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The covariance between relatives is a tenet in quantitative genetics, but the covariance between nonrelatives in crops has not been
studied. My objective was to determine if a covariance between nonrelatives is present in maize (Zea mays L.). The germplasm
comprised 272 maize lines that were previously genotyped with 28,626 single nucleotide polymorphism (SNP) markers. Pairs of
unrelated lines were identified on the basis of their membership probabilities in five subpopulations. The covariance between
nonrelatives was assessed as the regression of phenotypic similarity on SNP similarity between unrelated lines. Out of 77
regressions, seven were significant at a 5% false discovery rate: anthesis and silking dates in unrelated B73 and Oh43 lines; plant
height and ear height in unrelated Oh43 and PH207 lines; oil in unrelated A321 and Mo17 lines; starch in unrelated B73 and PH207
lines; and protein in unrelated B73 and Mo17 lines. The latter covariance was negative, and this negative covariance between
nonrelatives was attributed to the subpopulations having different linkage phases between the markers and underlying causal
variants. Overall, the results indicated that a covariance between nonrelatives in maize is not ubiquitous but is sometimes present
for specific traits and for certain groups of unrelated individuals. I propose that the covariance between nonrelatives and the
covariance between relatives be combined into a generalized covariance between individuals, thus giving a unified framework for
expressing the resemblance regardless of the degree of relatedness.

Heredity (2022) 129:155–160; https://doi.org/10.1038/s41437-022-00548-8

INTRODUCTION
The resemblance between relatives or that like begets like has been
observed since time immemorial, and the foundations of quanti-
tative genetics were first laid when Fisher (1918) deduced the
correlation between relatives on the assumption that the unknown
loci controlling a quantitative trait behave in a Mendelian fashion.
Two individuals are related if they have an ancestor in common. At
any locus that affects a given trait, related individuals could inherit
copies of the same allele found in the common ancestor. These
copies of the same ancestral allele, which are described as being
identical by descent, then make the relatives resemble each other.
Nonrelatives are individuals that are known to not have or

assumed to not have any common ancestors in their respective
pedigrees. Alleles shared by nonrelatives are alike in state (i.e.,
physically the same allele) but are not identical by descent. The
probability of identity by descent can be assessed in a
probabilistic manner from pedigrees. For example, the probability
of identity by descent of alleles is 1/4 between a parent and its
offspring, 1/4 between full sibs, and 1/8 between half sibs
(Falconer 1960). In contrast, prior to the availability of molecular
markers, there had been no way to assess the extent to which
nonrelatives have alleles in common. As such, the covariance
between nonrelatives has been implicitly assumed as zero in
classical quantitative genetics. But is it always really zero?
If markers are in linkage disequilibrium with causal variants for a

given trait, regressing the phenotypic covariance between non-
relatives on marker similarity (Ritland 1996; Lynch 1999) may reveal
a nonzero covariance between nonrelatives. For complex traits in

humans, the covariance among nonrelatives or distantly related
individuals has been estimated in the context of genomewide
prediction (de los Campos et al. 2013) or in resolving the issue of
missing heritability in genomewide association studies (Yang et al.
2017). The results from these aforementioned studies in humans
have indicated the presence of a covariance among nonrelatives.
Linkage disequilibrium is likely stronger in plants than in humans,

yet empirical information is unavailable on the covariance between
nonrelatives in crops. If a covariance among nonrelatives is frequent
and strong enough, such a covariance would need to be considered
when coupling modern genomics tools with quantitative genetics
theory in plant breeding (Bernardo 2020). Furthermore, having a
covariance between nonrelatives and between relatives would
suggest the need for a broader theoretical framework for the
covariance between individuals in general. My objective in this
study was to determine if a covariance between nonrelatives is
present for different traits in groups of unrelated maize lines.

MATERIALS AND METHODS
Maize lines, marker data, and phenotypic data
Phenotypic and single nucleotide polymorphism (SNP) marker data were
from previous experiments conducted at the University of Minnesota
(Schaefer and Bernardo 2013a, 2013b). The maize germplasm included 272
publicly developed lines and private lines whose US Plant Variety Protection
certificates had expired. The lines were evaluated for anthesis date (growing
degree days from planting to when 50% of the plants were shedding
pollen), silking date (growing degree days from planting to when 50% of the
plants had exposed silks), plant height (distance in cm from the soil surface
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to the flag leaf), ear height (distance in cm from the soil surface to the ear
leaf node), kernel oil concentration (g kg−1), kernel protein concentration
(g kg−1), and kernel starch concentration (g kg−1). Phenotyping was done in
six location-year combinations in Minnesota in 2011 and 2012 (Schaefer and
Bernardo 2013b). The phenotypic data analyzed herein were the least-
squares means of each line for each trait across all six environments.
The lines were genotyped at 56,110 SNP loci on the Maize SNP50

BeadChip developed by Illumina (San Diego, California). Procedures for
marker analysis of population structure were described by Schaefer and
Bernardo (2013a) but are repeated here for convenience. Marker loci with a
minor allele frequency less than 7% or with more than 10% missing data
were disregarded, leading to 43,252 SNP loci. STRUCTURE software
(Pritchard et al. 2000) was used to assess population structure among
the lines. To help meet the assumption in STRUCTURE that the marker loci
are in linkage equilibrium within subpopulations, a random subset of 3000
SNP loci was used in the model-based cluster analysis. This prior analysis
by Schaefer and Bernardo (2013a) led to membership probabilities of each
line for the following five subpopulations: A321 (Minnesota 13), B73 (Iowa
Stiff Stalk Synthetic), Mo17, Oh43, and PH207 (Iodent) (Troyer 1999). There
were 109 lines in the A321 subpopulation, 61 in the B73 subpopulation, 29
in the Mo17 subpopulation, 45 in the Oh43 subpopulation, and 28 in the
PH207 subpopulation. For convenience, the five subpopulations are used
herein to indicate line membership, so that ‘a B73 line’ refers to a line with
primary membership in the B73 group rather than the line B73 itself.

Pairwise similarity and identifying pairs of unrelated lines
A set of 28,626 SNP loci with reduced multicollinearity was previously
identified (Schaefer and Bernardo 2013b) via PLINK software (Purcell et al.
2007), according to a linkage disequilibrium maximum threshold of r2= 0.9
within a sliding window of 50 markers. The 28,626 SNP loci were then used
for calculating the pairwise similarity among the lines. The numbers of SNP
loci on each of the 10 maize chromosomes (in parentheses) were as follows:
(1) 4182, (2) 1972, (3) 3618, (4) 3343, (5) 3367, (6) 2518, (7) 2493, (8) 2682, (9)
2316, and (10) 2135. Marker similarity between each of the 36,856 pairs of
lines was calculated on an allelic basis. At a given SNP locus with alleles M
and m, similarity was 1.0 between lines that both had the MM genotype; 1.0
between lines that both had the mm genotype; 0 between an MM line and
mm line; and 0.5 when one or both lines had the Mm genotype (i.e., Mm
versus Mm, Mm versus MM, or Mm versus mm). The within-locus similarity
was summed across loci and divided by the total number of SNP loci.
Unrelated lines were identified in the following manner. Consider lines i

and j and subpopulation k, and assume that pik was the membership
probability of line i in subpopulation k whereas pjk was the membership
probability of line j in subpopulation k. The pikpjk value was calculated for
each of the five subpopulations. Lines i and j were then considered
unrelated when pikpjk did not exceed 0.01 for any of five subpopulations. In
other words, pairs of unrelated lines were identified by finding those with
membership-probability products that were less than 1% for all subpopula-
tions. As indicated in the Discussion, this was likely a conservative approach
for finding pairs of unrelated lines. Unrelated lines were identified across all
subpopulations as well as for each of the 10 pairwise combinations of the
five subpopulations (e.g., A321 lines versus B73 lines, A321 lines versus Mo17
lines, … Oh43 lines versus PH207 lines).

Estimating the covariance between nonrelatives
The presence of a covariance between nonrelatives was assessed by
regressing the cross products between trait values of nonrelatives on the
marker similarity between the nonrelatives. This procedure required the
absence of a nongenetic covariance between lines, and this requirement was
met by randomization of the lines within each location in which phenotyping
was done. Suppose line i was primarily a member of subpopulation k. For a
given trait, the mean of line i was first modeled as Yi(k)= µ+ vk+ gi+ error,
where µ was the overall mean, vk was the effect of subpopulation k (Yu et al.
2006), and gi was the effect of line i. The Yi(k) value was corrected for the
overall mean and subpopulation effect, i.e., yi(k)= Yi(k) – μ̂þ v̂kð Þ.
When unrelated lines were considered while ignoring their subpopula-

tion memberships, the cross product for unrelated lines i (in subpopulation
k) and j (in subpopulation k’) was calculated as Cij= yi kð Þ � y

� �
yj k0ð Þ � y
� �

,
where y was the mean corrected value of all the lines used in calculating the
Cij values. When pairs of unrelated lines from specific subpopulations were
considered (e.g., an A321 line and an unrelated B73 line), the cross product
for unrelated lines i and j was calculated as Cij= yi kð Þ � yk

� �
yj k0ð Þ � yk0
� �

,
where yk was the mean corrected value of the set of subpopulation k lines
that were included in calculating the Cij values, and yk0 was the mean

corrected value of the set of subpopulation k’ lines that were included in
calculating the Cij values.
The covariance between nonrelatives was then assessed via the

regression of Cij on Sij, where Sij was the marker similarity between unrelated
lines i and j (Ritland 1996; Lynch 1999). For convenience and ease of
interpretation, the Sij values were converted to percentages and expressed
as a deviation from the mean. The regression of Cij on Sij is equal to the
covariance only when the Sij values are standardized, and the initial analysis
involved standardizing the Sij values. Such analysis proved less informative
than the regression of Cij on nonstandardized Sij values: when comparing
results across different subpopulations, it was helpful to assess the change in
Cij per percentage-point change (rather than per standardized-unit change)
in Sij. Hence, the results reported herein are regressions instead of
covariances but the two are sometimes used interchangeably given the
objective of determining whether a covariance (as reflected by the
regression of Cij on Sij) between nonrelatives is present in maize.
The p-values for the regression coefficients were calculated via z-tests and

a false discovery rate of 0.05 was imposed for the multiple comparisons
made (Benjamini and Hochberg 1995). In addition to regressing Cij on the
across-genome Sij, the regression of Cij on per-chromosome Sij was
calculated. This analysis was conducted to assess if any significant regression
was due to similarity across most or all chromosomes, or was due to
similarity on specific chromosomes.
For reference purposes, the covariance between relatives was also

assessed. Most pairs of lines within a given subpopulation were expected to
be related, and the regression of Cij of Sij was calculated for all pairs of lines
within each of the five subpopulations. A false discovery rate of 0.05 was
imposed on the within-subpopulation regression coefficients (Benjamini and
Hochberg 1995).

RESULTS
Among the 272 maize lines, there were 5278 pairs of unrelated
lines across the five subpopulations (Table 1). When the analysis
was restricted to unrelated lines between two subpopulations, the
fewest pairs of unrelated lines was 33 for the A321 and Oh43
groups; these 33 pairs of unrelated lines involved only seven A321
lines and five Oh43 lines. The largest number of pairs of unrelated
lines was between the A321 and B73 groups, with 1214 unrelated
pairs that involved 52 A321 lines and 27 B73 lines. The number of

Table 1. Marker similarity, calculated from 28,626 single nucleotide
polymorphism loci, among related lines and among unrelated lines
in maize.

Group Pairs of lines Mean similarity (range)

All related lines 9490 0.656 (0.590, 0.980)

Within A321 5886 0.632 (0.595, 0.977)

Within B73 1830 0.721 (0.611, 0.980)

Within Mo17 406 0.676 (0.590, 0.928)

Within Oh43 990 0.657 (0.604, 0.976)

Within PH207 378 0.731 (0.614, 0.947)

All unrelated lines 5278 0.586 (0.435, 0.646)

A321, B73 1214 0.593 (0.560, 0.638)

A321, Mo17 397 0.579 (0.541, 0.602)

A321, Oh43 33 0.622 (0.610, 0.637)

A321, PH207 482 0.621 (0.592, 0.644)

B73, Mo17 738 0.529 (0.435, 0.619)

B73, Oh43 757a 0.586 (0.561, 0.623)

B73, PH207 787 0.597 (0.567, 0.646)

Mo17, Oh43 233 0.582 (0.539, 0.637)

Mo17, PH207 307 0.590 (0.534, 0.637)

Oh43, PH207 329 0.616 (0.596, 0.631)
aThe A662-LH149 pair, which had an unusually high similarity of 0.662 for
two unrelated lines, was excluded from the analysis.
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pairs of related lines ranged from 378 within the PH207 group and
5886 within the A321 group (Table 1).
The marker similarity among the 5278 pairs of unrelated lines

(across all subpopulations) ranged from 0.435 to 0.646 and had a
mean of 0.586 (Table 1). The mean similarity was lowest (0.529)
between unrelated B73 and Mo17 lines and was highest (0.622)
between unrelated A321 and Oh43 lines. The range in similarity
was widest between unrelated B73 and Mo17 lines (0.435 to
0.619) and was narrowest between unrelated A321 and Oh43 lines
(0.610 to 0.637). Marker similarity was higher between related lines
(mean of 0.656) than between unrelated lines (mean of 0.586)
(Table 1). Within-group similarity was highest among B73 lines
(mean of 0.729), and the highest similarity (0.980) was between
B73 itself and line F42 within the B73 subpopulation.
With seven traits and 10 pairs of subpopulations plus the overall

set of unrelated lines, there were 77 regressions of cross products
between unrelated lines (Cij) on marker similarity (Sij). Out of the 77
regressions, the following seven were significant at a false discovery
rate of 0.05: anthesis and silking dates in unrelated B73 and Oh43
lines; plant height and ear height in unrelated Oh43 and PH207
lines; oil in unrelated A321 and Mo17 lines; protein in unrelated B73
and Mo17 lines; and starch in unrelated B73 and PH207 lines (Fig. 1).
The strongest covariance was for protein in unrelated B73 and
Mo17 lines, for which the regression coefficient was –5.8 g kg−1 per
percentage change in marker similarity and the correlation between
Cij and Sij was −0.14. The second strongest covariance was for ear
height in unrelated Oh43 and PH207 lines, for which the regression
coefficient was 8.9 cm per percentage change in marker similarity

and the correlation between Cij and Sij was 0.11. The weakest
significant covariance was for starch in unrelated B73 and PH207
lines, for which the regression coefficient was 11.6 g kg–1 per
percentage change in marker similarity and the correlation between
Cij and Sij was 0.06.
For protein in unrelated B73 and Mo17 lines, the regression

coefficients of Cij on per-chromosome Sij had low p-values across
all 10 chromosomes (Table 2). In contrast, for ear height in
unrelated Oh43 and PH207 lines, the p-values for regression
coefficients were 0.02–0.07 for chromosomes 1, 2, 6, 7, and 8 but
were 0.19–0.34 for chromosomes 3, 4, 5, 9, and 10.
The overall covariance between relatives was significant (P=

0.05) for all traits except ear height (Table 3). Within the A321
group, the covariance between relatives was significant for all
seven traits. But within the Mo17 group, none of the regression
coefficients of Cij on Sij was significant. Within the B73 group, the
regression coefficients were nonsignificant for ear height and oil
but were significant for the five other traits (Table 3, Fig. 2). Within-
group covariances were significant for the two flowering-date
traits in all subpopulations except Mo17. Regression coefficients
were much smaller for oil than for protein and starch.

DISCUSSION
Weak covariance between nonrelatives for certain traits and
subpopulations
The results showed that in maize, a covariance between
nonrelatives is not ubiquitous but is sometimes present for specific

Marker similarity 

Plant height (cm2) |  Oh43, PH207                  Ear height (cm2)  |  Oh43, PH207

Oil (g2 kg–2)  |  A321, Mo17                               Protein (g2 kg–2)  |  B73, Mo17                           Starch (g2 kg–2)  |  B73, PH207 

Anthesis (GDD)2 |  B73, Oh43                         Silking (GDD)2  |  B73, Oh43

Fig. 1 Seven instances of a significant covariance between nonrelatives in maize, as assessed by the regression of cross-products between
nonrelatives (Y-axis) on across-genome marker similarity.
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traits and for certain groups of unrelated individuals. Such a
covariance was generally weak and most often positive, yet a
negative covariance between nonrelatives is also possible when it is
assessed via a random set of genomewide markers. The covariance
among nonrelatives was due to similarity across the maize genome
in some cases and to similarity at specific chromosomes in other
cases. While the results were from a single panel of maize lines, the
lines represented the key germplasm groups in US maize (Troyer
1999, Schaefer and Bernardo 2013a) and they were enough to show
that a covariance between nonrelatives is sometimes present in
maize. The presence of a covariance among nonrelatives challenges
a long-held, implicit assumption in quantitative genetics and
requires a rethinking of how the covariance between individuals
of varying levels of relatedness is best expressed.
In this study, unrelated lines were identified not from pedigree

records (which were often incomplete) but on the basis having a
joint probability of membership less than 0.01 for each of the five
subpopulation assignments given by Schaefer and Bernardo
(2013a). Some pairs of lines that were unrelated by pedigree
were excluded from the sets of unrelated lines. For example, the
French lines F2 and F7 were both developed by self-pollination
from the Lacaune landrace (Tenaillon and Charcosset 2011) and,
according to their pedigrees, are unrelated to the US line B73. The
membership probabilities in the B73 subpopulation were 1.0 for
B73, 0.03 for F2, and 0.08 for F7. Given that the product of their
membership probabilities for the B73 subpopulation exceeded

0.01, F2 and F7 were excluded from the set of lines unrelated to
B73 even if their pedigree records indicated otherwise.
The foregoing point suggested that the assessment of the

covariance between nonrelatives in this study may have been too
conservative. For example, the nonzero membership probabilities
of F2 and F7 in the B73 subpopulation indicated some level of
alikeness in state with B73. If F2, F7, and other lines unrelated by
pedigree were included among the lines unrelated to B73, the
range in Sij values among the resulting unrelated lines could have
increased. Such expansion in the range of the x-axis could then
have led to a stronger regression coefficient. This conservative
criterion aside, a key point worth considering is the very definition
of two individuals being unrelated.
In particular, the results herein underscored how the definition

of relatedness differs from an evolutionary genetics perspective
versus a quantitative genetics perspective. If a particular crop
species emerged from only one domestication event, as might
have been the case with maize (Matsuoka et al. 2002) and rice
(Oryza sativa L.) (Molina et al. 2011; Huang et al. 2012), then all
individual plants of that species would be considered as related
because of their singular ancestry. On the other hand, inferences in
classical quantitative genetics rely on having a real or conceptual
population that is in Hardy-Weinberg equilibrium and in which the
individuals are assumed non-inbred and unrelated (Falconer 1960).
If the common ancestry was in the distant past, then the
probability of identity by descent between two individuals will

Table 3. Regression of relative cross-products on marker similaritya among related lines for different traits in maize.

Group Number
of lines

Anthesis
(growing
degree days)2

Silking
(growing
degree days)2

Plant
height
(cm2)

Ear height
(cm2)

Oil
(g2

kg−2)

Protein (g2

kg−2)
Starch (g2

kg−2)

A321 109 553 686 6.1 1.6 0.3 2.6 5.0

B73 61 109 114 6.1 0.6b 0.0b 11.3 22.3

Mo17 29 74b 25b 0.6b −0.2b 0.1b 0.3b 0.4b

Oh43 45 600 709 2.6b 1.3b 0.4 2.9 7.7

PH207 28 499 461 4.0b 1.0b 0.0b 0.0b 1.0b

All 272 196 225 2.9 0.5b 0.1 3.4 7.0
aMarker similarity was expressed as a percentage rather than a proportion in calculating the regression.
bNot significant at a false discovery rate of 0.05; all other values were significant.

Table 2. Per-chromosome regression of nonrelative cross-products on marker similaritya for protein in unrelated B73 and Mo17 lines and for ear
height in unrelated Oh43 and PH207 lines.

Chromosome(s) used to calculate
marker similarity

Protein (g2 kg−2) in unrelated B73
and Mo17 lines

Ear height (cm2) in unrelated Oh43
and PH207 lines

Regression p value Regression p value

1 −2.0 0.0196 7.5 0.0230

2 −1.7 0.0026 −3.0 0.0589

3 −4.2 0.0010 1.5 0.1929

4 −5.0 0.0000 0.7 0.2875

5 −4.6 0.0001 0.9 0.3423

6 −1.9 0.0601 2.8 0.0695

7 −3.0 0.0018 2.4 0.0623

8 −5.3 0.0002 1.8 0.0583

9 −1.6 0.0724 0.7 0.3386

10 −2.5 0.0041 −0.9 0.3308

All −5.8 0.0001 8.9 0.0227
aMarker similarity was expressed as a percentage rather than a proportion in calculating the regression.
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be close to zero and will have no meaningful contribution to the
covariance between relatives. Relatedness in this study was viewed
according to this quantitative genetics perspective.
The results indicated that a covariance between nonrelatives can

be detected even when the range in Sij values among unrelated lines
is small. For example, the regression of Cij for plant height and ear
height on Sij between unrelated Oh43 and PH207 lines was significant
despite the range in Sij values being only 0.035 (Table 1). On the other
hand, the wide range (0.184) and low mean (0.52) of Sij values
between unrelated B73 and Mo17 lines reflected an ascertainment
bias in the development of the Maize SNP50 BeadChip. This Illumina
SNP chip was developed using B73 as the reference genome, and
heterozygosity of the SNP markers in the B73 ×Mo17 cross was a
criterion used to evaluate the utility of the SNP chip (Illumina 2012). It
was therefore unsurprising that the mean similarity between
unrelated B73 lines and Mo17 lines was lower than the mean
similarity for the other pairs of subpopulations.
As expected, most of the covariances among relatives were

significant with the notable exceptions of the Mo17 subpopulation,
for which the regression of Cij on Sij was nonsignificant for all traits,
and the PH207 subpopulation, for which the regression was
nonsignificant for ear height and the three kernel composition
traits (Table 3). The Mo17 and PH207 subpopulations had the
fewest lines and they also tended to have narrowest ranges in line
means for the traits studied (Schaefer and Bernardo 2013b).

Implications
Several previous studies that implicitly recognized a covariance
between nonrelatives focused on how common causal variants
contribute to a correlation between nonrelatives. For prediction of
height among unrelated human subjects, the use of markers with
the lowest p-values (from genomewide association analysis) led to
higher prediction accuracies compared with using all of the
markers (de los Campos et al. 2013). Multiple genomewide
association studies (summarized by Visscher 2008) for height in
humans have involved estimating heritability using markers with
significant effects in different human populations. The current
study differed from these aforementioned studies in that no
attempt was made to estimate the similarity among unrelated
individuals from a subset of markers with low p-values. That being
said, the importance of specific chromosomes with regard to the

covariance among nonrelatives was evident in the regression of Cij
on per-chromosome Sij (Table 2).
Previous analyses involving the regression of Cij on Sij in

unrelated human subjects (Kemper et al. 2021) equated the
regression coefficient to the additive genetic variance (Ritland
1996; Lynch 1999). In contrast, the regression coefficients in this
study were used to assess covariances but not genetic variances
which, unlike covariances, are positive by definition. The negative
regression of Cij for protein on Sij in unrelated B73 and Mo17 lines
(Fig. 1) was a unique result that indicated that, unlike the covariance
between relatives which is always positive, the covariance between
nonrelatives can be negative when it is assessed via genomewide
markers.
The negative covariance for protein in unrelated B73 and Mo17

lines was likely due to differences in linkage phases between the
two subpopulations; this same phenomenon has been recognized
as a reason for a low accuracy of genomewide prediction between
different populations (de Roos et al. 2009). Suppose the marker
alleles at a locus are denoted by M and m whereas the causal
alleles are denoted by Q and q. Furthermore, suppose that most of
the gametes are in coupling phase in one subpopulation (MQ and
mq) whereas most of the gametes are in repulsion phase in the
second subpopulation (Mq and mQ). In this situation, similarity at
the marker locus would be associated with dissimilarity at the
causal locus, thus leading to a negative covariance. Thus, while
any covariance among nonrelatives should be positive when
similarity is directly assessed at the causal loci themselves, a
negative covariance may arise if genomewide markers are used as
proxies for the unknown causal variants.
This study focused on the initial step of determining whether a

covariance between nonrelatives exists in maize, and investigations
of the practical significance of this finding are deferred to future
studies. Because the covariances between nonrelatives in this study
were mostly weak, they could probably be safely ignored without
much practical consequence. Such an approach is currently being
used in genomewide prediction, for which the typical procedure is
to either (1) capture identity by descent and exclude non-identity
by descent using markers (Bernardo 1993) or (2) include both
identity by descent and alikeness in state without making a
distinction between the two (de los Campos et al. 2013, Lorenz and
Smith 2015). However, if the covariance between nonrelatives is

Marker similarity 

Anthesis (growing degree days)2                     Plant height (cm2)                                              Ear height (cm2)

Silking (growing degree days)2                         Starch (g2 kg–2)                                                   Protein (g2 kg–2)

Fig. 2 Regression of nonrelative cross-products on across-genome marker similarity for different traits in the B73 group. Results are not
shown for oil concentration, for which the regression was near zero and nonsignificant and the scatterplot was similar to that for ear height.
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substantial (e.g., negative covariance for protein in unrelated B73
and Mo17 lines in Fig. 1), it might be advantageous to explicitly
account for it when expressing the covariance between individuals.
At a single locus, the expectation of Sij is fij+ θij, where fij is

probability that a random allele from i and a random allele from j
are identical by descent (i.e., coefficient of coancestry), and θij is the
probability that a random allele from i and a random allele from j
are alike in state, given that they are not identical by descent (Cox
et al. 1985; Lynch 1988). In other words, unless unrelated individuals
do not share any marker alleles, Sij includes a portion due to
relatedness (fij) and a portion due to nonrelatedness (θij). This point
also implies that whereas the covariance between nonrelatives was
studied herein in isolation by focusing only on unrelated lines, a
covariance between nonrelatives can play a role even among
related lines. If dominance is absent, the covariance due to identity
by descent is equal to 2fijVA, where VA is the additive genetic
variance (Falconer 1960). In an analogous manner, we define the
portion of the covariance due to nonrelatedness as equal to
2θijCovU, where CovU is the covariance between nonrelatives.
Suppose three pairs of lines all have Sij= 0.75. If, in accordance

with current practice, no distinction is made between the
covariances due to relatedness and due to nonrelatedness, the
value of the covariance will be identical for these three pairs of
lines. In contrast, suppose a distinction is made between
relatedness and nonrelatedness, and that the common Sij of 0.75
corresponds to (1) fij= 0.15 and θij= 0.60 for the first pair of lines,
(2) fij= 0.20 and θij= 0.55 for the second pair of lines, and (3) fij=
0.25 and θij= 0.50 for the third pair of lines. Furthermore, suppose
that VA (100) is larger than CovU (10). In this hypothetical example,
the covariances between lines (calculated as 2fijVA+ 2θijCovU) are
now unequal and are 42 for the first pair, 51 for the second pair,
and 60 for the third pair.
Accounting for the covariances due to relatedness and

nonrelatedness could therefore alter the estimated covariances
between individuals and, consequently, affect genomewide
prediction and other procedures that rely on the covariance
between individuals. This topic, along with how to partition Sij into
fij and θij, is the focus of a follow-up study.
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