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Genomic selection has increased genetic gain in several livestock species, but due to the complicated genetics and reproduction
biology not yet in honey bees. Recently, 2970 queens were genotyped to gather a reference population. For the application of
genomic selection in honey bees, this study analyzes the accuracy and bias of pedigree-based and genomic breeding values for
honey yield, three workability traits, and two traits for resistance against the parasite Varroa destructor. For breeding value
estimation, we use a honey bee-specific model with maternal and direct effects, to account for the contributions of the workers and
the queen of a colony to the phenotypes. We conducted a validation for the last generation and a five-fold cross-validation. In the
validation for the last generation, the accuracy of pedigree-based estimated breeding values was 0.12 for honey yield, and ranged
from 0.42 to 0.61 for the workability traits. The inclusion of genomic marker data improved these accuracies to 0.23 for honey yield,
and a range from 0.44 to 0.65 for the workability traits. The inclusion of genomic data did not improve the accuracy of the disease-
related traits. Traits with high heritability for maternal effects compared to the heritability for direct effects showed the most
promising results. For all traits except the Varroa resistance traits, the bias with genomic methods was on a similar level compared
to the bias with pedigree-based BLUP. The results show that genomic selection can successfully be applied to honey bees.
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INTRODUCTION
Genomic selection (Meuwissen et al. 2001) incorporates genome-
wide marker data into breeding value estimation. Compared to
pedigree-based breeding values, the use of genomic data can
increase the accuracy of estimated breeding values (EBV), or enable
the selection of animals before they are phenotyped. Both
strategies have been realized to increase the genetic gain in
several livestock species (Doublet et al. 2019; Fulton 2012; Samorè
and Fontanesi 2016). Honey bee breeders, by contrast, employ
phenotypic selection (De la Mora et al. 2020; Maucourt et al. 2020)
or pedigree-based breeding value estimation (Bienefeld et al. 2007;
Brascamp et al. 2016; Hoppe et al. 2020). Recently, a high-density
SNP chip was developed and genotypes of phenotyped queens are
now available to validate genomic prediction (Jones et al. 2020).
Pedigree-based best linear unbiased prediction (PBLUP) of

breeding values began in 1994 for the population registered on
BeeBreed. The EBV enabled hundreds of mostly Central European
bee breeders to improve the quality of their stock (Hoppe et al.
2020). To ensure the quality of the EBV, the program relies on a
specialized infrastructure for mating control and an adapted
genetic model to account for the peculiarities of the honey bee
(Bienefeld et al. 2007; Brascamp and Bijma 2014).
The phenotypes of honey bee colonies for economically

relevant traits result from the collaboration of worker groups
and queens. In honey yield, for example, the workers of a colony
perform foraging and storing, but the queen affects the number of
workers via her egg-laying rate, and influences the behavior of the
workers via pheromones. Therefore, the genetic model for the
traits includes direct and maternal effects for the contribution of
workers and queens, respectively.

In commercial honey bee breeding programs, the demands of
beekeepers lead to selection traits that differ significantly in terms
of methodology and effort for recording and mathematical
modelling. Typical aims include increased honey yield, better
workability for the beekeeper, and more disease resistance
(Petersen et al. 2020; Uzunov et al. 2017). Especially resistance
against Varroa destructor is targeted, since this parasitic mite
contributes to severe colony losses in numerous countries
(Genersch et al. 2010; Guichard et al. 2020; Traynor et al. 2016).
Genomic breeding value estimation in honey bees has been tried

in simulation studies, and single-step genomic BLUP (ssGBLUP)
appeared as an efficient solution (Bernstein et al. 2021; Gupta et al.
2013) to combine pedigree information with genomic information.
The simulations showed that ssGBLUP can increase the accuracy of
genomic breeding values considerably and enables high genetic
gains, if the infrastructure is appropriately adapted. Augmenting
ssGBLUP with trait-specific weights leads to weighted ssGBLUP
(WssGBLUP) (Wang et al. 2012), which can increase the prediction
accuracy further, as results from other species have shown
(Lourenco et al. 2014; Teissier et al. 2019; Vallejo et al. 2019).
To our knowledge, only simulated results on genomic EBV in

honey bees have been published until now. In this study, we first
report the accuracies and the bias of PBLUP, ssGBLUP, and
WssGBLUP for a number of key traits of economic importance in a
large breeding population of honey bees.

MATERIALS AND METHODS
Data
Pedigree and performance data from the Apis mellifera carnica population
were used, since the genotyped queens belonged to this subspecies, which
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is native and widespread in Central Europe (Lodesani and Costa 2003; Ruttner
1988; Wallberg et al. 2014). The data were downloaded from BeeBreed in
February 14, 2021, totaling 201,304 valid performance tests and pedigree
data of 234,519 queens. The oldest queen on the pedigree was born in 1949.
Since a large part of the BeeBreed data set was of negligible relevance to the
breeding values of the genotyped queens, the data were reduced and
refined for the comparison of classical and genomic prediction. Queens with
a valid phenotype whose genotypes passed the quality control (see below)
were the starting set. In an iterative process, phenotypes of performance-
tested queens on apiaries from the test year 2010 onwards were included by
adding (1) queens tested at the apiaries of the previously added queens, (2)
sister queens of the previously added queens, and (3) queens when an
ancestor as well as offspring had already been added. Steps (1)–(3) were
repeated until no further phenotypes could be added. The pedigree was
restricted to the resulting queens and their ancestors. The final enriched data
set contained 36,509 phenotypes in a pedigree of 44,183 queens and
4512 sires, which were usually groups of sister queens dedicated to drone
production in an isolated geographic area. Table 1 lists the countries of origin
for all colonies.
The phenotypes covered honey yield, gentleness, calmness, swarming

drive, hygienic behavior, and Varroa infestation development (VID). Honey
yield was measured in kg, and the values were corrected for outliers as
described in (Hoppe et al. 2020). Gentleness, calmness, and swarming
tendency were recorded as marks from 1 to 4 with 4 being the best mark.
Records for these traits were discarded if all colonies on an apiary received
the same mark. For hygienic behavior, larvae were artificially killed with a
pin and the percentage of cleared cells was recorded (Büchler et al. 2013).
VID indicates the resistance of a colony against Varroa, based on the
change in the level of Varroa infestation from early spring to late summer
(see Hoppe et al. 2020 for the calculation of VID). For a measurement of
Varroa infestation, a bee sample is taken from the hive, and the number of

mites per 10 g bees is determined (Büchler et al. 2013). Table 2 shows the
descriptive statistics of the phenotypes available for each trait.
The 100-K-SNP chip (Jones et al. 2020) was used to genotype 2970

queens which were registered on BeeBreed and born between 2009 and
2017. Markers that were called in less than 90% of the samples, had minor
allele frequency below 1%, or showed significant deviations from
Hardy–Weinberg equilibrium after Bonferroni-correction (χ2 p
value < 0.05 × 10–5) were removed. This left 63,240 markers for further
analysis. A total of 312 queens were removed because less than 90% of all
the valid markers were called in their samples, indicating low DNA quality.
After comparisons of daughter and parent based on the number of
opposing homozygotes, 207 queens were removed (Bernstein et al. 2022).
Subsequently, 62 samples were removed based on the comparison of
genomic and classic relationship matrix (Calus et al. 2011). This left 2389
genotyped queens for further analysis.

Model and genetic parameters
The complex collaboration between the workers and the queen of a colony
must be reflected in the model, and carefully analyzed in the calculation of
genetic parameters (Brascamp and Bijma 2019). The phenotype, y, of a
colony is modelled as follows:

y ¼ aW þmQ þ e (1)

where aw is the direct effect of the worker group in the colony, and mQ the
maternal effect of the queen in the colony, while e is a non-heritable
residual. The genetic component of the phenotype will be denoted
g= aW+mQ.
The phenotypic variance was calculated according to formula (2) in

Brascamp and Bijma (2019) as follows:

σ2ph ¼ Abaseσ
2
a þ σ2m þ σam þ σ2e (2)

where σ2a and σ2m are the additive genetic variances of direct and maternal
effects, σam is the covariance between direct and maternal effects, σ2a is the
residual variance, and Abase is the average relationship between two
workers of the same colony in the base population. The variance
components were estimated via AIREML with the complete phenotypic
information, using the model for PBLUP (see below). We used Abase= 0.40
(Brascamp and Bijma 2019), because even the oldest queens in our
pedigree came from populations with established mating control
(Armbruster 1919). The heritabilities of direct and maternal effects, h2a
and h2m were calculated according to formulas (6b) and (6c) in Brascamp
and Bijma (2019), respectively, as follows:

h2a ¼ Abaseσ
2
a=σ

2
ph and h

2
m ¼ σ2m=σ

2
ph (3)

We provide two concepts of the heritability of the sum of maternal and
direct effects. Firstly, heritability is usually defined as the fraction of
phenotypic variance due to additive genetic effects. In honey bees, the
corresponding concept is the heritability of the genetic component of the
phenotype, h2g ¼ Var gð Þ=σ2ph . We calculate h2g according to formula (6a) in
Brascamp and Bijma (2019) as follows:

h2g ¼
Abaseσ2a þ σ2m þ σam

σ2ph
(4)

Table 1. Number of phenotyped and genotyped queens included in
the data set by the country.

Country Phenotyped queens Genotyped queens
after quality control

Germany 24,019 1982

Austria 9618 372

Italy 796 1

Switzerland 619 17

Ukraine 467 0

Belgium 368 4

The
Netherlands

275 11

Sweden 133 0

France 117 0

Croatia 91 2

Total 36,503 2389

For 6 queens in the data set, no country of origin was given, and they were
not genotyped.

Table 2. Descriptive statistics for honey yield, gentleness, calmness, swarming drive, hygienic behavior, and Varroa infestation development (VID).

Trait Number of
records

Number of genotyped
queens with record

Average size of apiaries with a
genotyped queen (SE)

Mean SD Min. Max.

Honey yield 35,888 2046 13.62 (8.33) 40.71 22.84 0 199.8

Gentleness 35,187 2013 13.80 (8.48) 3.52 0.48 1 4

Calmness 34,652 2016 13.76 (8.50) 3.49 0.48 1 4

Swarming drive 26,937 1549 14.57 (8.88) 3.55 0.76 1 4

Hygienic behavior 23,924 1781 13.36 (7.86) 62.26 23.13 0 100

VID 24,650 1787 13.48 (7.85) −1.55 2.38 −77.12 6.93

Honey yield is given in kg. Marks from 1 to 4 were recorded for gentleness, calmness, and swarming drive. Hygiene is given as the percentage of cleared cells.
VID is a Varroa resistance score and higher values indicate more resistance.
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Secondly, in the classical theory of animal breeding, the heritability can
be used to predict short-term genetic gain, but h2g is unsuitable for this
purpose. The BeeBreed data set relies on colony-based selection (CBS), and
short-term genetic gain with CBS can be estimated using formulas (18) and
(6) from Bernstein et al. (2021) using the heritability of the selection
criterion of CBS, h2CBS . We calculate h2CBS as follows:

h2CBS ¼ Abase
σ2a þ σ2m þ 2σam

σ2ph
(5)

The numerators of h2g and h2CBS correspond to the notions of genetic
variance in the performance and selection criterion, respectively, as
introduced by Du et al. (2021).

Breeding value estimation
We analyzed single-trait models without repeated measurements for the
same trait on the same colony. The following mixed linear model was used
for PBLUP:

y ¼ Xbþ Zaaþ Zmmþ e (6)

where y is a vector of observations on colonies; b a vector of fixed effects
(year and apiary); a a vector of direct effects of queens, worker groups or
sires; m a vector of maternal effects of queens, worker groups or sires; e a
vector of residuals; and X, Za, and Zm are known incidence matrices for b,
a, and m, respectively. For a, m, and e, the expected values were assumed
to equal 0, while their covariance matrix was given by:

Var

a

m

e

0
B@

1
CA ¼

σ2aA σamA 0

σamA σ2mA 0

0 0 σ2e I

0
B@

1
CA (7)

where A is the honey bee-specific numerator relationship matrix derived
from pedigree (Brascamp and Bijma 2014), I is an identity matrix,
and σ2a , σ

2
m, σam and σ2e are the additive genetic variance of worker and

queen effects, their covariance, and the residual variance, respectively.
The model equation and variances for ssGBLUP were the same as for

PBLUP, except for the fact that matrix H replaced matrix A. Matrix H was
constructed from the numerator relationship matrix A which is calculated
from pedigree information, and the marker information in the following
steps (Aguilar et al. 2010; Christensen and Lund 2010). The genomic
relationship matrix, G, (VanRaden 2008, method 1) was constructed by the
following equation:

G ¼ ZZT

2
P

i pi 1� pið Þ (8)

where pi is the allele frequency of the SNP at locus i; Z=M–P with M
containing the marker information of all genotyped queens given as 0, 1, 2,
and matrix P defined column-wise by Pji= 2pi for all j. Matrix G was
adjusted to A by adjusting the means of diagonal and off-diagonal
elements as described by (Christensen et al. 2012). To have an invertible
genomic relationship matrix, we used the weighted genomic relationship
matrix, Gw, given by the following equation:

Gw ¼ 0:95Gþ 0:05Ag (9)

where Ag is the submatrix of A relating to the genotyped animals. Finally,
the inverse of H was computed according to the following formula:

H�1 ¼ A�1 þ 0 0

0 G�1
w � A�1

g

 !
(10)

Method WssGBLUP is an expansion of ssGBLUP which employs weights
for all marker loci in the construction of the numerator relationship matrix.
In order to assign a large weight to loci with a high impact on the trait, the
weight of a single marker locus corresponds to the amount of additive
genetic variance explained by this locus. To calculate the additive genetic
variance explained by each marker, a BLUP equation for the SNP effects
was used.
The model equation and variances for WssGBLUP were the same as for

ssGBLUP, except for the fact that matrix G* replaced matrix G. Matrix G*

was constructed from the vectors of direct and maternal additive genetic
effects, a and m, and the genomic relationship matrix Gw, which were
obtained from ssGBLUP. The vectors of the direct and maternal SNP

effects, u and v, were estimated by:

u ¼ λMTG�1
w a

v ¼ λMTG�1
w m

(11)

with λ ¼ 1
2
P

i
pi 1�pið Þ, where pi and M have the same value as in ssGBLUP.

SNP weights d were calculated using the average of the direct and
maternal SNP effects, deviating from the original algorithm which
considered only single-trait models (Wang et al. 2012) as follows:

di ¼ ui þ vi
2

� �2
2pi 1� pið Þ (12)

Diagonal matrix D was defined by Dii ¼ di=d, where d is the average of
d. The trait-specific matrix G* was calculated by the following formula:

G� ¼ ZDZT

2
P

i pi 1� pið Þ (13)

where Z is the same matrix as in ssGBLUP.
Programs from the BLUPF90 software (Misztal et al. 2002) were used to

estimate the genetic parameters, predict breeding values and calculate
relationship matrices G and G*. To account for the specifics of honey
bees, PInCo (Bernstein et al. 2018) was used to calculate the pedigree-
based relationship matrices. Equations (9)–(12) were implemented in R
(R Development Core Team 2020).

Validation
We performed two types of cross-validation. The generation validation
simulated the selection of candidates before they were phenotyped, which
is a common scenario in genomic selection. However, the differences in
management practices, climate, and vegetation between apiaries can
influence the results of the generation validation. The five-fold cross-
validation was designed to evaluate predicted breeding values with a
reduced impact of the differences between apiaries.
In the generation validation, EBV were predicted using PBLUP, ssGBLUP

and WssGBLUP (1) without the phenotypes of all queens born in 2017 or
later, and (2) without the phenotypes of queens born in 2016 or later. For
the validation procedure, the EBV of the 265 genotyped queens born in
2017 from scenario 1 were merged with the EBV of the 994 genotyped
queens born in 2016 from scenario 2, and likewise for the EBV of the
corresponding worker groups. Thereby, the validation sets of the two
scenarios, i.e., the genotyped queens born in 2017 and 2016, respectively,
could be treated as a single validation set. In the five-fold cross-validation,
only apiaries with at least five performance-tested queens were included
to ensure reliable estimates of fixed effects. This left 1281 genotyped
queens for validation. Each apiary was randomly split into five equally sized
partitions, splitting the 1281 queens into five partitions. For each partition,
EBV were estimated using PBLUP, ssGBLUP and WssGBLUP without the
phenotypes of the animals on this partition. The results from all partitions
were merged, so that the five partitions could be treated as a single
validation set of 1281 queens and their worker groups. The procedure was
repeated six times from the split of the apiaries on.
To assess the accuracy of PBLUP, ssGBLUP, and WssGBLUP, we

calculated the accuracy of the prediction of the genetic component of
the phenotype, g, as follows:

rg;ĝ ¼
r
y�Xb;bg
hg

(14)

where bg was calculated for each colony, C, by bgC ¼ baW þ bmQ with baW as
the predicted direct effect of the worker group of C, bmQ as the predicted
maternal effect of the queen of C, and y− Xb as the vector of phenotypes
corrected for fixed effects. We prove Eq. (14) in the Appendix (Text S1). For
each method to predict EBV, the phenotypes corrected for fixed effects
were calculated using fixed effects from the same method. In the
generation validation, PBLUP, ssGBLUP and WssGBLUP were run on the
complete data set to obtain appropriate fixed effects. In the five-fold cross-
validation, the fixed effects for the correction of the phenotypes were
taken from the same run of the same partition as the predicted
phenotypes.
A bootstrap procedure was used to test whether the accuracies of

WssGBLUP and ssGLUP were significantly higher than the accuracy of
PBLUP. In total, 10,000 bootstrap sample vectors were constructed by
sampling validation queens with replacement, and the accuracy with
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PBLUP, ssGLUP, and WssGBLUP was calculated for each vector. Two
methods were considered significantly different, if the same method had
higher accuracy in 97.5% of all sample vectors (p value of 0.05 in a two-
sided test). Similar bootstrapping methods were used in other studies
(Iversen et al. 2019; Legarra et al. 2008).
The regression coefficient, b1, of y− Xb on bg was used as a measure of

bias. Values of b1 < 1 and b1 > 1 indicate inflation and deflation of the
genetic components of the phenotypes compared to the phenotypes
corrected for fixed effects, respectively.

RESULTS
Genetic parameters
Estimates of the genetic parameters are shown in Table 3. The
heritability of the genetic component of the phenotype, h2g , was
very high for gentleness and calmness, medium for hygienic
behavior, honey yield and swarming drive, low for VID. All traits
showed considerable negative genetic correlations between
maternal and direct effects. The heritability for direct effects was
considerably larger than the heritability for maternal effects in
gentleness, calmness, and hygienic behavior, but equal to or
smaller than the heritability for maternal effects for all other traits.

Accuracy of breeding values
The accuracies of the methods under investigation in the generation
validation are shown in Fig. 1. Compared to PBLUP, the accuracy was
improved with WssGBLUP for honey yield (94%), swarming drive
(7%), gentleness (6%), calmness (5%), and VID (20%), and with
ssGBLUP, improvements were observed for honey yield (48%), VID
(41%), and gentleness (6%). The improvement with WssGBLUP over
PBLUP for honey yield was statistically significant. No improvement
was observed for hygienic behavior, and ssGBLUP did not yield a
higher accuracy than PBLUP for calmness and swarming drive.
The accuracies of the methods under investigation in the five-fold

cross-validation are shown in Fig. 2. Improvements over PBLUP were
achieved for swarming drive (20%), honey yield (15%), calmness
(2%), and gentleness (3%) with WssGBLUP. Improvement over
PBLUP with ssGBLUP was achieved for honey yield (10%) and
swarming drive (3%). The improvements with WssGBLUP over
PBLUP were statistically significant for calmness and swarming drive.
No improvement was observed for hygienic behavior and VID.
Overall, both validations showed similar results, although the

accuracy was higher in the five-fold cross-validation, and the
increases in accuracy with ssGBLUP and WssGBLUP over PBLUP
were higher in the generation validation.

Bias of breeding values
Bias was calculated as the regression coefficient b1 of phenotypes
corrected by fixed effects on the predicted genetic component of
the phenotype. The results for EBV from PBLUP, ssGBLUP and
WssGBLUP in the generation validation are shown in Fig. 3. The
results for all three methods showed inflated EBV estimates. The
regression coefficient b1 deviated the most from 1 for VID with
WssGBLUP and honey yield with PBLUP by −0.59, and −0.52,
respectively. While WssGBLUP showed overall the most inflation,
the difference between PBLUP and WssGBLUP ranged only up to
0.16, which was relatively small compared to the deviation from 1
with PBLUP. For ssGBLUP, the results were overall similar to PBLUP,
although ssGBLUP was considerably less biased than PBLUP for
honey yield and VID.
The results for EBV from PBLUP, ssGBLUP and WssGBLUP in the

five-fold cross-validation are shown in Fig. 4. For honey yield,
gentleness, and calmness, the bias of the EBV was negligible,
although the EBV from WssGBLUP tended towards inflation. For
swarming drive and VID, all methods showed similarly inflated
EBVs with regression coefficient b1 < 0.8. For hygienic behavior,
EBVs from PBLUP were nearly unbiased, while the genomic
methods produced inflated EBVs.Ta
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DISCUSSION
Genetic parameters and quality of breeding values
The estimated heritabilities (Table 3) were in line with the results
for the multiple trait models of the complete BeeBreed data set
(Hoppe et al. 2020). The results on the accuracies in the
generation validation (Fig. 1) and in the five-fold cross-validation

(Fig. 2) showed improvements with WssGBLUP over PBLUP for
honey yield, gentleness, calmness, and swarming drive. These
results were within the range reported for data sets of similar size
in dairy goats (Legarra et al. 2014), or for traits affected by
maternal effects in beef cattle (Lourenco et al. 2015) or pigs (Putz
et al. 2018).
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Fig. 1 Accuracies of breeding values in the generation validation. Accuracies of pedigree-based BLUP (PBLUP), single-step genomic BLUP
(ssGBLUP) and weighted ssGBLUP (WssGBLUP) were calculated in the generation validation.
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The results on the difference in accuracy between WssGBLUP
and PBLUP can be explained with the results on the heritabilities
(Table 3). Traits with a higher heritability for maternal effects than
for direct effects can be expected to show higher increases than
other traits in accuracy with WssGBLUP and ssGBLUP over PBLUP,
because simulation studies in honey bees showed greater
increases in accuracy with ssGBLUP over PBLUP for maternal
effects than for direct effects (Bernstein et al. 2021). This result
stood out from other species where maternal effects are modelled,
as in beef cattle (Lourenco et al. 2018) and simulation studies for
beef cattle and pigs (Lourenco et al. 2013; Putz et al. 2018), the
accuracy for direct effects showed higher increases in accuracy
with ssGBLUP over PBLUP than the accuracy for maternal effects.
The results of the current study are in line with the results from the
simulations on honey bees (Bernstein et al. 2021). On the one
hand, honey yield and swarming drive showed the highest
improvements in accuracy with WssGBLUP over PBLUP, and the
heritability for maternal effects is equal to or greater than the
heritability for direct effects in both traits. On the other hand,
gentleness, calmness, and hygienic behavior showed less or even
no improvements in accuracy with WssGBLUP over PBLUP, and
the heritability for direct effects is twice as great as the heritability
for maternal effects in these traits.
The results for the Varroa resistance-related traits were also

affected by problems in gathering data. The number of genotyped
queens with phenotype for both traits was about 200 queens
lower than for honey yield, gentleness, and calmness. Further-
more, the number of phenotyped queens on apiaries with a
genotyped queen (Table 2) was low for the Varroa-related traits,
which might have led to less accurate fixed effects. The results for
VID are also due to the low heritability of the genetic component
of the phenotype for this trait, because simulation studies in
honey bees and other species show that traits with low heritability
also have low accuracy of pedigree-based and genomic EBV
(Gowane et al. 2019; Gupta et al. 2013). However, Varroa-specific
hygienic behavior is the subject of ongoing research (Conlon et al.
2019; Farajzadeh et al. in prep; Mondet et al. 2020). The discovery
of new quantitative trait loci (QTL) which are then covered by
causative SNPs on a new chip can increase accuracy for the
Varroa-related traits.
The accuracy of ssGBLUP was slightly lower than the accuracy of

WssGBLUP for most traits. This result is common in studies for
several other agricultural species using WssGBLUP (e.g., Lu et al.
2020; Teissier et al. 2019; Wang et al. 2014). In simulation studies
(Lourenco et al. 2017; Wang et al. 2012), WssGBLUP had higher

accuracy than ssGBLUP when the trait was controlled by few QTL,
and both methods showed equal accuracy when the trait was
polygenic. As the accuracy for VID was higher with ssGBLUP than
with WssGBLUP in both validations, the genetic architecture of the
trait appears to be highly polygenic. However, this is a preliminary
conclusion, as VID has the lowest heritability of the traits we
considered, due to the many factors that affect it (see Guichard
et al. 2020 for a review).
The accuracies in the five-fold cross-validation were for the

majority of the traits higher than in the generation validation. This is
due to the fact that in the five-fold cross-validation, sibling groups
are evenly distributed across the partitions, while the phenotypes of
whole sibling groups might be removed for the calculation of EBVs
in the generation validation. Therefore, the five-fold cross-validation
is a validation within sibling groups, while the generation validation
is similar to a validation across sibling groups. Studies in other
species found that validations within sibling groups show higher
accuracies than validations across sibling groups (Gao et al. 2019;
Kjetså et al. 2020; Legarra et al. 2008). The standard errors of the
accuracies in the five-fold cross-validation were extremely small in
our study, but the accuracies for individual partitions showed large
differences. This suggests that the predicted breeding values were
stable across the repetitions, although the results on single
partitions were very different.
According to a simulation study in honey bees (Bernstein et al.

2021), the size of the reference population in our study is close to
the minimal size which should be available to initiate a breeding
program. We expect the reference population to grow in the
future, when breeders start to apply genomic selection.
The larger reference population is likely to obviate the need to

run WssGBLUP instead of ssGBLUP, since a simulation study
showed that WssGBLUP and ssGBLUP yield the same results for
large reference sets (Lourenco et al. 2017). The larger reference
population will also result in an increase of the accuracy of
genomic methods, as results from other species demonstrate
(Daetwyler et al. 2012; Lourenco et al. 2015; Mehrban et al. 2017;
Moser et al. 2009).
In the generation validation, inflation was observed with all

methods (Fig. 3). However, considerable bias was neither observed
in simulations for honey bees (Bernstein et al. 2021) for PBLUB and
ssGBLUP, nor the Austrian data set (Brascamp et al. 2016) with
PBLUP. Since only limited bias was observed in the five-fold cross-
validation (Fig. 4), the inflation in the generation validation is
possibly due to genotype by environment interactions (GxE). GxE
were found, e.g., in Italian honey bees (Costa et al. 2012), an Austrian
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honey bee breeding program (Brascamp et al. 2022), and by a wider
study across Europe (see Meixner et al. 2014 for an overview). The
five-fold cross-validation was less susceptible to GxE, since this
validation only masked the phenotypes of one-fifth of the colonies
on an apiary. Further analysis is required to confirm that the bias in
the present study is due to GxE, and localize regions of similar GxE.
The bias with genomic methods compared to PBLUP can be
reduced by, e.g., increasing the share of the classic relationship
matrix Ag in Eq. (9) (McMillan and Swan 2017; Misztal et al. 2017).

Practical application of genomic selection in the honey bee
The availability of genomic breeding values offers new possibilities
in breeding schemes for honey bees. In classical breeding
schemes, queens spend the first months of their life building a
colony. When the queens are 1 year old, they are used as drone-
producing queens to inseminate other virgin queens, or
phenotyped to be selected as dams of new queens when they
are 2 years old. A simulation study of innovative genomic
breeding schemes (Bernstein et al. 2021) suggested to genotype
drone-producing queens before they are employed, and to
employ only the candidates with the highest genomic breeding
values. This requires additionally that phenotyped queens are
genotyped to achieve a high accuracy of selection. According to
the simulations, a budget to genotype at least 1000 queens per
year should be available to increase genetic gain considerably.
Another simulation (Brascamp et al. 2018) study argued for a
different genomic breeding scheme, where several generations of
queens are bred within a single summer by genomic selection,
and phenotyped in the following year. Since this scheme implies a
shorter generation interval, extremely high genetic gain would be
possible, if the scheme was practically feasible.
Gathering genomic data from honey bees requires special

considerations, due to their small body size, and their genetic
diversity within a hive. Non-lethal ways to genotype queens are
available (Jones et al. 2020), but require further development for
commercial applications. The exuviae which queens leave behind
after hatching offer a non-lethal option to genotype virgin queens,
but just one exuvia is available for each queen, and exuviae
showed low DNA quality in several cases. Relying purely on this
technique in the present state could require breeders to forgo
queens simply because the genotyping failed. Alternatively,
drones can be gathered from a hive to genotype the queen,
since drones are haploid offspring. However, collecting a sufficient
number of drones in the first months after the queen’s hatching is
impossible in routine breeding, since a young queen will only lay
worker eggs to grow her colony.

CONCLUSIONS
WssGBLUP offers significantly greater accuracy than PBLUP for
honey yield, calmness, and swarming drive. For gentleness, the
accuracy of WssGBLUP was greater than the accuracy of PBLUP to a
similar degree as for calmness, but the difference remained below
the threshold for significance. For all traits, except the Varroa
resistance traits, the bias with WssGBLUP and ssGBLUP was on a
similar level compared to the bias with PBLUP. For the Varroa
resistance traits, the genomic methods offer too little improvement
over PBLUP to be recommended based on the current data set,
which is likely due to the size of the reference population. A larger
reference population or the discovery of new causative SNPs for
Varroa resistance are required to increase the accuracy of genomic
methods for hygienic behavior and VID. The results suggest that
genomic selection can be successfully applied to honey bees.
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