversity
and allelic richness, with balanced values at the population level
and no private alleles. As distribution of genetic diversity within
and among populations is a function of the rate of gene flow
(Bruschi et al. 2003), in our opinion this result can be attributed to
different processes. First, woody species with large geographic
ranges, outcrossing breeding systems, and wind-facilitated seed
dispersal show less variation among populations than woody
species with other combinations of traits (Hamrick et al. 1992;
Hamrick and Godt 1996). Another possible interpretation of the
observed differentiation pattern involves consequences of rapid
migration. Oak species that expanded rapidly over large
distances usually exhibit widely distributed haplotypes (Pham
et al. 2017; Sork et al. 2016). Introgression of genes from Q.
pubescens may be another reason the lack of differentiation
(Bruschi et al. 2003). Rare alleles might have been lost because of
selection pressures or during population bottlenecks (Allendorf
1986). Being associated with decreased fitness, selection against
rare alleles occurred where viability selection was strongest at
optimal growing sites (Bush and Smouse 1992). Of all popula-
tions, BU4 showed the lowest diversity values. Our sampling in
Bulgaria was designed to cover the western Balkan, Rila, Rhodope
and Strandzha Mts., geographic regions corresponding to the
major genetic clusters. The BU4 population originates from the
Strandzha Mts., as can be traced from the EUFORGEN distribution
map (http://www.euforgen.org/species/quercus-petraea/), and
this population is located at the eastern edge of the Black Sea
refugium and in the eastern part of the current European
distribution range of the species. Additionally, individuals of this
region are considered to be a distinct subspecies in the Euro
+Med Plantbase (http://ww2.bgbm.org/EuroPlusMed/query.asp)
and on The Plant List (http://www.theplantlist.org), Q. petraea
subsp. iberica (Steven ex M. Bieb.) Krassiln., and Schwarz (1993)
considered it a separate species: Q. polycarpa Schur. (Schwarz
1993). The low level of intrapopulation diversity of the BU4
population may be explained by genetic drift (Newman and
Pilson 1997), anthropogenic activities or by the successive
bottlenecks that occurred at the head of the migration front
(Dumolin-Lapegue et al. 1997), which may have reduced diversity
during the eastward expansion from this refugium. It should also
be noted that the lower genetic diversity observed could be the
consequence of the stringent filtering strategy that is commonly
applied for SNP filtering and quality control in GEA studies
(DeSilva and Dodd 2020).

Biological functions of outliers under selection
Local adaptation in natural populations may arise from differential
selection pressures across heterogeneous environments (De La
Torre et al. 2019). Therefore, different combinations of alleles
might be favoured in these different environments and main-
tained as stable polymorphisms or experience partial sweeps due
to selection acting on already standing variation (Hermisson and
Pennings 2005). Our sampled populations experience different
environmental conditions with different adaptations and selection
pressures specific to their local habitats. Thus, we presumed that
these populations evolve traits that provide an advantage in their
local environment, and we performed different outlier detection
methods, as these analyses can screen numerous markers in the
genome to identify candidate genes for further investigation
(Narum and Hess 2011). During our survey, as robust outliers, we
detected nine SNPs located at different loci at six different
chromosomes, and the FST values computed suggested positive
(diversifying) selection. Those SNPs that were presented in NCBI
databases resided in four different functional regions. Two SNPs

found in a gene encoding the uncharacterized protein 115976593
(NCBI ID), one in bHLH162 transcription factor, one in
hydroxymethylglutaryl-CoA synthase coding region, and one in
a hypothetical protein coding region (possible double-strand
damage repair). No biological function can be associated to
uncharacterized proteins, however, bHLH transcription factor is
related to NPF genes (Zhao et al. 2021), which have functions in
stomatal opening and contributes to drought susceptibility in
Arabidopsis sp. (Guo et al. 2003). Hydroxymethylglutaryl-CoA
synthase has role in the biosynthesis of secondary metabolites
under drought stress (Haider et al. 2017), by regulating the
synthesis of mevalonic acid, the precursor of isoprenoid com-
pounds (Bach 1986), that plays a role in various physiological
processes, including cell membrane fluidity, plant defence under
stress caused by environmental factors such as drought or high
temperatures (Dani et al. 2014; Tattini et al. 2015).

Precipitation as the strongest possible determinant of
adaptation in Quercus petraea
Drought stress and temperature variation impose limitations on
the survival, growth, and productivity of many forest tree species,
and the survival of sessile oak is also affected by these two
climatic factors. Evidenced by high level of genetic differentiation
observed in common garden experiments, oak populations have
responded to climatic selection during historical global warming
after the last glaciation (Kremer et al. 2014; Torres-Ruiz et al. 2019).
Previous studies have also suggested differential responses to
temperature and moisture across geographically distant popula-
tions of the species (Bruschi et al. 2003; Müller and Gailing 2019;
Mátyás 2021), with higher population differentiation, for example,
compared to that of Quercus robur L. (Kremer and Petit 1993).
In our study, nine SNPs (0.34%) showed signatures of selection

according to differentiation outlier analyses. The observed proportion
was lower than obtained in other studies on temperate broadleaf
forest trees (Derory et al. 2010; Alberto et al. 2013; Csilléry et al. 2014;
De Kort et al. 2014; Sork et al. 2016; Temunović et al. 2020).
Caution must be exercised when interpreting our results, taking

into account the potential for false positive selection signatures
(Excoffier et al. 2009; De Villemereuil et al. 2014; Whitlock and
Lotterhos 2015; Hoban et al. 2016) and past introgression events
(Bierne et al. 2011; Guichoux et al. 2013). Should be also noted
that the proportion we obtained from SNPs detected by two
different approaches, including our restriction site-associated DNA
sequencing method, was based on only a few SNPs per gene
region (Luikart et al. 2003). Our results revealed 53 associations
between markers and environment, with significance levels
ranging from p ≤ 0.05 to 0.001. The variations seen in the analyses
are due to differences in the methods used to account for
demographic history or neutral genetic structure, which results in
different statistical strengths for different sampling schemes or
complicated demographic situations (De Mita et al. 2013; Forester
et al. 2018; Aguirre-Liguori 2021). Altogether, the environmental
variables explained 2.4–16.6% of the genetic variation. SNP
50083_64 (hypothetical protein), 180975_104 (transcription factor
bHLH162), 227780_278 (F-box protein At-B) and 437832_228
(hydroxymethylglutaryl-CoA synthase) associated with aridity,
238771_249 (uncharacterized protein) with mCBTemp10. By
summarizing the environmental predictors, in decreasing order,
aridity (81.7%), PETCQ (79.9%), bio8_16 (51.9%) and prec6_16
(49.7%) explained the highest amount of the genetic variation. In
general, our analyses discovered stronger connections with
environmental changes than prior studies. Although it is challen-
ging to compare with our study owing to the use of distinct
markers, analytical techniques, and climate variables utilized,
Homolka et al. (2013) found significant population differentiation
for three genes with strong correlations with the local
temperature–precipitation regime, Neophytou et al. (2015) did
not detect any significant relationships between the considered
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environmental variables and neutral genetic variation, only
Rellstab et al. (2016) found 521 associations in 224 SNPs. The
different signal power we noticed may be somewhat attributable
to methodological factors, given that our analysis employed a
different dataset and statistical methods than Homolka et al.
(2013) and Neophytou et al. (2015). Additionally, our selection of
SNP loci was more narrowly focused on climate factors than
Rellstab et al. (2016), since we aimed for genes likely implicated in
traits that are susceptible to climate shifts, especially drought-
related ones. Our result also provide evidence for adaptation to
drought detected in the provenance study of Bert et al. (2020),
who observed provenances originating from sites with wet
summers displaying the strongest responses to summer drought,
particularly in the driest common garden.
The above list of significant marker-environment associations

clearly shows, that most variables are linked to aridity. To validate
functional mechanisms underlying selection signatures, it is
generally recommended to use annotations, which can provide
additional support beyond relying solely on FST outlier and
environmental association analyses, which are only correlative
measures (Ahrens et al. 2018). As we previously mentioned when
annotating the genes with significant environmental associations,
according to literature bHLH transcription factor (marker
180975_104) is related to functions in stomatal opening and
contributes to drought susceptibility (Babitha et al. 2015; Qian
et al. 2021), marker 227780_278 resides in a region encoding
F-box protein At-B, whose transcription is induced by abscisic acid,
which regulates the regulation of abiotic stress responses (Sah
et al. 2016; Park and Kim 2021) and marker 437832_228 is in a
region encoding hydroxymethylglutaryl-CoA synthase with role in
the biosynthesis of secondary metabolites under drought stress
(Ghasemi et al. 2019; Rogowska and Szakiel 2020). By matching
gene functions with relevant climatic factors we can provide
biological significance to the genetic basis of local adaptation and
the impact of climate on divergent selection among our studied
sessile oak populations. Nonetheless, assigning functions to
specific candidates in nonmodel species should be approached
with caution, and further association genetics and functional
studies are needed to validate their role in adaptive traits, as
recommended by Pavlidis et al. (2012).

CONCLUSION
While sessile oak populations are well studied in Europe, in the
Central-Eastern European region, including the Balkan Peninsula it is
seldom tested with genome-wide genetic markers. The identifica-
tion of genetic variants within populations of this region may hold
the key to facilitating the sessile oak’s adaptation to the deleterious
effects of modern climate change, thus underscoring the crucial
significance of further investigation in this field. Through our
examination, we found molecular evidence indicating that impor-
tant climate-related factors, such as drought, may have influenced
the adaptive divergence of sessile oak populations in the Central-
Eastern European region. Moreover, our results suggest that these
populations may contain beneficial genetic variants that could aid
the species in responding to the rapidly changing climate. In light of
these findings, it is vital that European forest tree species
conservation and management programmes incorporate the
Central-Eastern European sessile oak populations, including facili-
tated gene flow, into their strategies to combat the significant threat
that climate change poses to forest tree populations.
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