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Indigenous Iranian horse breeds were evolutionarily affected by natural and artificial selection in distinct phylogeographic clades,
which shaped their genomes in several unique ways. The aims of this study were to evaluate the genetic diversity and genomewide
selection signatures in four indigenous Iranian horse breeds. We evaluated 169 horses from Caspian (n= 21), Turkmen (n= 29),
Kurdish (n= 67), and Persian Arabian (n= 52) populations, using genomewide genotyping data. The contemporary effective
population sizes were 59, 98, 102, and 113 for Turkmen, Caspian, Persian Arabian, and Kurdish breeds, respectively. By analysis of
the population genetic structure, we classified the north breeds (Caspian and Turkmen) and west/southwest breeds (Persian
Arabian and Kurdish) into two phylogeographic clades reflecting their geographic origin. Using the de-correlated composite of
multiple selection signal statistics based on pairwise comparisons, we detected a different number of significant SNPs under
putative selection from 13 to 28 for the six pairwise comparisons (FDR < 0.05). The identified SNPs under putative selection
coincided with genes previously associated with known QTLs for morphological, adaptation, and fitness traits. Our results showed
HMGA2 and LLPH as strong candidate genes for height variation between Caspian horses with a small size and the other studied
breeds with a medium size. Using the results of studies on human height retrieved from the GWAS catalog, we suggested 38 new
putative candidate genes under selection. These results provide a genomewide map of selection signatures in the studied breeds,
which represent valuable information for formulating genetic conservation and improved breeding strategies for the breeds.
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INTRODUCTION
Different agro-ecological conditions across Iran have resulted in
the development of distinct indigenous horse breeds. Iran has five
officially registered horse breeds, including the Persian Arabian,
Caspian, Turkmen (Akhal-Teke), Dareshuri, and Kurdish, with long-
standing husbandry, cultural, and historical importance (Fotovati
2000). Unfortunately, these breeds are classified as endangered
populations (Sadeghi et al. 2019) due to their small population size
and uncontrolled admixture with exotic breeds. Due to the lack of
active and strong equine breed associations in Iran, there is no
clear strategy for the breeding of these populations. Breed purity
is the most important factor for the pricing of Caspian and Kurdish
horses and, as a result, horse owners mate their mares with
stallions that have a valid pedigree. In Kurdish and Turkmen
horses, due to the availability of breed and beauty competitions,
in addition to their pedigree information, stallions are selected
and mated based on their own and their relatives’ performance in
these competitions. Since genetic diversity is crucial for a
population to adapt to changing environments, an assessment
of genetic diversity and the selection pressures behind it will help
to choose the most appropriate solution in this situation.

Consequently, breeding programs must be designed to prevent
further loss of genetic diversity.
The Arabian horse is distributed worldwide, with a population

size of >1 million (World Arabian Horse Organization, WAHO).
However, this breed is divided into relatively small breeding
populations in many countries in the Middle East, including
Egypt, Saudi Arabia, Syria, and Iran, each with very different
phenotypic attributes (Forbis 1976). Based on the current
evidence from Y-chromosome analysis, three discrete
Y-chromosomal haplotypes specific to the Arabian horses were
detected (Remer et al. 2022). The Turkmen horse is thought to be
the oldest surviving horse breed in the world, divided into several
populations with unique genetic resources, which mostly differ in
type, conformation, and usage (Jiskrová et al. 2016). The Caspian
horse is a small ancient breed, with its natural habitat in the north
of Iran. Although it was suggested that the Turkmen and Caspian
horses might be ancestral to all forms of the oriental horse (Firouz
1998), most modern male lineages were derived from two major
subclades, including Turkmen and Arabian lineages based on
Y-chromosome analysis (Wallner et al. 2017). The study by Remer
et al. (2022) showed a clear distinct Y haplotype phylogeny
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between Turkmen and Arabian horse breeds. The Kurdish horse
originates from the west of Iran, an area characterized by
mountainous topography and a moderately cold climate. This
environment created a unique horse population resistant to harsh
environmental conditions. The Iranian Kurdish horse has a small
population size of only about 7000 horses. Therefore, an
optimized selection strategy and mating program has been
suggested to maintain genetic diversity (Nazari et al. 2022).
Despite several studies on different native Iranian horse breeds
that assessed the genetic diversity, parentage verification, and
genetic structure of the populations using microsatellite or single-
nucleotide polymorphism (SNP) (Amjadi et al. 2021; Nazari et al.
2022; Sadeghi et al. 2019; Salek Ardestani et al. 2022; Seyedabadi
et al. 2006; Shahsavarani and Rahimi-Mianji 2010), the majority of
the studies were performed on a single breed (Ala-Amjadi et al.
2017; Gharahveysi and Irani 2011; Nazari et al. 2022; Rahimi-Mianji
et al. 2015; Seyedabadi et al. 2006). However, Moridi et al. (2013)
studied the mitochondrial DNA (mtDNA) diversity and origin of
five Iranian native horses, including Turkmen, Kurdish, Caspian,
Iranian Arabian, and Sistani breeds. In 2019, Sadeghi et al. (2019)
performed a study using five Iranian horse breeds, including
Turkmen, Kurdish, Caspian, Iranian Arabian, and Dareshuri, where
they focused on the genetic diversity and genomewide selection
signatures in the Persian Arabian. Subsequently, Yousefi-Mashouf
et al. (2021) compared the Kurdish horse population with the
Persian Arabian and American Thoroughbred populations. Their
results showed a significant population structure pattern
between Kurdish and Persian Arabian samples. To date, there
have been no genomewide SNP-based studies of genetic
diversity and on detecting signatures of selection in multiple
Iranian native breeds.
Different statistical tests may not generate consistent results for

detecting signatures of selection due to variation in their power as
a consequence of demographic history, type of selection, genetic
architecture, and experimental design, as well as variation in
sensitivity to sampling design (Lotterhos and Whitlock 2015;
Schlamp et al. 2016; Vatsiou et al. 2016). ***Combining the results
from multiple tests generally perform better with more distin-
guishable footprints of positive selection, and importantly in a
closer proximity to the real selected locus (Lotterhos et al. 2017b).
Many strategies have been proposed to overcome these issues,
such as methods based on combining P-values of different test
statistics (composite measures of selection) (Lotterhos and
Whitlock 2015; Randhawa et al. 2014). To improve statistical
power and resolution, we combined multiple statistics of
signatures of selection including FST (Wright 1949), FLK (the
extension of the Lewontin and Krakauer test) (Bonhomme et al.
2010) and xp-EHH (cross-population extended haplotype homo-
zygosity) (Sabeti et al. 2007) within a single de-correlated
composite of multiple selection signals (DCMS) framework (Ma
et al. 2015). This calculation combines P-values while considering
the correlation between the various statistics.
This study evaluates four Iranian horse breeds: Turkmen,

Caspian, Kurdish, and Persian Arabian. We used the genomewide
SNP information in a comprehensive genomewide analysis of the
genetic diversity of Iranian horses to investigate the population
structure and their genetic differences. Additionally, we applied a
genomewide analysis to detect breed-specific genomic regions
that display signals characteristic of selection. The selected
genomic regions may contain variants important for the unique
physiological traits and adaptations characteristics of each Iranian
horse breed.

MATERIALS AND METHODS
Samples and populations
The data represent four different data sets. In this study, we used a data set
collected by the Animal Science Research Institute of IRAN (ASRI), with the

main focus on establishing genomic information for the Kurdish breed
(n= 81). Horses in the ASRI data set were selected based on pedigree
information, without crossbreeding in their pedigree, and those passed
microsatellite parentage testing. These samples were collected from four
Iranian provinces (Kermanshah, Kurdistan, Isfahan, and Kerman). One
Persian Arabian (collected from Tehran) and two Turkmen (collected from
Isfahan and Tehran) samples were present in the ASRI data set used in this
study. A total of 86 samples from three breeds, including Turkmen (n= 34),
Caspian (n= 22), and Kurdish (n= 30), were collected by the National
Animal Breeding Center (ABC) from six provinces (Kermanshah, Kurdistan,
Isfahan, Golestan, Mazandaran, and Tehran). This data set was collected
between 2014 and 2015. For each breed, horses were sampled based on
their pedigree. To extend and include Persian Arabian horses in our
samples, we merged our data set with the data from two studies:
96 samples from Sadeghi et al. (2019), including Persian Arabian, Turkmen,
Caspian, and Kurdish breeds, and 9 Persian Arabian samples from
Cosgrove et al. (2020).

Genotyping and quality control
Genomic DNA from the ASRI and ABC samples was extracted from more
than 50 hair roots collected from the horse’s mane of each sample using
the DNeasy Blood and Tissue kit (Qiagen, Germany). Then, samples were
genotyped at Neogen GeneSeek Inc. (Lincoln, NE, USA) using the GGP
Equine 70K SNP BeadChip array (Neogen GeneSeek, Lincoln, NE). Samples
from the two other data sets were genotyped with the 670K Equine SNP
chip as described previously (Cosgrove et al. 2020; Sadeghi et al. 2019). The
annotation of SNP chromosomal positions was initially reported as
EquCab2.0, and then converted to the most recently updated map using
the lift genome annotations tool (https://genome.ucsc.edu/cgi-bin/
hgLiftOver) based on the EquCab3.0 assembly (Kalbfleisch et al. 2018).
The genotype data from different data sets were merged, keeping the

loci that overlapped between the chips using PLINK V1.9 (Purcell et al.
2007). As our analysis focused on autosomal variants, we excluded the SNPs
on sex chromosomes. After merging the data, we had 275 samples and
40,813 SNPs for further quality control (QC) (Fig. 1). The QC was performed
using PLINK V1.9 (Purcell et al. 2007). First, SNPs and samples were filtered
based on a less than 90% genotyping rate. Second, SNPs with a minor allele
frequency (MAF) lower than 1% or those that departed from
Hardy–Weinberg proportions at P < 10–6 were discarded. Third, as closely
related individuals within each breed of the horse samples may provide
biased sets for use in some of the analyses, we filtered individuals based on
pairwise identity-by-descent (IBD) less than 0.25. The --genome option in
PLINK was implemented to calculate the IBD values. The number of
removed SNPs and samples after each step of QC are shown in Fig. 1.
Before removing related individuals, Beagle V5.2 software was used to
impute the sporadic missing genotypes in each population separately
(Browning and Browning 2007). As well described by Pook et al. (2020), the
effective population size (Ne) can have a major effect on the error rate for
imputation in Beagle, wherein the Markov chain uses the genetic data set
to initialize a haplotype cluster and then initializes the Hidden Markov
Model by identifying the most likely path through the haplotype cluster.
Based on the default setting, this works well for imputation in outbred
human populations, but the algorithm can be adjusted to the specific
genetic structure of the respective data set by changing the Ne parameter.
Pedigrees in Iranian horse breeds have much less genetic diversity than in
human populations, which results in a smaller Ne. To deal with this, we
predicted the Ne for each breed using NeEstimator V2.1 (Do et al. 2014); the
estimated Ne was used as the input for Beagle (see the section “Estimation
of effective population size using genomewide SNP data”).
As LD-based pruning reduces the effect of ascertainment biases on

diversity estimates (Malomane et al. 2018), a subset of SNPs was selected by
linkage disequilibrium (LD)-based SNP pruning using PLINK for genetic
diversity and population structure analysis. For principal component
analysis (PCA), we applied the indep-pairwise command with an SNP
window size of 50, 5 SNPs shifted per step, and the squared correlation
between SNPs (r2) ≤ 0.5. For admixture and relatedness analysis, SNPs were
pruned using the same sliding window and SNPs shifted per step, while the
r2 threshold was 0.3. After LD-based SNP pruning, 28,387 and 22,523 SNPs
remained for PCA, and admixture and relatedness analysis, respectively.

Genetic distances, pairwise FST, and absolute allele frequency
difference (AFD)
The Cavalli-Sforza and Edwards Chord distance (Takezaki and Nei 1996)
was calculated from the SNP information using the R package hierfstat
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(Goudet 2005). We applied the R package hierfstat to calculate the pairwise
FST between the four main Iranian horse breeds (Goudet 2005). A bootstrap
confidence interval was calculated for each pairwise FST comparison. As
calculations of FST can be impacted by asymmetry in sample sizes, we
calculated the absolute allele frequency difference (AFD) estimates to
display the magnitude of differentiation (Berner 2019). The AFD at each
locus was calculated as

AFD ¼
Pn

i¼1 pi1 � pi2jð
2

;

where n is the number of alleles observed at the SNP, and pi1 and pi2 are
the frequencies of allele i in populations 1 and 2, respectively.

Estimation of effective population size using genomewide
SNP data
We estimated both historical and contemporary Ne for all breeds using all
40,120 quality-controlled SNPs. SNeP software was implemented to
estimate the historical Ne based on LD information (Barbato et al. 2015).
We used the default options with a maximum distance of 4000 kbps.
The contemporary Ne was calculated using NeEstimator V2.1 (Do et al.

2014). We used a single-sample estimator based on LD information that
implements a bias correction when the sample size is less than the true
effective size (Waples and Do 2008). A random mating population was
assumed for the analysis. MAFs of 0.1, 0.05, 0.02, and 0 for all SNPs were
included in the analysis to screen out the effect of rare alleles on Ne

estimation. The jackknife method was used to calculate the confidence
intervals, as this method can perform better than parametric confidence
intervals for the LD method (Waples and Do 2008). To omit comparisons of
loci on the same chromosome, LD was calculated among pairs of SNPs
located on different chromosomes.

Genetic diversity and population structure
First, we performed a PCA on the LD pruned subset of SNPs using the
“prcomp” function (with scale = TRUE) of the R statistical software (R Core
Team 2013). Then, we used the first three PCs to identify and remove
outlier samples, as possibly there are pedigree errors, especially in the past
if a microsatellite test was not used for a pedigree check, leading to
unreported crossbred individuals. The local outlier factor (LOF) algorithm
was implemented to score each data point in a multidimensional process.
LOF is an unsupervised anomaly detection method that computes the
local density deviation of a given data point when only a restricted
neighborhood of each object is taken into account (Breunig et al. 2000).
We assumed that the outliers have a substantially lower density than their

neighbors, which results in a gap from the rest of the data. All detected
outliers were excluded in subsequent analyses. After removing outliers,
PCA was conducted again on an LD pruned subset of SNPs without outliers
to investigate the relationships among populations.
We also evaluated the relationship among the populations using the R

package SNPRelate (Zheng et al. 2012). First, we calculated the individual
dissimilarities for each pair of individuals using the “snpgdsDiss” function.
Second, a hierarchical cluster analysis on this dissimilarity matrix was
performed using the “snpgdsHCluster” function. Finally, subgroups of
individuals were determined via a specified dendrogram from this
hierarchical cluster analysis using the “snpgdsCutTree” function with
50,000 permutations.
We applied the software ADMIXTURE in order to infer breed origins and

quantify the admixture of the populations (Alexander et al. 2009). For each
individual, ancestry proportions were estimated with a priori-defined
ancestry components (K) as a presumption of the number of ancestral
populations (Alexander and Lange 2011). We implemented a 5-fold cross-
validation for each K (ranged from 1 to 7) to estimate the standard error
values for comparison, as the lowest one is the most likely number of
ancestral populations.
LD between all SNPs was calculated with the --r2 command in PLINK and

mean LD was expressed as a function of distance to determine the
diminishing of LD with increasing physical distance between SNPs.

Runs of homozygosity (ROH)
ROH, the indicator of genomic autozygosity due to a long stretch of
homozygous SNPs that may have been inherited from a recent common
ancestor, were studied to increase our understanding of the genetic
diversity status of the four native horse populations. ROH segments along
the genome were calculated based on the sliding window method using
the R package detectRUNS (Biscarini et al. 2018). To estimate the ROH in
four Iranian horse breeds, we used all common 40,120 quality-controlled
SNPs in each breed separately. The following options were used: the
sliding window size (windowSize)= 15, minimum number of homozygous
SNPs in a run (minSNP)= 20, the threshold of overlapping windows
(threshold) = 0.05, minimum number of SNP per kbp (minDensity)= 1/
168, maximum distance between two SNPs (maxGap)= 106bps, and the
minimum length of a homozygous run (minLengthBps)= 500 kbps. The
detected ROHs were divided into five categories, including 0 to < 4 Mb, 4
to < 8Mb, 8 to < 16Mb, 16 to < 32Mb, and > 32Mb. For each of the ROH
length categories, the number of runs in each breed was calculated by
averaging the sum of all ROHs per animal within the breeds. To identify the
position of a ROH peak, we used a threshold of 0.7, which indicates the
ROH shared in more than 70% of the individuals within each population.

Fig. 1 A flow chart analysis. Data preparation and identification of selection signatures in pairwise comparisons in Iranian horse breeds using
different data sets.
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The genomic inbreeding coefficient using ROH information (FROH) was
calculated as follows:

FROH ¼
Pp

j¼1 LROHj
Lgenome

where LROHj is the length of the jth (j = 1,…, p) ROH detected in an
individual, and Lgenome is the total length of the genome that was used.

Selection sweep
We performed six pairwise comparisons, including (i) Turkmen vs. Caspian,
(ii) Turkmen vs. Kurdish, (iii) Turkmen vs. Persian Arabian, (iv) Caspian vs.
Kurdish, (v) Caspian vs. Persian Arabian, and (vi) Persian Arabian vs. Kurdish,
to determine the genetic regions under selection using FST (Wright 1949),
FLK (Bonhomme et al. 2010), and xp-EHH (Sabeti et al. 2007) analyses.
The FST statistic was estimated using the program VCFtools v0.1.16 (Danecek

et al. 2011). For each comparison, Z transformation of the mean of FST values
(Z(FST)) was computed for all SNPs using the scale function in R software.
FLK is an extension of the original LK statistic (Lewontin and Krakauer

1973) that is based on the variance of FST on comparing the observed and
expected variances of FST across loci. FLK accounts for complex
demographic structures and differences in the effective population size
using a phylogenetic estimation of the population’s kinship (F) matrix to
consider historical branching and heterogeneity of the genetic drift
(Bonhomme et al. 2010). The FLK’s P values were computed using the
hapFLK software (Fariello et al. 2013). In this analysis, the kinship matrix
was calculated from the Reynolds’ genetic distances between populations
(Reynolds et al. 1983) and a phylogenetic tree was fitted from these
distances using the neighbor-joining algorithm. For each comparison, a
negative log P-value was used.
An LD-based method, EHH, proposed by Sabeti et al. (2007) is useful in

the detection of long homozygous regions that are under partial or soft
selective sweep within a population. This test can be extended for
implementation in the cross-population aspect, xp-EHH, which compares
populations regarding their haplotypes (Sabeti et al. 2007). The xp-EHH
scores were calculated using the REHH package (Gautier and Vitalis 2012)
in R to determine selected mutations with a higher frequency than
expected according to their haplotype length.

De-correlated composite of multiple signals (DCMS)
Combining various test statistics of the selection signature improves the
signal-to-noise ratio and increases the resolution to identify selected
genomic regions (Lotterhos et al. 2017a; Ma et al. 2015). We combined
three genomewide selection signature statistics into a single DCMS value
(Ma et al. 2015). DCMS accounts for the correlation between the different
statistics while combining P-values produced by several statistics for each
locus into a single DCMS measurement.
We calculated the genomewide DCMS for each pairwise comparison by

combining the aforementioned statistics (FST, FLK, and xp-EHH) for each locus
as described in Yurchenko et al. (2018). The genomewide P-values were
converted to fractional ranks for each statistic using the stat_to_pvalue
function represented in the R package MINOTAUR (Verity et al. 2017) with the
right-tailed test for all the three methods. The covariance matrix between the
different statistics was estimated using the CovNAMcd function from the
rrcovNA package in R (Todorov et al. 2011) with alpha= 0.75 and 30,000
randomly sampled SNPs to calculate an n × n covariance matrix. Then, this
calculated covariance matrix was used as an input for the DCMS function in
the MINOTAUR R package to calculate the DCMS statistics. The output of the
DCMS function, i.e. the DCMS statistics, was fitted to the normal distribution
using the robust linear model method implemented in the rlm R function
(model= rlm (dcms ~ 1), where the dcms is a vector of the raw DCMS values)
of the MASS package (Venables and Ripley 2013). The rlm R function
produced a mean and standard deviation that were used as inputs in the
pnorm R function with a lower.tail attribute equal to FALSE. Finally, the DCMS
P values were transformed into the corresponding q-values based on the
Benjamini and Hochberg procedure (Benjamini and Hochberg 1995) to
control the multiple testing false discovery rate (FDR < 0.05). This transforma-
tion was conducted using the p.adjust R function.

Identification of candidate genes, QTLs, and functional
analysis
Equine gene annotations and gene ontology (GO) information from the
horse genome assembly build Equcab3.0 were downloaded from Biomart

in November 2021 (Kasprzyk 2011). To identify the putative candidate
genes under selection, we extracted genes including SNPs with a q-
value < 0.05 in the coding region (both exon and intron) or including ± 40
kbps at both sides to control the regulatory regions. We selected 40 kbps
extension based on the LD decay result from all breeds, where the average
r2 was >0.2 (see the section “Population genetic structure and linkage
disequilibrium”). The gene ontology (GO) pathway enrichment analysis was
performed by the enricher function from the clusterProfiler R package (Wu
et al. 2021). A list of significant quantitative trait loci (QTLs) for the horse
database (horse QTLdb) was retrieved from animalQTLdb (Hu et al. 2007)
(http://www.animalgenome.org/QTLdb, Release 46, December 27, 2021),
which includes 2605 QTL from 104 publications on 64 different traits. To
detect the putative QTL under selection, we considered the QTLs that were
located in genomic regions, including consecutive SNPs with a q-value
lower than 0.05 or extended up to ± 40 kbps at both sides. We extracted
the associated recorded genes for height in humans accessible on the
genomewide association study (GWAS) catalog database (https://
www.ebi.ac.uk/gwas) (Buniello et al. 2019) to identify new possible
candidate genes for height variation in Iranian horse populations.

RESULTS
A total of 275 genotyped horse samples using two types of SNP
assays from four data sets were included in this study (Supplemental
file, Table S1). After QC, 4 and 83 samples were removed from the
data due to the genotype rate and high relatedness, respectively.
The four main Iranian horse breeds under study have their own
characteristics (see Supplementary file, Table S2) and were
developed in different environmental conditions (Fig. 2 and
Supplementary file, Table S3). To quantify and control for the
extreme deviation of a sample from samples of the same breeds,
outliers were detected and removed based on the first three PCs
(Supplementary file, Fig. S1). A total of 19 samples were excluded
from the final data (Supplementary file, Fig. S2). More information
about the outliers is available in Supplementary Table S4 and Fig. S3.

Genetic distances, pairwise FST, and AFD
Genetic distance analyses revealed that the Persian Arabian and
Kurdish samples had the lowest value (Table 1). The Kurdish and
Turkmen samples were intermediate in their genetic distance,
followed by the Turkmen and Caspian samples. Persian Arabian
horses showed the greatest divergence from the Caspian and
Turkmen samples. Considering a 95% confidence interval, all
breeds were distinguishable from one another with a pairwise FST
>0 (Table 1). The Turkmen and Persian Arabian samples showed
the highest divergence. The lowest pairwise FST observed between
breeds originated from more geographically similar locations,
including Turkmen vs. Caspian, and Kurdish vs. Persian Arabian.
Considering AFD as a metric of genetic differentiation between
the studied horse samples with asymmetrical sample size, the
lowest magnitude of pairwise comparisons was in Kurdish vs.
Persian Arabian (Table 1). The Kurdish showed similar AFD values
to the Caspian and Turkmen horses, followed by the Turkmen and
Caspian samples. Similar to the results for genetic distance, the
highest AFD values were observed in the comparisons between
Persian Arabian and the two Caspian and Turkmen breeds that
were sampled in geographically distinct locations.

Estimation of effective population size
A decrease in Ne over time was apparent in all breeds, with a
sharper decay for the more recent generations. The historical Ne

pattern of the Caspian breed differed from that of the other
studied breeds, with the Caspian breed having the lowest Ne in
the recent generations (≤45 generations ago) and the second
highest Ne in the older generations (≥54 generations ago) (Fig. 3).
The Kurdish population showed the greatest Ne.
On the basis of LD estimations, the contemporary Ne was estimated

with various thresholds used to screen out rare alleles (Table 2). The
lowest estimated contemporary Ne was for Turkmen with a range
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from 52.3 to 59.3. Values for the Caspian and Persian Arabian breeds,
respectively, were similar: at 86.9 and 86 for MAF less than 0.1 and up
to 98.4 and 101.7 using all SNPs. The Kurdish breed had the highest
contemporary Ne compared to the other breeds.

Population genetic structure and linkage disequilibrium
The first PC separated breeds were based on the two geographic
origin clusters, including north of Iran (for Caspian and Turkmen)
and southwest and/or west of Iran (Persian Arabian and Kurdish)
(Fig. 4A). PC1 also helped distinguish between the Persian Arabian
and Kurdish breeds. The second PC separated the breeds within
the two geographic origins from each other. Furthermore, the

Caspian breed was separated from the Turkmen breed by the
third PC.
The relationships indicated in the relatedness analysis using

identity-by-descent measures (Fig. 4B) were supported by the
separation patterns that were identified using PCA. The Caspian
and Turkmen branches were most proximal to each other
compared to both the Persian Arabian and Kurdish breeds. Our
analysis divided the Kurdish breed into two separate branches,
suggesting distinct subpopulations within this breed. The
presence of both Persian Arabian and Kurdish horses in several
instances suggests either recent crossbreeding or shared ancestry
among these horses.

Table 1. Metrics of the Cavalli-Sforza and Edwards chord distance (upper triangle with absolute allele frequency difference ± SD within parentheses)
and pairwise FST calculated (lower triangle with a 95% confidence interval within parentheses) from the SNP information.

Caspian Turkmen Kurdish Persian Arabian

Caspian 0 0.0170 (0.0877 ± 0.07056) 0.0174 (0.0854 ± 0.06904) 0.0228 (0.1122 ± 0.09163)

Turkmen 0.0039 (0.0037 to 0.004) 0 0.0159 (0.0858 ± 0.0685) 0.0216 (0.1111 ± 0.08908)

Kurdish 0.0044 (0.0043 to 0.0045) 0.0052 (0.0051 to 0.0053) 0 0.0123 (0.0727 ± 0.05954)

Persian Arabian 0.0099 (0.0097 to 0.0101) 0.0104 (0.0102 to 0.0106) 0.0039 (0.0039 to 0.004) 0

Fig. 2 Iranian horse populations and their geographical locations. The geographical locations are shown based on altitude (A), average
temperature (B), and average precipitation (C). The average temperature and precipitation were calculated based on the temperatures of 1970
to 2000 that were retrieved from the WorldClim version 2.1 climate database (https://www.worldclim.org/).
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Admixture analyses were performed by assuming up to 7
clusters (K) to identify the most likely number of ancestral
populations as determined by the cross-validation (CV) algorithm.
The results are shown in Fig. 4C (for K= 2 to 3) and
Supplementary file, Fig. S5 (for K= 4 to 7). The lowest CV error
was detected for the model with two ancestral populations, which
was very close to the error detected for K= 3. In K= 2, the
Caspian and Turkmen samples were assigned primarily to one
genetic cluster and the Persian Arabian sample to the other; the
Kurdish horses had a relatively equal assignment to both clusters.
With K= 3, the Caspian and Turkmen samples became more
distinct, but with evidence of population structure in the Turkmen
sample, as some horses shared similar ancestry proportions to
Caspian horses. The Persian Arabian horses remained primarily
assigned to the third cluster, apart from the Caspian and Turkmen
horses, but with some Persian Arabian horses having admixtures
from the genetics largely represented by the Caspian horses. The
Kurdish horses remained admixed, but horses of that breed
showed similar proportions of genetic ancestry from each of the
three genetic clusters. The admixture results for higher numbers of
ancestral populations are shown in the Supporting file, Fig. S5.
The LD patterns between the studied breeds indicated that the

mean of r2 in all breeds dropped rapidly up to approximately 100
kbps (Supplementary file, Fig. S4). The Persian Arabian population
showed the slowest decay of LD compared to the other breeds.
The average r2 at 100 kbps for all, Turkmen, Caspian, Kurdish, and
Persian Arabian breeds were 0.143, 0.161, 0.151, 0.152, and 0.183,
respectively.

Runs of homozygosity (ROH)
A total of 60,408 ROH segments was identified in all the studied
breeds (Supporting file, Table S5). As the sample size was different
for the breeds, the absolute number of ROH in each breed is not

comparable. The majority of ROH segments were classified in the
shortest category with the length less than 8 Mb (> 97%). The total
number of ROH segments in Kurdish, Persian Arabian, Turkmen,
and Caspian horses were 24,194, 18,959, 9846, and 7409,
respectively. The number of ROH segments exceeding 32 Mb
length in Caspian, Kurdish, Persian Arabian, and Turkmen horses
were 16, 13, 9, and 6 segments, respectively. Using a threshold of
0.7 for the shared ROH within each population, 24 peaks were
found in Turkmen (2 peaks), Caspian (14 peaks), and Persian
Arabian (8 peaks) populations (Supplementary file, Table S6).
Genomic inbreeding based on ROH (FROH) was estimated for

each population separately (Supplementary file, Fig. S6). The mean
estimated genomic inbreeding was similar across breeds, ranging
from 21% in the Turkmen population to 26% in the Persian
Arabian population. The Kurdish and Caspian populations showed
a very similar inbreeding with means of 22% and 23%,
respectively.

Selective signal and related GO and QTL detection
Caspian vs Turkmen. We identified 13 significant SNPs located
near to 12 genes (3 lncRNA, 1 miRNA, and 8 protein-coding genes)
on 7 different chromosomes (chr) (chr1, chr6, chr8, chr10, chr11,
chr14, and chr16) (Supplementary file, Table S7). The most
significant SNP was identified on chr6 (82.8 Mb) (Fig. 5). Three of
the nearby autosomal genes in Equus caballus (ECA) included LLP
homolog (LLPH) (chr6: 82.8 mega base pairs (Mbps)), high mobility
group AT-hook 2 (HMGA2) (chr6: 82.5 Mbps), and Musashi RNA
Binding Protein 2 (MSI2) (chr11: 32.2 Mbps), previously shown to be
associated with human height based on the GWAS catalog
database (Supplementary file, Table S7). The results of gene
enrichment analysis showed 17 significantly overrepresented GO
terms in this comparison (Supplementary file, Table S9). The most
significant term was GO:0004950 (chemokine receptor activity).

Table 2. Estimated effective population size (jackknife confidence interval in parentheses) based on linkage disequilibrium (LD) information using
different minor allele frequencies (MAFs) for alleles to be included in the analysis.

Breed MAF < 0.1 MAF < 0.05 MAF < 0.02 All SNPs

Caspian 86.9 (47.8–317.5) 92.2 (50.4–357.1) 95.1 (52.2–361.4) 98.4 (54.2–372.0)

Turkmen 52.3 (30.7–117.2) 55.9 (32.9–126.1) 58.7 (35.0–129.3) 59.3 (35.5–129.3)

Kurdish 105.2 (76.1–156.5) 108.8 (78.9–161.8) 111.5 (80.9–165.8) 113.3 (82.4–167.8)

Persian Arabian 86.0 (60.9–133.6) 91.7 (65.7–140.4) 97.2 (70.0–147.8) 101.7 (73.7–153.1)

Fig. 3 Estimates of historical effective population size (Ne). The estimates represent the Ne from 100 generations ago for each population
analyzed based on the linkage disequilibrium (LD) method.
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Some of the previously identified QTLs were found in the
suggestive regions of selection in this comparison (Supplementary
file, Table S7). We found 3 significant SNPs close to 6 different
QTLs classified into 4 types, including wither height (n= 2),
alternate gaits (n= 1), chronic progressive lymphedema (n= 2),
and osteochondrosis QTL (n= 1).

Caspian vs. Kurdish. A total of 27 significant SNPs were
identified in this comparison (Supplementary file, Table S7).
The most significant SNPs were located close to LLPH (chr6:
82.8 Mbps) with a DCMS value of 14.86 (Fig. 5). Gene
annotation analysis of the significant SNPs in this pairwise
comparison detected 45 (6 lncRNA, 2 miRNA, 1 pseudogene,
and 36 protein-coding genes) candidate genes. Based on the
GWAS catalog database, 19 of the candidate genes have been
associated with human height. We also found 6 significant
SNPs with at least one QTL located near to them in 5 different
QTL types, including insect bite hypersensitivity (n= 2), wither
height (n= 4), hair density (n= 1), alternate gaits (n= 1), and
navicular bone morphology (n= 1). Of those, two suggested
QTLs under selection for wither height located on chr11 (with
QTL IDs 166105 and 165767) did not show selection pressure in

the two other Caspian pairwise comparisons. No GO terms
were significantly overrepresented in this comparison.

Caspian vs. Persian Arabian. We identified 24 significant SNPs in
this comparison, with the most significant SNP on chr16 (71.8
Mbps) with a DCMS value of 14.59. Gene annotation analysis of
the significant SNPs detected 28 (8 lncRNA, 1 miRNA, 1 snRNA, and
18 protein-coding genes) candidate genes. Of them, 9 candidate
genes were found in the GWAS catalog list. The results showed
19 significantly overrepresented GO terms for the Caspian vs.
Persian Arabian comparison. The most significant GO term was
GO:0016790 (thiolester hydrolase activity). Among the significant
SNPs, 4 loci were located close to 7 QTLs, which were classified
into 5 QTL types, including immunoglobulin E level (n= 1), wither
height (n= 2), alternate gaits (n= 2), equine sarcoids (n= 1), and
immunoglobulin G level (n= 1).

Turkmen vs. Kurdish. Based on the DCMS method, 25 significant
SNPs were detected on 10 different chromosomes (chr8, chr10,
chr13, chr14, chr15, chr17, chr21, chr25, chr29, and chr31), with
the most significant SNPs on chr10 (32.7 Mbps). Gene annotation
analysis of these significant SNPs resulted in 28 candidate genes (4

Fig. 4 Population structure and relationship between Caspian, Turkmen, Persian Arabian, and Kurdish breeds tested in this study.
A Principal component analysis based on the first three PCs. The four main Iranian breeds show genetic differentiation associated with their
geographic origin clustered into two categories, including north of Iran (for Caspian and Turkmen) and southwest and/or west of Iran (Persian
Arabian and Kurdish). B A relatedness tree was constructed using whole-genome SNP data. C Model-based clustering of four Iranian breeds
using admixture analysis with the assumed number of ancestries of 2 and 3 (left) with a plot for CV errors of K ranging from 1 to 7 (right).
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lncRNA, 1 snoRNA, 1 snRNA and 22 protein-coding genes). Of
those, 11 candidate genes were located in the GWAS catalog
database for human height. Gene enrichment analysis of the
candidate genes detected 2 significantly overrepresented terms
that were classified as belonging to the cellular component
domain. The comparison detected only 1 significant SNP close to 2
QTLs that was classified as type 1, navicular bone morphology.

Turkmen vs. Persian Arabian. We identified a total of 13 significant
SNPs on chr2, chr5, chr14, chr16, chr19, and chr27. The most
significant SNP based on the DCMS method was located on chr27
(37.0 Mbps). Gene annotation analysis of these significant SNPs
found 15 candidate genes for the pairwise comparison. Of them, 7
genes were found in the GWAS catalog list for human height.
Gene enrichment analysis of the candidate genes detected
29 significantly overrepresented terms in the comparison, while
the four top significant terms were related to the molecular
function domain. In the comparison, 2 of 13 significant loci were
located close to 3 QTLs, which were classified into 3 types,
including immunoglobulin E level (n= 1), osteochondritis dis-
secans (n= 1), and osteochondrosis (n= 1).

Kurdish vs. Persian Arabian. Here, 29 SNPs with q-values less than
0.05 were detected, with the most significant signal on chr8 (52.2
Mbps). A total of 31 candidate genes was detected in the gene
annotation analysis in the comparison. Of them, 9 genes were
located in the GWAS catalog list. One of these, TGFB2 (chr30: 143
Mbps), has been noted as a candidate for human height in 10

different GWAS studies (Akiyama et al. 2019). TGFB is a growth
factor and key regulator of several traits related to body
composition, growth, and development in chicken (Dadousis
et al. 2021; Li et al. 2003). The second candidate gene was
trafficking protein particle complex 9 (TRAPPC9) (chr9: 81.6 Mbps).
The other 7 genes were ABRAXAS2 (chr1: 8.3 Mbps), GABPB1 (chr1:
140.9), NREP (chr14: 59.7 Mbps), STARD4 (chr14: 59.8 Mbps), RORB
(chr23: 17.1 Mbps), Cub and Sushi Multiple Domains 1 (CSMD1)
(chr27: 37.0 Mbps), and CAMK1D (chr29: 23.1 Mbps), which have
also been associated with human height. Gene enrichment
analysis of candidate genes from Kurdish vs. Persian Arabian
comparison found two significantly overrepresented terms in the
molecular function domain (FDR-adjusted P-value < 0.05). The
results showed that 7 of 28 significant loci were located close to at
least one QTL. These nearby QTLs had one of three classifications,
including Guttural pouch tympany (n= 1, chr2: 39.4 Mbps), wither
height (n= 3, chr8: 52.2 Mbps and chr9: 28.6 Mbps), and navicular
bone morphology (n= 1, chr29: 23.0 and 23.2 Mbps).

Observed similarities between pairwise comparisons
SNPs. We found 10 significant SNPs that were common in two
comparisons, including Caspian vs. Kurdish and Caspian vs.
Persian Arabian. Of these 10, 4 SNPs were also significant in the
Turkmen vs. Caspian comparison, located on chr6 from 82.4 to
82.8 Mbps (Supplementary file, Table S7). Only 1 SNP located on
chr14 was significant in both Turkmen vs. Persian Arabian and
Turkmen vs. Kurdish comparisons. Our results showed 3 common
significant SNPs in Turkmen vs. Caspian and Turkmen vs. Kurdish

Fig. 5 Manhattan plot of the -log10 (P values) calculated by the DCMS method in the six possible pairwise comparisons. The blue lines
represent the significant threshold level at an FDR of 5% (i.e. q-value < 0.05).
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comparisons located on chr8 (38.0 and 38.1 Mbps) and chr10 (31.2
Mbps). None of the significant SNPs overlapped in the three
comparisons of Turkmen vs all others. We found 2 significant SNPs
in Kurdish vs. Caspian and Kurdish vs. Turkmen comparisons
located on chr8 (25.9 Mbps) and chr15 (76.6 Mbps). The results
showed 3 significant SNPs on chr16 that were common in the
comparisons of the Persian Arabian with both the Caspian and
Turkmen populations. There were 3 common SNPs with q-values
less than 0.05 on chr5 (n= 1) and chr27 (n= 2) in both Persian
Arabian vs. Kurdish and Persian Arabian vs. Turkmen comparisons.

Genes. We identified 8, 7, and 9 candidate genes overlapping in
Caspian pairwise comparisons for Turkmen and Kurdish, Turkmen
and Persian Arabian, and Kurdish and Persian Arabian analyses,
respectively (Fig. 6). The results showed that 7 candidate genes
were present in all the three Caspian pairwise comparisons. One of
the significant SNPs, MNEc.2.6.81451782.BIEC2-1024200, was
located within HMGA2. The allele G was the most common in
the Caspian population with 0.95 frequency, while the frequencies
for Turkmen, Kurdish, and Arabian populations were 0.33, 0.35,
and 0.23, respectively (Supplementary file, Table S8). Our gene
annotation analysis for the significant SNPs in all the three Caspian
comparisons also detected another overlapped gene, LLPH, which
was a candidate for selection in the Caspian vs. Kurdish
comparison. We also identified a candidate gene located in the
GWAS catalog list for human height, TRIM2 (chr2: 80.8 Mbps),
which was common in the pairwise comparisons between Caspian
and both Kurdish and Persian Arabian populations. There were 6
and 14 additional candidate genes for the pairwise comparisons
between Caspian and both Persian Arabian and Kurdish popula-
tions, respectively, which were located in the GWAS catalog list for
human height (Supplementary file, Table S7).
We found 1 gene, IMPG1 (chr10: 31.2 Mbps), overrepresented in

the comparisons between Turkmen and both Caspian and Kurdish
populations, which is an ortholog for a protein-coding gene in
humans and is a major component of the interphotoreceptor
matrix (IPM). The IPM is suggested to have many important
functions related to growth factors, such as regulation of retinoid
transport, participation in cytoskeletal organization in the

surrounding cells, and regulation of oxygen and nutrient transport
(Ishikawa et al. 2015). Investigation of the genes for selective
pressure in the comparisons between Turkmen and both Persian
Arabian and Kurdish populations showed two common genes,
ENSECAG00000042329 and U6 (chr29: 6.9 Mbps). U6 was
associated with human height in 16 different GWASs (Kichaev
et al. 2019; Sakaue et al. 2021).
There were 5 common genes, including ENSECAG00000006191

(chr8: 25.9 Mbps), transmembrane emp24 protein transport domain
containing 2 (TMED2) (chr8: 25.9 Mbps), DDX55 (chr8: 25.9 Mbps),
eukaryotic initiation factor 2B 1 (EIF2B1) (chr8: 25.9 Mbps), and
GTF2H3 (chr8: 25.9 Mbps), in the comparisons between Kurdish
and both Turkmen and Caspian breeds. We also detected one
gene, trafficking protein particle complex 9 (TRAPPC9) (chr9: 81.6
Mbps), that was common in the comparisons between Kurdish
and both Persian Arabian and Caspian breeds.
The common SNPs resulted in identification of 5 nearby genes

in the comparisons between Persian Arabian and both Turkmen
and Caspian breeds. There was also 1 common candidate gene,
CSMD1 (chr27: 35.8 Mbps), listed in the GWAS catalog database, in
the comparisons between Persian Arabian and both Turkmen and
Kurdish breeds. CSMD1 is a large transmembrane complement
inhibitor with expression in many tissues such as testis, brain, lung,
colon, thyroid gland, breast, and pancreas (Fagerberg et al. 2014).
This gene is associated with several pathological processes, from
neurodegenerative and psychiatric disorders to infertility and
cancer (Gialeli et al. 2021). The comparisons between Persian
Arabian and both Caspian and Turkmen breeds showed another 4
overrepresented candidate genes, CEP63 (chr16: 71.5 Mbps),
kyphoscoliosis peptidase (Ky) (chr16: 71.8 Mbps), EPHB1 (chr16:
71.8 Mbps), and U6, which were listed in the GWAS catalog for
human height.

QTLs. Some of the previously identified QTLs were found in the
suggestive regions of selection in each of the comparisons
(Supplementary file, Table S7). Among the different QTL types
found in the Caspian pairwise comparisons, 2 QTLs (with QTL IDs
28316 and 28297) related to wither height and one QTL (with QTL
ID 165888) related to alternate gaits were common in the

Fig. 6 Venn diagrams of overlapped candidate genes. The plot summarizes the number of overlapped candidate genes under selection
among different pairwise comparisons.
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comparisons between Caspian and all the other breeds (Supple-
mentary file, Fig. S7). Concerning the QTL types in the three
comparisons for Turkmen, the QTL for osteochondrosis was
common in Turkmen vs. Caspian (with QTL ID 27159) and
Turkmen vs. Persian Arabian (with QTL ID 28236) comparisons.
Navicular bone morphology QTL type was common in all the three
comparisons between Kurdish and three other breeds. Immuno-
globulin E level QTL type (with QTL ID 28467) was represented in
both Persian Arabian vs. Turkmen and Persian Arabian vs. Caspian
comparisons. In addition, wither height QTLs were detected in
comparisons between the Persian Arabian and both the Caspian
and Kurdish samples.

GO. The results showed 17 and 19 significantly overrepresented
GO terms for Caspian vs. Turkmen and Caspian vs. Persian Arabian
comparisons, respectively, while the only GO:0060999 term
(positive regulation of dendritic spine development) was present
in these two comparisons (Supplementary file, Fig. S8). One GO
term, GO:0015026 (coreceptor activity), was common in two
Turkmen vs. Persian Arabian and Turkmen vs. Caspian compar-
isons. There were no significantly overrepresented GO terms in the
three comparisons between Kurdish and the other breeds. A total
of 10 GO terms were overrepresented in both Persian Arabian vs.
Turkmen and Persian Arabian vs. Caspian comparisons. Two of
these common GO terms, GO:0060996 (dendritic spine develop-
ment) and GO:0060997 (dendritic spine morphogenesis), are
related to the dendritic spine.

DISCUSSION
A better understanding of the effects of the evolution and
adaptability of livestock species to different environments can
improve our knowledge about the selection process (Saravanan
et al. 2022). Iranian horse populations have been subject to
different breeding objectives in distinct geographic regions with
variation in the components of the environment such as
temperature, humidity, and altitude (Fig. 2 and Supplementary
file, Table S3). Our findings showed a genetic division among the
studied breeds that matched their different geographic origins.
These results refine our understanding of the genetic relationship
between these four Iranian horse breeds. We also identified
genomic regions under selective pressures, and that these regions
previously had been reported to be associated with morphology,
adaptation, and fitness (Frischknecht et al. 2015; Smith et al. 2007),
which are important phenotypic traits in horse breeding. There-
fore, these results can support future genomewide association
studies and subsequent fine mapping of important traits to
improve our understanding of the genetic basis of these traits and
allow for improved horse breeding.

Effective population size
Simplified, Ne corresponds to the number of breeding animals in a
population under idealized conditions (Wright 1931). Reduction in
Ne, as a result of decrease of genetic diversity within a population,
may significantly reduce the population’s ability to adapt to
perturbations such as extreme weather conditions, disease, and
infections (Palstra and Ruzzante 2008), and this may in turn
increase the risk of extinction (Newman and Pilson 1997). The
contemporary Ne estimations performed within this study indicate
that all four horse breeds should be considered for conservation,
most urgently for the Turkmen horse breed, which showed the
lowest Ne with a value close to 50. The historical Ne values
computed were of the same magnitude as those reported in other
studies using similar approaches (Corbin et al. 2010; Jasielczuk et al.
2020; Nazari et al. 2022; Salek Ardestani et al. 2022). Our study
represents the first estimates of contemporary Ne for the Turkmen,
Caspian, Kurdish, and Persian Arabian populations, and alongside,
the other studies that estimated their historical Ne can help to

quantify the magnitude of genetic drift and inbreeding in real-
world Iranian horse populations (Nazari et al. 2022; Salek Ardestani
et al. 2022).

Population genetic structure
A clear genetic division among 36 globally distributed horse
breeds was previously detected using a genomewide set of
autosomal SNPs, and this genetic diversity largely reflected
geographic origins and known breed histories (Petersen et al.
2013). Similarly, our results well matched the studied breeds with
different geographic origins, as we classified the north breeds
(Caspian and Turkmen) and southwest and west breeds (Persian
Arabian and Kurdish) into two phylogeographic clades. These
results are consistent with the results from Sadeghi et al. (2019), in
which the PCA results demonstrated that the genetic variation
was associated with the separation among indigenous horse
breeds from different parts of Iran. We observed close genetic
relationships between the Iranian horse breeds originating from
the same geographic region. In concordance, relatedness and
admixture analysis showed a close genetic relationship between
Persian Arabian and Kurdish breeds, as well as between Turkmen
and Caspian breeds.

Inbreeding
VanRaden et al. (2011) showed that pedigree measures of
inbreeding values are not equivalent to the genomic inbreeding
values. This difference may lead to an imperfect reflection of the
level of homozygosity in the genome. ROH, the indicator of
genomic autozygosity, are used more often to estimate the
degree of realized genomic inbreeding (Chhotaray et al. 2021;
Dadousis et al. 2022; Eydivandi et al. 2021b; Metzger et al. 2015;
Saravanan et al. 2021). On assessing different genomewide SNP-
based estimators of inbreeding using computer simulations, FROH
provided a more precise estimate of inbreeding than could be
expected by using pedigrees (Caballero et al. 2022). On comparing
different marker-based estimators, FROH showed the highest
correlation with pedigree-based coefficients in cattle using
imputed SNP data (Dadousis et al. 2022). Long homozygous
stretches and consequently high inbreeding coefficients charac-
terize closed populations or those derived from a relatively narrow
genetic base such as the Arabian and Thoroughbred populations
(Metzger et al. 2015). In concordance, the Persian Arabian horses
in our study showed a relatively high number of larger ROH (with
sizes > 4 Mb, see Supplementary file, Table S5), probably due to
the more recent inbreeding, as the ROH will break up over time by
recombination, and consequently a relatively higher value for
FROH, indicative of inbreeding. Thus, when considering matings at
an individual animal level, genomic information can provide a
more accurate measure of inbreeding (homozygosity across the
genome). This information can be applied in mating systems with
the aim of minimizing inbreeding depression, especially in the
Persian Arabian horses, which showed the highest estimated
genomic inbreeding value compared with the other Iranian
breeds.

Genomic signatures of local adaptation
The genomes of local breeds have been under natural and
artificial selection for centuries to transmit the desired properties
to the descendants. These genetic changes shaped recent gene
pools, and can be used for investigating the genetic relatedness
among breeds (Eydivandi et al. 2021a; Ju et al. 2019; Rajawat et al.
2022). Our study showed that the genomes of Iranian horse
breeds contain multiple genomic regions under selective pres-
sures (adaptation and/or breeding), representing an opportunity
for a more detailed investigation of the genes involved in these
procedures. For instance, ADGRV1 (chr14: 76.8) was under selective
pressure in the Arabian and Kurdish comparison. This gene is
suggested to have highly differentiated nonsynonymous alleles,
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which leads to an excess of the adrenocorticotropic hormone in
Yakutian horses, which are known to be highly adapted to
subarctic environments (Librado et al. 2015). Another candidate
gene, TMED2, has been reported to regulate innate immune
signaling and to specialize in responding to environmental
exposures (Sun et al. 2018). Additionally, EIF2B1 is associated with
stress signaling, as inhibition of this gene mediates the down-
regulation of protein synthesis under stress (Slynko et al. 2021).
TRAPPC9 was common in comparisons between Kurdish and both
Persian Arabian and Caspian breeds. This has been reported to be
important in the trafficking and signaling pathways in health and
disease in humans, where mutations in TRAPPC9 are linked to a
form of mental retardation, breast and colon cancer, and liver
diseases (Mbimba et al. 2018). Among the 4 common candidate
genes from comparisons between Persian Arabian and both
Caspian and Turkmen breeds, Ky is a gene involved in muscle
growth, as the absence of Ky protein leads to muscular dystrophy
in mouse (Blanco et al. 2001). The suggested selective sweep
regions were close to or overlapped immunoglobulins, insect bite
hypersensitivity, and guttural pouch tympany, while other sweeps
overlapped wither height and alternate gaits. This suggests that
sweep regions may help to understand the biology of these
breeds and to improve our understanding of the changes in the
biological domain as a result of variation in the identified genes,
some of which were related to an important QTL. Moreover, this
information can be used to develop breeds or crossbreeds that
have a better performance and a higher environmental tolerance
based on the detected candidate genes.

Genomic signatures of height
The Caspian horse is thought to be an ancient breed native to the
north of Iran. This horse is considered as a small horse with height
ranging from 9 to 10 hands (Shahsavarani and Rahimi-Mianji
2010). In accordance with these studies, our selection signatures
revealed the HMGA2 in a genomic region putatively under
selective pressure in all comparisons between Caspian as a small
horse and the others with standard height. It has been shown that
HMGA2 has a crucial role in the size variation of horses. For
instance, investigation of the wither height in Shetland ponies by
genomewide association (GWAS) using the GGP equine SNP70
BeadChip detected HMGA2 as a major QTL for this trait
(Frischknecht et al. 2015). The study showed that the height of
Shetland ponies and other small horses was reduced due to a
nonsynonymous mutation in HMGA2. This gene has a well-known
role in height determination in other species, including humans
(Buysse et al. 2009) and dogs (Rimbault et al. 2013). The GWAS
catalog data included 22 different studies that showed association
between HMGA2 and the human height trait (Supplementary file,
Table S7). This gene also showed a pleiotropic effect on both
height and metabolic traits in ponies (Norton et al. 2019). Our
results showed that the selection signal for this gene was detected
due to a high frequency for allele G in the intragenic SNP
MNEc.2.6.81451782.BIEC2-1024200 compared to the other studied
breeds. Another gene in the same region overrepresented in all
the three Caspian pairwise comparisons was LLPH, previously
associated with height in human studies based on the GWAS
catalog database. A GWAS in Duroc pigs showed a significant
association between the average daily gain and a haplotype block
containing LLPH (Quan et al. 2018). Although the four loci can
explain up to 83% of the height variance in horses (Makvandi-
Nejad et al. 2012), most of the underlying genetic variants that
affect the height remain unknown. To pave the way for under-
standing the molecular mechanisms of height in Iranian horse
populations, we suggest the regions that contain HMGA2 and
LLPH as strong candidates for the height variation between
Caspian and the other Iranian breeds. Beyond these genes, we
suggest 38 new putative candidate genes under selective pressure
that are related to variation in height traits in humans.

QTLs
Each Iranian horse breed has its own historical background and
differs in usage. Finding selection signatures close to QTLs indicates
a relationship between the selection for traits and the effects of
variation at a locus. Accordingly, we investigated the candidate QTLs
and biological pathways within the candidate regions under
selection to identify pathways that might have shaped the Iranian
horse genome. Some of the SNPs identified under selection were
located close to previously reported QTLs related to morphological
and behavioral traits in horses, such as wither height, hair density,
navicular bone morphology, and alternate gaits. Some of them were
located near to QTLs related to adaptation traits such as
immunoglobulin level (Smith et al. 2007) (i.e. E and G) and insect
bite hypersensitivity (Ablondi et al. 2020). Most of these SNPs were
located near QTLs related to genetic disorders such as guttural
pouch tympany, osteochondritis dissecans, osteochondrosis, and
chronic progressive lymphedema. These results highlight that the
suggested genes and QTLs within these categories might be
targeted by selection in Iranian horses to adapt to environmental
conditions or respond to human-mediated selection.

CONCLUSIONS
In general, exploring the genetic variation between Iranian horse
populations evolved under diverse ecological conditions with
prominent phenotypic variation suggested a clear genetic division
among the breeds, which largely reflects their geographic origins.
The use of information obtained from extensive studies in humans,
retrieved from the GWAS catalog, can help to better interpret the
results of selection signature studies. This information helped us to
introduce 38 new candidate genes for height variation in Iranian
horse populations in addition to the well-known regions that
contain HMGA2 and LLPH as strong candidates. In addition, the
identified candidate sweep regions provide a genomewide map of
selection signatures in the studied breeds, including genes and
QTLs for known morphological, adaptation, and fitness traits. This
information may be valuable in formulating genetic conservation
and improved breeding strategies for these populations.

DATA AVAILABILITY
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doi:10.5061/dryad.54vb7f2) and Mendeley Data (https://data.mendeley.com/
datasets/mkk5khxrbp/3), respectively. All merged genotypic data used in this study
are available at dryad (https://doi.org/10.5061/dryad.37pvmcvqr).
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