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Crucial to variety improvement programs is the reliable and accurate prediction of genotype’s performance across environments.
However, due to the impactful presence of genotype by environment (G×E) interaction that dictates how changes in expression
and function of genes influence target traits in different environments, prediction performance of genomic selection (GS) using
single-environment models often falls short. Furthermore, despite the successes of genome-wide association studies (GWAS), the
genetic insights derived from genome-to-phenome mapping have not yet been incorporated in predictive analytics, making GS
models that use Gaussian kernel primarily an estimator of genomic similarity, instead of the underlying genetics characteristics of
the populations. Here, we developed a GS framework that, in addition to capturing the overall genomic relationship, can capitalize
on the signal of genetic associations of the phenotypic variation as well as the genetic characteristics of the populations. The
capacity of predicting the performance of populations across environments was demonstrated by an overall gain in predictability
up to 31% for the winter wheat DH population. Compared to Gaussian kernels, we showed that our multi-environment weighted
kernels could better leverage the significance of genetic associations and yielded a marked improvement of 4–33% in prediction
accuracy for half-sib families. Furthermore, the flexibility incorporated in our Bayesian implementation provides the generalizable
capacity required for predicting multiple highly genetic heterogeneous populations across environments, allowing reliable GS for
genetic improvement programs that have no access to genetically uniform material.

Heredity (2023) 130:82–91; https://doi.org/10.1038/s41437-022-00582-6

INTRODUCTION
Variety improvement programs are tasked with capturing heritable
genomic response to selection across multiple growing environ-
ments and field seasons. While climatic uncertainty is outpacing
variety development, the condition of global food, fuel, and fiber
insecurity has become more vulnerable (Feynman and Ruzmainkin
2007). In the face of diverse abiotic stresses, when considering
genomic selection for variety improvement (GS, Meuwissen et al.
2001), reliable prediction of genotype performance across
environmental variabilities has become increasingly critical.
However, selection using single-environment (SE) models

becomes unreliable in the presence of genotype-by-environment
(G × E) interaction (Burgueño et al. 2012; Crossa et al. 2017), due to
the heterogeneity of genetic variance across environments, or
imperfect genetic correlation of the same traits across sites/
seasons (Crossa et al. 2004). Recently, GS models capable of
assessing single population performance across multiple environ-
ments (ME) have been proposed (López-Cruz et al. 2015; Crossa
et al. 2016; Lado et al. 2016; Montesinos-López et al. 2016; Spindel
and McCouch 2016; Cuevas et al. 2018). For example, Cuevas et al.
(2018) examined the prediction accuracy of six different GS models
with G × E interactions using two maize and two wheat datasets.
Though some degree of advantage over the conventional SE

counterparts can be identified, such gain can only be observed
when the phenotypic correlation between environments was high
(i.e., above 0.6), and when the traits of interest had moderate to
high heritability (Burgueño et al. 2012; López-Cruz et al. 2015;
Cuevas et al. 2016; Monteverde et al. 2018). The negative impact of
the G × E to the performance of GS models is evident, even more
so when inbred lines or homogeneous growing conditions are
unavailable (Resende et al. 2012). For example, in tree genetic
improvement programs that primarily use open-pollinated families,
the half-sib pedigree structure has eventually prevented partition-
ing G × E interaction from genetic variance owing to the lack of
genetically uniform replications, thus impeding the performance of
GS models (Beaulieu et al. 2014; Chen et al. 2018; Gamel El-Dien
et al. 2018; Alves et al. 2020; Thistlethwaite et al. 2020). Even to this
date, studies dealing with genetically heterogeneous lines and
half-sibs progeny without replications usually approach this
problem by removing or accounting for the environmental effects,
instead of directly estimating G × E in the model. For example,
Albrecht et al. (2014) studied both Pedigree-BLUP and Genomic-
BLUP for heterogeneous populations in ME prediction by employ-
ing cross-validation to assess cross-environment prediction perfor-
mance. To address this challenge in GS, here we developed a
statistical method capable of incorporating G × E effect while
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evaluating the predictability of genetically different populations
across environments.
Genome-wide approaches have played an instrumental role in

the discovery of new biological insights underpinning complex
trait variation (Frazer et al. 2009; Huang et al. 2010; Wang et al.
2019). Despite the tens of thousands of variant-trait associations
cataloged (Buniello et al. 2019), few studies have incorporated
knowledge learned from genome-wide association studies
(GWAS) in a full GS framework. In Lloyd-Jones et al. (2019), it
was demonstrated that the inclusion of GWAS summary statistics
could return favorable results for height and BMI for over 500,000
individuals from UK Biobank. Through different approaches, Bian
and Holland (2017) reached a similar conclusion by directly
employing GWAS-estimated effects from the maize NAM RILs
(recombinant inbred lines). Furthermore, MacLeod et al. (2016)
also proposed that including additional functional knowledge,
such as non-synonymous coding change, promoter regions, and
known causal variants, could add to predictability.
Predicted by population genetics models, studies attempting to

understand the impact of rare or less common variants on complex
traits have shown an inverse relationship between the variant’s
effect size and its frequency in the population (Park et al. 2011;
Bomba et al. 2017). Empirical results from recent GWAS studies are
mostly in agreement- that is, common variants have small effects,
and rare variants have large effects (Bloom et al. 2019; Fournier
et al. 2019; Wainschtein et al. 2019). Low-frequency and rare
variants with small to modest effects that are thought to contribute
to the missing heritability of many complex traits (Manolio et al.
2009; Eichler et al. 2010) may often have been overlooked because
of the process in array production (Ziegler et al. 2008. Bouwman
et al. 2017; Zhang et al 2018). As a consequence of not able to
capture these rare but favorable alleles, selection based on the
genomic estimated breeding values (GEBVs) could lead to loss of
genetic diversity which further reduces the long-term genetic gain
and prediction accuracy (Jannink 2010; Eynard et al. 2015; Liu et al.
2015; Doublet et al. 2019; Meuwissen et al. 2020; Vanavermaete
et al. 2020). In this study, we proposed a flexible GS framework that
incorporates marker information beyond just genotypic values,
while extending the capability of conventional ME models. Our
study uses examples in winter wheat and Interior spruce
populations to demonstrate the advantage of including trait- and
population-specific genetic characteristics, such as single

nucleotide polymorphism (SNP) allele frequency and strength of
association with the target phenotypes. Compared to the existing
Gaussian Kernel (GK) that assigns a uniform weight to every SNP,
our proposed Weighted Kernel (WK) captured more realistic
functional genetic relationship of individuals within and cross
environments by differentiating the contribution of SNPs. This
capacity to address the trait- and population-specific environ-
mental effects is not limited to the use of clonal genetic material or
inbred lines, making modeling G × E in GS feasible for trials that
utilize highly heterogeneous genetic resource to examine genetic
adaptability across the range of a species or environmental
variabilities (Risk et al. 2021).
High-throughput technologies have revolutionized biological

and medical research and will continue to explore other omics
spaces responsible for trait variation and adaptive responses to
environmental variability (Halstead et al. 2021; Hasin et al. 2017; Li
et al. 2019; Kim et al. 2016; Westhues et al. 2017). Integrating
various omics information has become increasingly crucial for
complex trait prediction and disease diagnostics (Tieri et al. 2011;
Gomez-Cabrero et al. 2014; Higdon et al. 2015; Huang et al. 2017).
The ability of kernel-based approaches to leverage the comple-
menting favorable properties of predictors (Schrag et al. 2018),
and the association significance to trait variation across growing
conditions, would have the potential to provide consistent
predictability across traits and environments.

MATERIALS AND METHODS
Duster x Billings hard red winter wheat Doubled Haploid (DH)
population
Developed cooperatively by the Oklahoma Agriculture Experiment Station
(OAES) and the USDA-ARS, a total of 242 DH lines derived from the
intercross of Duster and Billings winter wheat varieties were used in the
study. Traits analyzed include grain yield (GY) in kilograms per hectare (kg/
ha), sodium dodecyl sulfate sedimentation value (Lorenzo and Kronstad
1987) adjusted for flour protein content (SDS), kernel weight measured by
the single kernel characterization system (Perten Instruments, Segeltorp,
Sweden) (SKCSKW), and wheat protein on a 12% moisture basis (WHTPRO).
Each of these traits was evaluated in three harvest years with varied rainfall
(i.e., 19.8, 41.3, and 45.2 cm for 2014, 2015, and 2016, respectively) in
Stillwater, OK, USA (36.12 N, 97.09W), representing three different
environments. The average of two field replicates of each DH line per
year was used in the analysis.

Table 1. Observed phenotypic correlation, single and multi-environment heritability estimates from genomic best linear unbiased prediction
(GBLUP) for Duster × Billings winter wheat and the Interior spruce populations.

Trait E1 E2 E3 h2SE h2ME Trait E1 E2 E3 h2SE h2ME

Wheat GY E1 1 0.45 0.27 0.63 0.66 SDS 1 0.52 0.52 0.45 0.46

E2 1 0.45 0.62 1 0.72 0.33

E3 1 0.60 1 0.46

SKCSKW E1 1 0.28 0.40 0.46 0.33 WHTPRO 1 0.13 0.37 0.40 0.34

E2 1 0.48 0.33 1 0.17 0.36

E3 1 0.34 1 0.28

Sprucea HT E1 1 0.05 0.13 0.50 0.20 DBH 1 0.01 0.03 0.37 0.07

E2 1 0.19 0.32 1 0.08 0.26

E3 1 0.56 1 0.53

WDres E1 1 0.09 −0.05 0.49 0.10 WDX-ray 1 0.19 0.05 0.28 0.18

E2 1 0.08 0.28 1 0.16 0.39

E3 1 0.42 1 0.43

E1/E2/E3 Year 2014/2015/2016 for wheat, E1/E2/E3 PGTIS/Aleza Lake/Quesnel for spruce, PGTIS Prince George Tree Improvement Station, h2SE , heritability
estimated from single-environment GBLUP, h2ME , heritability estimated from multi-environment GBLUP, GY grain yield, SDS SDS sedimentation value,
SKCSKW kernel weight, WHTPROwheat protein, HT height, DBH diameter at breast height, WDres resistance to drilling, WDX-raywood density in kg/m3 using X-ray
densitometry
aHeritability estimates, see Gamal El-Dien et al. (2015)
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Genotypes were derived using genotype-by-sequencing (GBS) technol-
ogy, and 16,265 SNP markers were selected after filtering markers with
>50% missing ratio. Missing genotypes of markers were imputed by the
marker mean (Nazzicari et al. 2016). Although the genetic profile is the
same across three years, the effects of environment on phenotype can vary
in different years. Hence, we estimated the single- (h2SE ) and multi-
environment narrow-sense heritability (h2ME ) from GBLUP using single-year
phenotypes and the average of 3-year phenotypes for each trait,
respectively. The estimation was implemented in the R package BGLR
(Pérez and de los Campos 2014).

Interior spruce population
The Interior spruce breeding population includes a total of 1126 38-year-
old trees growing over three sites in British Columbia Canada, i.e., Prince
George Tree Improvement Station (PGTIS), Aleza Lake, and Quesnel. Each
site has 25 families with various sample sizes (Gamal El-Dien et al. 2015). To
reduce the impact of unbalanced sample size on modeling, we
randomized each family with respect to its minimum sample size (range
from 6 to 16), resulting in 340 trees per site. Phenotypes used for
prediction are height in m (HT) and diameter at breast height in cm (DBH)
as growth traits; and two wood quality attributes, resistance to drilling
(WDres) and wood density in kg/m3 using X-ray densitometry (WDX-ray). The
genotypic information regarding GBS SNP can also be found in Gamal El-
Dien et al. (2015). The single- (h2SE ) and multi-environment narrow-sense
heritability (h2ME ) of each trait were estimated from GBLUP by Gamal El-
Dien et al. (2015) and were reported in Table 1.

Statistical models
Single-environment (SE) model. The kernel matrix in GS models is normally
used to represent the genetic correlation between individuals that can be
derived from either pedigree information or molecular marker data. To
account for the relatedness in genetic background, the SE model
implemented here was an extension of model 1 in Cuevas et al. (2017),
by adding a random background genetic effect, bj. The SE model is used
for comparison with multi-environment (ME) model we proposed in the
next section and the SE model is expressed as follows:

yj ¼ 1njμj þ gj þ bj þ ej (1)

where yj is the response vector with length nj, nj is the total number of
phenotypic observations in the jth environment, j= 1,…,m, m is the
number of environments; 1nj is a vector of ones with length nj, μj is the
overall phenotypic mean of individuals in the jth environment; gj is the
random genetic effect of individuals in the jth environment, and we
assume gj � Nð0; σ2gjKjÞ where σ2gj is the genetic variance of individuals in
the jth environment, Kj (size nj × nj) is the kernel matrix used to describe
genetic similarity between individuals in the jth environment; bj is the
random background genetic effect of the jth environment that is not
explained by genetic markers in the gj, and we assume bj � Nð0; σ2bjBjÞ
where σ2bj is the background genetic variance of individuals in the jth
environment, Bj (size nj × nj) is a matrix representing the background
genetic relationship of two individuals in the jth environment; ej is the
random error term of the jth environment, and we assume ej � Nð0; σ2ej Inj Þ
where σ2ej is the residual variance of the jth environment and Inj is the
identity matrix with size nj; gj, bj and ej are assumed to be independent.

Multi-environment (ME) model. To fully capture G × E interaction, we
proposed a generalization of model 3 in Cuevas et al. (2017). The
generalized ME model is capable of predicting different individuals across
different environments and the model is expressed as follows:

y ¼ μþ gþ bþ e (2)

where y= (y1, y2,…, ym)
T; μ ¼ 1n1μ1; 1n2μ2; ¼ ; 1nmμmð ÞT ; g= (g1,

g2,…, gm)
T and g ~ N(0, ∑g); b= (b1, b2,…, bm)

T and b ~ N(0, ∑b); e= (e1,
e2,…, em)

T and e ~ N(0, ∑e); g, b, and e are assumed to be independent; ym,
μm, gm, bm and em are defined the same as in SE model.
In general, the genetic covariance matrix is

X
g
¼

σ2g1K1 σg12K12 � � � σg1mK1m

σg21K21 σ2g2K2 � � � σg2mK2m

..

. ..
. . .

. ..
.

σgm1Km1 σgm2Km2 � � � σ2gmKm

2
666664

3
777775

where σ2gm and Km are defined the same as in SE model; σg1m is the genetic
covariance of individuals in the 1st environment and mth environment; K1m
(size n1 × nm) is the kernel matrix representing genetic relationship between
individuals explained by genetic markers from the 1st andmth environment.
The background genetic covariance matrix is

X
b
¼

σ2b1B1 σb12B12 � � � σb1mB1m

σb21B21 σ2b2B2 � � � σb2mB2m

..

. ..
. . .

. ..
.

σbm1Bm1 σbm2Bm2 � � � σ2bmBm

2
666664

3
777775

where σ2bm and Bm are defined the same as in SE model; σb1m is the
background genetic covariance of individuals in the 1st and the mth
environment; B1m (size n1 × nm) is a matrix constructed to present the
background relationship between two individuals that is not explained
by genetic markers in the 1st and mth environment. With this model,
background genetic relationship can be appropriately incorporated
into both SE and ME models. For instance, when two individuals from
the same family in the Interior spruce population, a half-sib relatedness
of 0.25 was assigned to indicate their shared genetic background.
While when the informative background relationship is unavailable, an
identity matrix can be used for both background genetic variance and
covariance matrices (Crossa et al. 2017), which was the case for
Oklahoma wheat DH population demonstrated in this study.
The covariance matrix of the residuals is

X
e
¼

σ2e1 In1 0 � � � 0

0 σ2e2 In2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � σ2em Inm

2
666664

3
777775

where σ2em and Inm are defined the same as in SE model.

Gaussian kernel (GK) and Weighted kernel (WK). Here in this study, we
compared the model prediction performance with two different kernels,
Gaussian kernel (GK) used in de Los Campos et al. (2010) and our proposed
weighted kernel (WK). The GK in (3) transforms genetic distance into
genetic correlation between individuals.

KG xi ; xkð Þ ¼ exp �h d2ik=s
� �

(3)

where KG(.,.) is a positive definite function evaluated by marker genotypes;
xi, xk are vectors of marker genotypes for the ith and kth individuals
respectively, I, k= 1,…, nj, xi= (xi1,…, xil,…, xip)

T and xk= (
xk1,…, xkl,…, xkp)

T, l= 1, …, p, p is the total number of markers; the allelic
states of xil are coded as 0, 1, 2 for AA, Aa, and aa respectively; h is a
positive bandwidth parameter that controls the rate of decay of the
genetic correlation between two individuals. To determine the optimal
value of the parameter, either a grid search method from cross-validation
procedure or an empirical Bayesian approach (Pérez-Elizalde et al. 2015)
can be applied. In this study, h= 1 was used for simplicity. d2ik is squared
Euclidean distance between two individuals i and k explained by marker
genotypes, and s is the largest value of all d2ik .
Motivated by Wu et al. (2011) and Yan et al. (2014), we proposed to

model additional information such as the frequency and the effects of the
variants by a WK method in Eq. (4).

KW xi ; xkð Þ ¼ exp �h d�2ik =s
�� �

(4)

where d
�2
ik ¼ Pp

l¼1 wl xil � xklð Þ2, s* is the sample maximum of d�2ik , and the
weight wl assigned to the lth marker is based on its minor allele frequency
(MAF) and p-values from GWAS model with G×E interaction. The detailed
formula of wl is the following

wl ¼ c1 � Beta MAFl ; α; βð Þ þ 1
0:1þ pvalue 1l

þ 1
0:1þ pvalue 2l

� �2

(5)

where c1 is a constant; MAFl is the minor allele frequency of the lth marker; α
and β are the parameters of Beta distribution density function; pvalue1l and
pvalue2l are p-values of main genotypic effect and G × E interaction effect
respectively from GWAS for the lth marker, these p-values are adjusted by
false discovery rate at 0.05 to account for the multiple hypothesis testing
problem (Benjamini and Hochberg 1995; Storey and Tibshirani 2003).
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To account for the potential effects of low-frequency variants while
incorporating the test statistics from GWAS, we proposed the following
formula (6) to determine the value of c1.

c1 ¼
max 1

0:1þpvalue1 ;
1

0:1þpvalue2

� �

Beta min MAFð Þ; α; βð Þ
(6)

where pvalue1= (pvalue1l,… ,pvalue1l,… ,pvalue1p)
T, pvalue2= (pva-

lue2l,… ,pvalue2l,… ,pvalue2p)
T, and MAF= (MAF1,… ,MAFl,… ,MAFP)

T.
As for the setting of α and β in Eqs. (5) and (6), Wu et al. (2011) and Yan

et al. (2014) suggested to set α= 1 and β= 25 as a general way to control
the impact of rare genetic variants in their GWAS research. In this study, we
proposed to fix α= 1 and explore the impact of β on the performance of
prediction as such beta density decreases as MAF increases (see Fig. S1 for
details). As expected, when both MAF and p value are very small, the value
of c1was found to be determined approximately by β, i.e., c1 � 10

β . As a
result, β cannot go to infinity to shrink c1 toward zero. To further document
the impact of β on prediction performance of model with WK, five values
were inspected, i.e., β= 12, 25, 50, 100, and 200. Thus, c1 � 10

β � 0.83, 0.40,
0.20, 0.10, and 0.05.
In addition, we compared the prediction performance of the model

using the proposed WK with the model that implements the WK by MAF or
p-value alone, denoted as WKMAF and WKPvalue respectively. As compar-
ison, we denoted the WK contributed by both MAF and P value as
WKMAF_Pvalue, and its weight wl is from Eq. (5). The weight in WKMAF is
calculated by Eq. (7).

wMAF
l ¼ c1 � Beta MAFl ; α; βð Þð Þ2 (7)

where c1, α, and β are defined the same as above.
Similarly, the weight in WKPvalue is formulated as following

wP value
l ¼ 1

0:1 þ pvalue1l
þ 1
0:1 þ pvalue2l

� �2

(8)

Model implementation
SE model. Analysis was conducted in R (R Core Team 2020). The SE model
was implemented using R package BGLR with 12,000 iterations and the
first 6000 as burn-in for both wheat and spruce data sets (Pérez and de los
Campos 2014).

ME model
Duster × Billings hard red winter wheat DH population: In the
cases where the same genetic line was evaluated in multiple
environments, such as Oklahoma winter wheat DH breeding popula-
tions, the ME model was fitted using R package MTM (de los Campos
and Grüneberg 2016) with 20,000 iterations and the first 10,000 samples
as burn-in.

Interior spruce population: Since no clonal or inbred line material was
available for Interior spruce, we expanded the ME model for such scenario by a
Bayesian approach to estimate all parameters in the ME model. The detailed
implementation of Bayesian approach for ME model can be seen in the
Supplementary Material. The model was implemented in R with 100,000

Fig. 1 The distributions of minor allele frequency. The distributions of minor allele frequency from genomic data of red hard winter wheat
doubled haploid (DH) (A), and Interior spruce populations: Prince George Tree Improvement Station (PGTIS) (B), Aleza Lake (C), and Quesnel (D).
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iterations and the first 50,000 as burn-ins. The convergences of Markov Chains
for all models were assessed by visualizing the trace plots and running
convergence diagnosis using R package CODA (Plummer et al. 2006).

Prediction accuracy evaluation. Both Pearson’s correlation coefficient
(PCOR) between observed and predicted phenotypes, and its mean squared
error (MSE) were used to assess the model prediction accuracy for each
environment. To assess the model prediction performance, we split the data
into a training set (TRN) and a testing set (TST). We applied the estimation of
model parameters from TRN to TST to get predicted phenotypes. For SE
model, we randomly selected 70% of single-environment data as TRN
(n70 × 1) and the remaining 30% as TST (n30 × 1). For ME models, we followed
cross-validation 2 (CV2) procedure in López-Cruz et al. (2015) to assign
individuals to TRN and TST. CV2 mimics the practical prediction scenario
related to plant breeders where individual plants are only tested in some
environments (Burgueño et al. 2012). We randomly selected 70% of multi-
environment data as TRN (n70 ×m) and the rest 30% as TST (n30 ×m). n70 and
n30 stand for 70% and 30% of data, respectively. The random partition was
repeated 50 times for SE and ME models respectively to generate an average
prediction performance of each model. For WK, we selected the value that
produced the highest prediction accuracy in TRN. The calculations of MAF
and p values were based on each TRN-TST partition.

RESULTS
For each dataset, we present the following: 1) MAF distribution; 2)
summary of phenotypes and the estimated heritability, and 3)
prediction performance of the proposed models in the single- and
multi-environment settings. PCORs were used to illustrate the
prediction performance. Additionally, the results of MSE were

found to be consistent with PCORs, i.e., a lower MSE tends to have
a higher PCOR. The detailed evaluation of prediction performance
can be found in Tables S1, S2.

Minor allele frequency distribution
Duster × Billings hard red winter wheat DH population. The
distribution of common and rare SNP allele frequency for
Duster × Billings DH population is shown in Fig. 1A, The wheat
DH population has ~64% of the SNPs with MAF < 0.2, about 59%
<0.1 and 19% between 0.4 and 0.5. Further demonstrated in Fig.
S1, the density of Beta(1: β) will converge to zero with large value
of Beta random variables. Additionally, regarding to the context of
MAF as the value of Beta random variable, 0.2 was considered as
the large value.

Interior spruce population. The distribution of MAF was found
with a greater degree of rare alleles in all three sites of Interior
spruce. There were about 86%, 88%, and 91% of SNPs with
MAF < 0.2, for, PGTIS, Aleza Lake, and Quesnel, respectively (Fig.
1B–D).

Summary of phenotypes and heritability estimates
Duster × Billings hard red winter wheat DH population. Box-
plots of the four traits (GY, SDS, SKCSKW, and WHTPRO) across
3 years (2014–2016) for Oklahoma winter wheat are shown in
Fig. 2A. Both trait distributions and phenotypic variation are
quite different among the three years for all four traits. For
observed phenotypic correlation between years, SDS exhibited

Fig. 2 Boxplots of phenotypes. A Winter wheat, grain yield (GY), SDS sedimentation value (SDS), kernel weight (SKCSKW), and wheat protein
(WHTPRO) in each environment (Environment 1/2/3= Year 2014/2015/2016); B Interior spruce, height (HT), diameter at breast height (DBH),
resistance to drilling (WDres), and wood density in kg/m3 using X-ray densitometry (WDX-ray) in each environment (Environment 1/2/3= PGITS/
Aleza Lake/Quesnel, PGTIS, Prince George Tree Improvement Station).
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the highest average phenotypic correlation (0.52–0.72, aver-
age= 0.59), while WHTPRO was the lowest (0.13–0.37, aver-
age= 0.22) (Table 1). Heritability for each year (h2SE ), as well as
cross-year estimates (h2ME), are also listed in Table 1. GY showed
the highest and the most stable single-year heritability among
the studied four traits (h2SE = 0.60–0.63). Conversely, the other
three traits had much lower and varying heritability estimates.
For multi-year heritability estimates (2014–2016), only GY and
SDS have higher heritability than their single-year estimates
(i.e., h2SE = 0.60–0.63, h2ME = 0.66 for GY;h2SE = 0.33–0.46,
h2ME = 0.46 for SDS).

Interior spruce population. Growth phenotypes, HT and DBH,
varied among the three Interior spruce sites, while traits related to
wood density (e.g., WDres and WDX-ray), Aleza Lake and Quesnel
showed similarity in distribution and ranges (Fig. 2B). However,
unlike the winter wheat population, the observed pairwise
phenotypic correlations were relatively low for all studied traits
(Table 1). Overall, WDX-ray had the highest average phenotypic
correlation at 13% over the three sites (5–19%), and the lowest was
found in the correlation with DBH (1–8%, average at 4%). The single-
site heritability ranged from moderate to high (i.e., h2SE ranged from
0.26 to 0.56). Generally, traits measured in Quesnel showed higher
heritability than the other two sites. The overall heritability estimated
across the three sites was reduced to 0.07–0.20 (h2ME , Table 1), with
the highest in HT and the lowest in DBH.

Single and multi-environment predictions
For the performance of WK, we present the results with β that
produced the highest prediction accuracy of using WKMAF_Pvalue

for both data, i.e., β= 12 for wheat (Fig. S2) and β= 200 for spruce
(Fig. S3).

Duster × Billings hard red winter wheat DH population. The
average prediction accuracies of SE and ME models are shown in
Fig. 3 for the DH hard red winter wheat population. In general,
significant improvement in prediction accuracy can be seen with
modeling across multiple environments (Fig. 3). For example, the
prediction accuracy of GY using single year Gaussian kernel (SE_GK,
in Fig. 3) ranged from 0.38 (2016) to 0.55 (2014). With the same
Gaussian kernel, ME_GK trained the model with data from all years
and generated 6–10% improvement in GY prediction accuracy. The
gain from ME models can be as significant as a four-time increase
(0.1 in SE_GK and 0.38 for ME_GK, for the SKCSKW in Fig. 3);
substantial increase in ME_GK prediction accuracy was also found
for SDS with an average increase of 35% over the SE_GK (Fig. 3). SDS
also showed the highest gain of the estimated genetic variance from
ME_GK vs. SE_GK (Table S3).
Weighting with MAF and the association signal further improved

the prediction performance by WK for ME models, with the
exceptions of the reduced accuracy found in the ME_WKMAF model
for GY and WHTPRO (Fig. 3). Among all three methods of WK,
WKMAF_Pvalue performed similarly to WKPvalue, and both significantly
outperformed WKMAF for all studied traits. Compared with the ME_GK
models, the increase of prediction accuracy from ME_WKMAF_Pvalue

models ranged from 1 to 3%, 4 to 5%, and 6 to 7% for SDS, SKCSKW,
and WHTPRO, respectively (Fig. 3). For GY, the performance of
ME_WKMAF_Pvalue and ME_GK was found similar in 2014 and 2015, but
ME_WKMAF_Pvalue produced significantly higher prediction accuracy
for 2016 (i.e., 31% higher than ME_GK, Fig. 3).

Fig. 3 Prediction performance of genomic selection models for winter wheat. Average Pearson’s correlation coefficients were collected over
50 replications of CV2 scheme; SE_GK, single-environment model with Gaussian kernel; ME_GK, multi-environment model with Gaussian
kernel; ME_WKMAF, multi-environment model with weighted kernel (WK) by minor allele frequency (MAF); ME_WKPvalue, multi-environment
model with WK by genome-wide association study p value; ME_WKMAF_Pvalue (with β= 12), multi-environment model with WK by both MAF
and p value; GY, grain yield; SDS, SDS sedimentation value;, SKCSKW, kernel weight; WHTPRO, wheat protein.
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Interior spruce population. Different from what was observed in
the wheat dataset, the advantage of ME_GK over SE_GK was not
as evident for Interior spruce, which might be a result of the large
amount of variance that cannot be accounted for in the multi-
environment models (Table S4). The highest prediction accuracy
for SE_GK was found in Quesnel for HT (Fig. 4); similar
performance in HT was found for ME_GK as well. Additionally,
wood quality traits showed consistent prediction accuracy for all
Gaussian models, ranging from 0.19 to 0.31 for WDres and 0.24 to
0.28 for WDX-ray. In Table 1, DBH had the lowest multi-environment
heritability estimates, which is further reflected by the average of
5% reduction in ME_GK prediction performance (Fig. 4).
In general, modeling with MAF and specific-trait association

improved predictability, even when predicting phenotypes for
genetically heterogeneous material across environments. Among
the WK implementations, WKMAF_Pvalue outperformed the other
WK models almost in all traits, and the WKPvalue model showed
slight advantage for WDres prediction in the PGTIS site (Fig. 4). HT
was the most predictable phenotype, with a moderate prediction
accuracy in Quesnel, increased from 0.48 of SE_GK and 0.47 of
ME_GK to 0.56 ME_WKMAF_Pvalue. The greatest gain by using the
WK models was, however, found in DBH in Aleza Lake; the benefit
of using WK models for DBH was, however, diminished in PGTIS
(Fig. 4). The benefit of including genomics signals was not
significant for WDX-ray. Due to the relatively indifferent prediction
performance for WDX-ray across all models, the benefit of
incorporating MAF and association signal was not observed. We
suspect that the SNP predictors generated for Interior spruce are
in weak LD with the underlying genes and QTLs.

DISCUSSION
GS performance can be influenced by many interrelated factors,
including trait genetic architecture, heritability, and the related-
ness among individuals between training and testing populations
(Crossa et al. 2017). When ME prediction across sites or growing
seasons was conducted with a more defined set of genetic
diversity like populations derived from controlled crosses, the
advantage of incorporating available genetic correlation between
environments was evident. As shown in Fig. 3, our ME_GK models
using conventional GK demonstrated a consistent improvement
over the SE model, showing a 4–38% gain in predictability for
Oklahoma winter wheat DH population. The greatest improve-
ment for this population was observed in SDS for 2015, the trait
that also showed the most consistent cross-year prediction in Hu
et al. (2019). Our results demonstrated that, even in the presence
of identifiable environmental variability (h2ME ranges from 0.33 to
0.66, Tables 1 and S3), the benefit of employing ME prediction can
be anticipated in this case, because of the model capacity to
leverage genotype’s environment-specific effect.
Shown in Fig. 4, the ME_GK model, on the other hand, exhibited

a slightly unfavorable performance for Interior spruce, except for
WDX-ray whose accuracies were found indifferent with the SE
model. Compared to our results, the prediction analysis using the
same half-sib families in Gamel El-Dien et al. (2015) presented a
much-reduced GS accuracy with cross-site validations, even when
the prediction accuracy was calculated by correlating the
breeding values with the GEBVs. The non-additive effect of these
traits was found significant in Gamel El-Dien et al. (2018), with
WDX-ray being the only exception. In this study, the multi-site

Fig. 4 Prediction performance of genomic selection models for the interior spruce population. Average Pearson’s correlation coefficients
were collected over 50 replications of CV2 scheme; SE_GK, single-environment model with Gaussian kernel; ME_GK, multi-environment model
with Gaussian kernel; ME_WKMAF, multi-environment model with weighted kernel (WK) by minor allele frequency (MAF); ME_WKPvalue, multi-
environment model with WK by genome-wide association study p value; ME_WKMAF_Pvalue (with β= 200), multi-environment model with WK
by both MAF and p value; HT, height; DBH, diameter at breast height; WDres, resistance to drilling; WDX-ray, wood density in kg/m3 using X-ray
densitometry; PGTIS, Prince George Tree Improvement Station.
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heritability estimates (h2ME) ranged from 0.07 to 0.20 (Table 1); this
small amount of additive genetic variance would be one of the
leading attributes that hinder the performance of the
ME_GK model.
The conventional GK using genetic markers is only able to

capture the overall genetic similarity between individuals.
Although the bandwidth parameter in GK can adjust the
distribution of genetic similarity (Pérez-Elizalde et al. 2015), such
tuning is uniform to all genetic markers. For Interior spruce, the
genetic marker data revealed a much lower relatedness of these
trees within each site, suggesting the actual sibling relatedness
within families rarely met the half-sib relatedness assumption. In
the case where various degree of genetic relatedness between
individuals exists within the same family across sites, the strength
of incorporating genetic correlation in the ME models using only
the Gaussian kernel might be confounded by the heterogeneous
genetic background, resulting in an accuracy slightly lower to the
SE models (Fig. 4).
The bandwidth parameter tuning in conventional kernel models

could potentially create a better mapping between the overall
genetic distance among individuals to the phenotypic variation
(Pérez-Elizalde et al. 2015). However, it does not reflect the trait’s
genomic functional space, leaving important biological insights,
such as allele frequencies and the underlying genetic architecture,
out of the genome-to-phenome mapping in the GK models. GWAS
studies have been a powerful tool to assessing the association
between genetic variants and trait variations. The genetic variants
identified indicate their functional roles or a close linkage with
important genetic determinants for the traits of interest (Wu et al.
2011; Yan et al. 2014; Lin et al. 2016). Several studies have
suggested prioritizing GWAS variants when creating the genomic
relationship matrix could improve SE predictability of unrelated
individuals (de los Campos et al. 2013; Ober et al. 2015; Morgante
et al. 2018).
Despite the increases in GWAS statistical power afforded in

large international consortia (Willer et al. 2013; Wood et al. 2014;
Liu et al. 2015; Astle et al. 2016; Bomda et al. 2017), GWAS still only
accounts for a fraction of heritability for most complex traits, a
well-known phenomenon called “missing heritability” (Manolio
et al. 2009). Genetic variants outside of the reach of the GWAS
statistical power are considered to also contribute to the missing
heritability (Speed et al. 2012), including common variants with
weak effects, low-frequency (MAF 1–5%), and rare variants
(MAF < 1%) of small to modest effects, or their combination
(Agarwala et al. 2013). When the true causative genetic variants
remain unknown, GS has been proven more effective than classic
marker-assisted selection. This is because GS employs all available
markers as a “compete modeling” methodology for estimating
trait performance (Jia 2017). Compared to phenotypic selection,
GS could lead to the acceleration of annual inbreeding rate and
the loss of genetic diversity as it encourages selecting individuals
with high GEBV early in variety improvement programs and those
closely related to the training populations (Bassi et al. 2016;
Doekes et al. 2018; Forutan et al. 2018). In order to provide stable
predictability across populations, GS might also contribute to
rapid fixation of genomic regions where consistent marker effects
across populations can be identified (Clark et al. 2011; Pszczola
et al. 2012; Allier et al. 2019). When the breeding decision is made
to optimize short-term genetic gain with conventional GS, rare but
favorable alleles could be overlooked. That will essentially reduce
selection accuracy and genetic gain in the long term. Demon-
strated in simulation studies, up-weighting such alleles would
provide 8–30.8% greater long-term gain than that of un-weighted
prediction methods (Jannink 2010; Liu et al. 2015), further
advocating the WK approaches proposed in this study for the
long-term reliability of GS (Rutkoski et al. 2015; Zhang et al. 2018;
Ramasubramanian and Beavis 2021).

Here, we presented a flexible GS framework capable of
incorporating important genetic attributes to breeding popula-
tions and trait variability while addressing the shortcomings of
conventional GS models. Shown in Figs. 3, 4, the advantage of
incorporating trait- and population-specific genetic characteristics,
like p-values of GWAS and MAF, was evident. The MAF component
in our WK models aided in preserving rare but favorable variants,
which are usually underpowered in GWAS, and in some cases, not
even included in the analysis (Pongpanich et al. 2010; Marees et al.
2018). In addition, the WK considers the contribution of genetic
markers to the trait-specific G × E. By further differentiating the
effects of SNPs between growing environments, GS predictability
can be improved for all traits studied for DH genotypes, as well as
for the half-sib families of Interior spruce with considerable degree
of environmental variability across sites. Finally, the Bayesian
kernel methodology presented in the present study offers the
flexibility required for predicting multiple populations across
environments without using genetically clonal material. This
kernel implementation can further encourage integration of other
predictors, such as variables in environmental typing (Gianola
2021), to further improve GS performance of highly genetically
heterogeneous populations across environments.

DATA AVAILABILITY
Code for our proposed model is available here https://github.com/XiaoweiHu-Stat/
Multivariate_WeightedKernel.
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