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We evaluated the performances of three BLUP and five Bayesian methods for genomic prediction by using nine actual and
54 simulated datasets. The genomic prediction accuracy was measured using Pearson’s correlation coefficient between the
genomic estimated breeding value (GEBV) and the observed phenotypic data using a fivefold cross-validation approach with 100
replications. The Bayesian alphabets performed better for the traits governed by a few genes/QTLs with relatively larger effects. On
the contrary, the BLUP alphabets (GBLUP and CBLUP) exhibited higher genomic prediction accuracy for the traits controlled by
several small-effect QTLs. Additionally, Bayesian methods performed better for the highly heritable traits and, for other traits,
performed at par with the BLUP methods. Further, genomic BLUP (GBLUP) was identified as the least biased method for the GEBV
estimation. Among the Bayesian methods, the Bayesian ridge regression and Bayesian LASSO were less biased than other Bayesian
alphabets. Nonetheless, genomic prediction accuracy increased with an increase in trait heritability, irrespective of the sample size,
marker density, and the QTL type (major/minor effect). In sum, this study provides valuable information regarding the choice of the
selection method for genomic prediction in different breeding programs.
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INTRODUCTION
Genotype selection based on genetic merit is an essential
component of crop and animal breeding programs (Noshahr
et al. 2017). Selection based on best linear unbiased prediction
(BLUP; Viana et al. 2011), combined selection (Bhering et al. 2013),
and recurrent selection (Ordas et al. 2012) was proposed to
improve the selection accuracy. Albeit, marker-assisted selection
(MAS) is used widely (Heffner et al. 2009), in which trait-associated
markers, after necessary validation, are utilized in the breeding
programs (Yáñez et al. 2014), it is less effective for the traits
governed by many genes, with minor effects (Heffner et al. 2009;
Xu and Crouch 2008).
Genomic selection (GS; Meuwissen et al. 2001) is an alternative

to MAS and conventional phenotypic selection. In the GS, the
genetic markers (with large and small effects) covering the entire
genome are utilized, ensuring selection for not one or a few major
effect Quantitative Trait Loci (QTLs) of interest but a combination
of them contributing to the phenotype. In the GS model, the
marker effects are first estimated based on the genotypic and
phenotypic values of the training population. Then, the estimated
marker effects are used to compute the genomic estimated
breeding value (GEBV) for the selection candidates (test popula-
tion) having only genotypic information (Heffner et al. 2009;
Meuwissen et al. 2001). GS can be employed to predict GEBV at an
early growth stage for a candidate, depending on the availability
of the genotypic information (Wray et al. 2007; Guo et al. 2011).
Thus, GS is advantageous for the traits that express later during

life, specifically in the perennial species with long juvenile phases,
and also for the traits that are costly to phenotype (Sayfzadeh
et al. 2013). In other words, by applying GS, the breeding time and
cost could be reduced by selecting candidates at an early growth
stage (Tempelman 2015; Wolc et al. 2016; Yu et al. 2016). Hence,
the selection based on GEBV could lead to a higher rate of genetic
gain in the shorter generation time (Dekkers 2007; Daetwyler et al.
2010). Accuracy of GEBV is key to the success of genomic
predictions, which is determined by several factors, including trait
heritability (Hayes et al. 2009), marker density, QTL number, LD
between QTL and associated marker (Meuwissen et al. 2001;
Goddard 2009), size of the reference population, and genetic
relationship between the reference and the test population
(Zhong et al. 2009; Habier et al. 2007). Low-cost genotyping
technologies such as single nucleotide polymorphism (SNP) arrays
and genotyping by sequencing (GBS; Elshire et al. 2011; Ganal
et al. 2011) offer new possibilities to improve the efficiency of
breeding programs by allowing the application of GS (Bassi et al.
2016).
Several GS methods have been developed for predicting

GEBV. These can be classified into three groups i.e., parametric,
semi-parametric, and non-parametric (Crossa et al. 2014; Li et al.
2018). The BLUP alphabets, such as genomic BLUP (GBLUP;
VanRaden 2008), ridge regression BLUP (RR-BLUP; Piepho 2009),
SUPER BLUP (SBLUP; Wang et al. 2018), and compressed BLUP
(CBLUP; Wang et al. 2018) are the linear parametric methods.
The Bayesian alphabets, such as BayesA, BayesB, BayesC, Bayes
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ridge regression (BRR), and Bayes LASSO (BLASSO or BL), are the
non-linear parametric methods. The reproducing kernel Hilbert
space (RKHS; Gianola et al. 2006) is the most widely used semi-
parametric method (de Los Campos et al. 2013), and the non-
parametric method comprises mostly the machine learning
techniques. Among the available methods, Bayesian and BLUP
alphabets are most commonly used for GEBV prediction. The
Bayesian and BLUP alphabets differ in the distribution of marker
effects (Meuwissen et al. 2001; Hayes et al. 2009; de Los Campos
et al. 2013; Habier et al. 2011; Legarra et al. 2008). In BLUP
alphabets, all the markers are assumed to contribute to the trait,
whereas a limited number of markers are assumed to have
effects on the trait variance in Bayesian methods. Further, equal
weights are given to the variance of all the markers in BLUP
methods, but the Bayesian methods assign different weights to
different markers. In BLUP alphabets, marker effects are
assumed to follow a normal distribution (Meuwissen et al.
2001; VanRaden 2008), which means many QTL govern the trait,
with each marker exhibiting a small effect (Meuwissen et al.
2001). In BLASSO, it is assumed that a small proportion of
markers have large effects and a large proportion of markers
have zero effects (Yi and Xu 2008; Hayes and Goddard 2010;
Aguilar et al. 2010). In BayesC, it is assumed that there are effects
of only a fraction of the markers, with each having a common
variance (Habier et al. 2011). In BayesA, all the markers are
assumed to have an effect, but each with different variances. In
BayesB, it is considered that some of the markers have zero
effects and other markers have effects with different variances.
In BRR, marker effects follow Gaussian distribution, which
induces shrinkage of estimates similar to ridge regression. Also,
all marker effects are assumed to have equal variance in BRR.
The ridge regression (RR) approach for genomic prediction
produces results similar to that of the BLUP approach, given that
the genetic covariance between genotypes is proportional to
their genotypic similarity (Endelman 2011). The key differences
between the Bayesian and BLUP alphabets are summarized in
Table 1.
Among the single trait GS methods, the GBLUP model was

used extensively on the actual datasets to evaluate the genomic
prediction accuracy (Yabe et al. 2018; Tiede and Smith 2018;
Fristche-Neto et al. 2018; Rio et al. 2019; Juliana et al. 2019;
Michel et al. 2019; Cui et al. 2020). Additionally, the Bayesian
alphabets were also deployed to the actual datasets for
estimating the GEBV in several earlier studies (Crossa et al.
2010; Heffner et al. 2011; Pérez-Rodríguez et al. 2012; Zhao et al.
2013; Diaz et al. 2021). As far as the comparisons between
GBLUP and different Bayesian approaches are concerned, some
of the studies were performed on the actual datasets (Yoshida
et al. 2018; Wang et al. 2019; Haile et al. 2020; Nsibi et al. 2020;
Hong et al. 2020) and others on the simulated datasets
(Daetwyler et al. 2010; Habier et al. 2011; Howard et al. 2014;
Bhering et al. 2015; Alanoshahr et al. 2018). In a nutshell, the
comparisons were mostly performed either with the actual or
simulated datasets, where the comparisons were mostly
between the GBLUP and specific variants of the Bayesian
method. In other words, extensive comparisons between
different BLUP variants and the Bayesian alphabets have been
lacking hitherto.
Understanding the factors affecting the genomic prediction

accuracy may be helpful for a breeder to design an effective
genomic breeding strategy (Zhang et al. 2019). Thus, a
comprehensive evaluation of the Bayesian and BLUP alphabets
is required to assess the genomic prediction accuracy for traits
with different genetic architectures. In this study, we evaluated the
genomic prediction accuracy of three BLUP methods (GBLUP,
CBLUP, and SBLUP) and five Bayesian methods (BayesA, BayesB,
BayesC, BLASSO, and Bayes ridge regression) by using both actual
and simulated datasets.Ta
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MATERIALS AND METHODS
Actual dataset
Genotypic and phenotypic datasets of three different crops (wheat, maize,
and barley) were used. In total, nine quantitative traits were considered for
the genomic prediction. For the wheat, traits were grain yield in four mega
environments represented as WY1, WY2, WY3, and WY4. The two traits for
the maize were grain yield under well-watered (MWW) and severe drought
stress (MSS) conditions. The traits considered for the barley were protein
content (BPR), test weight (BTW), and ergosterol (BER) content.
Both phenotypic and genotypic datasets of wheat were retrieved from

the study of Crossa et al. (2010). There were 599 wheat lines in this dataset,
with each line genotyped with 1447 DArT markers. The two marker alleles
were denoted by 1 and 0 for presence and absence, respectively. After
excluding the markers with <5% minor allele frequency (MAF), the dataset
resulted in 1279 markers.
The maize dataset was also obtained from the Crossa et al. (2010) study,

which contained 300 tropical maize lines from the CIMMYT’s Global Maize
Program, with each line genotyped with 1148 SNP markers. However, the
grain yield data was only available for 264 lines. After removing the
markers with <5% MAF, a dataset of 1135 markers was available for 264
maize lines.
The barley dataset was obtained from Nielsen et al. (2016) study. This

dataset consisted of 309 advanced spring barley lines, where each line was
genotyped for 7865 SNP markers using a 9 K barley chip. Data for the
considered traits (BPR, BTW, and BER) were available only for 307
genotyped lines. After excluding the markers with <5% MAF and missing
values, 2544 markers were retained for the analysis. A summary of the
actual datasets is provided in Table 2.

Simulated dataset
Simulation of genotypic data. The procedure adopted by Hu and Yang
(2014) was followed to simulate the genotypic and phenotypic datasets.
We considered the population of n individuals, where each individual was
assumed to be genotyped with m markers. By considering the individual
with decreasing order of genetic relatedness, the genetic relatedness
matrix among n individuals under the AR1 model was obtained as follows:

ΘAR1 ¼

1 θa ¼ θn� 1
a

θa 1 θn� 2
a

¼
θn� 1
a

¼
θn� 2
a

¼
1

2
6664

3
7775

where θta represents the genetic correlation between the two individuals i
and j that are t= |i− j| individuals apart. We also assumed that the three
genotypes AA, Aa, and aa are in the 1:2:1 proportion for each individual to
avoid any other complex genetic structure. For the generation of markers,
we undertook the following steps.

● For 1st individual, generated a vector of random number z1 from
N (0, 1).

● For 2nd individual, generated another vector of random number z2
from N (0, 1), where ρ (z1, z2)= θa.

● In general, for the ith individual, generated the random vector zi using
the recursive relation z0i ¼ θaz0i� 1 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � θak
p

, where k is a random
vector drawn from N (0, 1).

● Merged the generated random vector of all the n individuals to obtain
the genotypic matrix Z ¼ z01; z

0
2; ¼ ; z0n

� �
.

● Converted the genotypic matrix to an indicator genotypic matrix (Z)

containing only three values 0, 1, and 2 to mimic the three possible
genotypes at each locus, by replacing the normally distributed
observations falling in the range (−∞, −0.67449), (−0.67449,
0.67449) and (0.67449, ∞), respectively.

Simulation of phenotypic data. Phenotypic values (y) were generated for
all n individuals based on the model

y ¼ 1μ þ Zu þ e ¼ 1μ þ g þ e:

Here, μ is the overall mean, Z is the genotypic matrix containing the
values 0, 1, and 2. The g (= Zu) is the vector of additive genetic effects with

g � N 0;Gσ2g
� �

and bG ¼ WWT

2
Pm

j¼ 1
pj 1� pjð Þ, where wij ¼ zij � 2bpj and bpj is

frequency of the reference allele for the jth marker. The e is the vector of
random errors with e � N 0; Inσ2e

� �
. Further, the phenotypic variance σ2p ¼

σ2g þ σ2e and σ2g ¼ h2= 1 � h2ð Þ½ �σ2e , with h2 being the heritability.

Simulation scenario. The phenotypic datasets were simulated by con-
sidering three different heritability (h2= 0.3, 0.5, and 0.7), three different
marker density (m= 5000, 20,000, and 50,000), three population size (n=
300, 500, and 700) and two QTL size (5 and 20% markers as causal
variants). Thus, a total of 54 datasets were generated to evaluate the
performance of genomic prediction methods.

Cross validation
We adopted the repeated five fold cross-validation (CV) approach
(González-Camacho et al. 2012; Gianola et al. 2014; Pérez-Rodríguez
et al. 2012) to measure the genomic prediction accuracy. In other words,
the experiment was repeated 100 times, and a 5-fold CV (Makowsky et al.
2011; Pérez-Cabal et al. 2012; Kramer et al. 2014) procedure was adopted in
each experiment. For 5-fold CV, the whole dataset was first divided
randomly into five disjoint subsets, with each subset having approximately
the same number of individuals. Then, four subsets were used as the
training population, and the remaining subset was used as the test
population. This process was repeated five times so that each subset was
used once as a test population.

Measuring genomic prediction accuracy
The predictive ability of the genomic prediction methods was measured by
computing the Pearson’s correlation coefficients between the GEBV and
the observed phenotypic trait. The Pearson’s correlation between the
predicted GEBV and phenotypic values was computed in each fold of the
five fold CV. The final accuracy was obtained by taking the average over
100 experiments. The slope of the regression of actual phenotype on GEBV
was also computed to measure the bias in the GEBV (Echeverri et al. 2014).
The regression coefficient close to 1 means no bias, whereas a slope of <1
and >1, respectively, indicate the underestimation and overestimation of
GEBV (Resende et al. 2012; Neves et al. 2014).

Genomic prediction methods
We employed three BLUP methods (GBLUP, CBLUP, and SBLUP) and five
Bayesian methods (BayesA, BayesB, BayesC, BLASSO, and BRR) for
evaluating the genomic prediction accuracy. For this purpose, we assumed
that there are n individuals having phenotypic records, with each
individual genotyped with m markers. Further, we assumed Zn ×m to be
the genotypic matrix, where zij is the number of chosen alleles at jth (j= 1,2,
…, m) locus for the ith (i= 1,2,…,n) genotyped individual.

BLUP alphabets
GBLUP: The GBLUP model can be written as

y ¼ 1nμ þ g þ ϵ

Here, y is the n-dimensional vector of phenotypic records, μ denotes the
overall mean, g and ∈ are the random vectors of additive genetic values

and errors, respectively. Further, g � N 0;Gσ2g
� �

and ϵ � N 0; Iσ2e
� �

,

where G is the genotypic relationship matrix (GRM). We computed the
GRM using VanRaden approach (VanRaden 2008), that is,
G ¼ WWT

2
Pm

j¼ 1
pj 1�pjð Þ, where wij ¼ zij � 2pj and pj denotes the allelic

frequency of the jth marker. For the GBLUP model, bg is the GEBV.

Table 2. Summary of the natural datasets.

Crop Trait #Genotype Marker
density

Marker type

Wheat WY1, WY2,
WY3, WY4

599 1279 DArT

Maize MSS, MWW 264 1135 SNP

Barley BER, BPR, BTW 307 2544 SNP

WY1, WY2, WY3, WY4 wheat yield in four mega environments, MSS maize
yield in severe water stress condition, MWW maize yield in well-watered
condition, BER ergosterol content, BPR protein content, BTW test weight,
SNP single nucleotide polymorphism, DArT diversity array technology.
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The rrBLUP R-package (Endelman 2011) with default parameters was used
to implement the GBLUP model.

CBLUP and SBLUP: To improve the prediction accuracy of low heritable
traits, Wang et al. (2018) proposed a variant of the GBLUP model known as
compressed BLUP (CBLUP). In this model, kinship (GRM) computed among
groups of individuals is employed instead of using the kinship among
individuals. The genotypes are clustered into groups based on the GRM,
and the optimum number of groups is determined based on the best
likelihood. The kinship between any two groups is computed as the
average kinship between the individuals of the two groups, and the
kinship among individuals is replaced with the kinship of corresponding
groups.
The SBLUP is another variant of the GBLUP model developed by Wang

et al. (2018), aimed to improve the genomic prediction accuracy for the
traits governed by a relatively small number of genes. The associated
markers with the trait of interest are first determined through GWAS using
the SUPER algorithm (Wang et al. 2014). Then, these associated markers are
utilized to derive the kinship matrix, unlike GBLUP, in which all the markers
are used to derive the kinship matrix. The CBLUP and SBLUP models were
implemented using the GAPIT tool (Tang et al. 2016) with default
parameters.

Bayesian alphabets. Consider the genomic prediction model

y ¼ 1nμ þ Zβ þ ϵ

where Z is the genotypic matrix and β is the vector of marker effects. All
other notations are the same as mentioned in the GBLUP model. For this
model, the prior density of the marker effects and other hyper-parameters
for different Bayesian methods are explained as follows.
In BayesA, prior density of the marker effects follows scaled-t

distribution, whereas for BayesB, the prior distribution of the effect of
each marker is a mixture of scaled-t distribution with probability π and a
distribution of point mass at zero with probability (1− π). In BayesA and
BayesB, the scaled-t distribution is implemented as finite mixture of scaled-
normal densities to avoid computational complexity (Andrews and

Mallows 1974). In particular, for BayesA, βj � N 0; σ2βj

� �
, whereas for

BayesB, βj � N 0; σ2βj

� �
and βj= 0 with probability π and (1− π)

respectively. The prior densities of the marker effects for BayesC model

are assumed to be Gaussian mixture, i.e., βj � N 0; σ2βj

� �
with probability π

and βj= 0 with probability (1− π), where π is assumed to follow Beta
distribution, i.e., π ~ Beta(p0, π0) with p0 > 0 and π0∈ [0, 1] with E(π)= π0
and var πð Þ ¼ π0 1� π0ð Þ

1þ p0
. In BLASSO, prior densities of the non-zero marker

effects are assumed to be double exponential (Park and Casella 2008), and
also, the marker effects have locus-specific variance. The double
exponential distribution is implemented as independent normal densities,

i.e., f βj
		τ2j ; σ2e

� �
� N βj 0j ; τ2j ´ σ2e

� �
, where the marker-specific scale

parameter are i.i.d exponential distribution with rate parameter λ2/2, i.e.,

f τ2j

			 λ22
� �

� Exp τ2j

			 λ22
� �

and the rate parameter λ2 is assigned a gamma

prior, i.e., f λ2 r; sj� � � Γ r; sð Þ. In BRR model, the marker effects are assigned
i.i.d Gaussian prior with same variance for all the effects, i.e.,

f βj
		σ2β

� �
� N βj

		0; σ2β
� �

. The overall mean μ is assigned a flat prior. The

variance of the marker effects and the error variance (σ2e ) for all the
Bayesian models are assumed to follow χ−2(v,S), where v and S are the
degree of freedom and shape parameter, respectively. The prior density of
the shape parameter S is assumed to follow Gamma distribution, with rate
parameter r and shape parameter s. All the Bayesian methods were
implemented using the BGLR R-package (Pérez and de los Campos 2014).
The prior distributions of the marker effects, variance of the marker effects,
hyper-parameters, and the parametric values utilized in this study are
summarized in Table 3.

Heritability estimation
For the BLUP alphabets, the heritability of the trait was computed as

h2 ¼ σ2g
σ2g þ σ2e

, where σ2g and σ2e represent the additive genetic and residual

variances, respectively. For the Bayesian models, heritability was computed
as h2 ¼ VA

VA þ σ2e
, where VA is the total additive genetic variance, that is,
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VA ¼ π ´ 2bσ2SNP
Pm

j¼ 1 pjqj , where pj and qj are the allelic frequencies of jth

locus and π denotes proportion of markers with non-zero effects.

RESULTS
Genomic relationship matrix of the actual data
The GRM for the wheat, maize, and barley were computed using
the VanRaden approach (VanRaden 2008). From the distribution of
the diagonal values of GRM (Fig. 1B), multiple distinct peaks were
not seen, although the distributions were not perfectly normal, as
evident from the QQ plots of the diagonal values of GRM (Fig. 1C).
Also, no clearly distinguishable genotype clusters were formed in
all three datasets (Fig. 1A). Given this knowledge, we could say
that each genotype was randomly taken from the population for a
given dataset without any family structure, which indicates the
absence of any hidden population structure in the datasets. From
the plot of the first three principal components (PCs), 15.15, 6.13,
and 3.65% variations were explained for wheat (Fig. 1A). Similarly,
the first three PCs explained 4.32, 3.01, and 2.34% of total
variations in the maize genotypic dataset. And, for the barley, the
first three PCs explained 10.86, 5.09, and 4.64% of variations.

Estimate of heritability for the actual dataset
Heritability estimates with different methods for the nine actual
datasets are shown in Fig. 2. For the wheat yield trait, higher
heritability estimates were observed for the BLUP alphabets,
whereas the Bayesian methods resulted in higher heritability
estimates for the rest of the five traits. SBLUP predicted higher
heritability for WY2 (0.665 ± 0.029) and WY3 (0.589 ± 0.019),
whereas the heritability estimates for WY1 (0.694 ± 0.011) and
WY4 (0.606 ± 0.011) were higher for CBLUP. For both maize traits,
higher heritability estimates were obtained with the BRR model,
i.e., 0.604 ± 0.032 for MWW and 0.527 ± 0.034 for MSS (Fig. 2). For
BPR and BTW traits of barley, BayesB, respectively, exhibited
higher estimates of heritability, 0.54 ± 0.024 and 0.546 ± 0.023,
compared to other Bayesian methods (Fig. 2). Further, for the
barley BER trait (0.706 ± 0.013), the heritability estimates were a
little higher as compared to the other Bayesian alphabets. Among
the Bayesian alphabets, the heritability estimate was less with
BLASSO for all the traits except WY4. When all the methods were
accounted for, the range of heritability for the wheat yield trait
was 0.368 ± 0.03 to 0.694 ± 0.011. Similarly, 0.198 ± 0.02 to 0.527 ±
0.034 and 0.228 ± 0.056 to 0.604 ± 0.032 were the ranges of

Fig. 1 Plots of the principal components and the distribution of the genomic relationship matrix of the genotypic dataset. A Scatter plots
of the first three principal components of the genotypic data. No distinct clusters are observed in any of the three datasets. B Histograms of
the diagonal values of the genomic relationship matrix. Although distribution is not observed to be perfectly normal, distinct peaks are not
seen for any of the three datasets. C QQ plots of the diagonal values of the genomic relationship matrix of the actual datasets. From all these
plots, it is inferred that the individuals are randomly drawn from a single population without any family structure for a given dataset.
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heritability estimates for the maize yield trait under severe stress
and well-watered condition, respectively (Fig. 2). For barley BER,
BPR, and BTW traits, the heritability was found to range,
respectively, from 0.402 ± 0.016 to 0.706 ± 0.013, 0.311 ± 0.032 to
0.54 ± 0.024, and 0.329 ± 0.024 to 0.546 ± 0.023 (Fig. 2).

Genomic prediction accuracy for the actual dataset
The genomic prediction accuracies are shown in Fig. 3. Genomic
prediction accuracies were observed to increase with the traits’
heritability. For instance, lower prediction accuracy was observed
for the trait WY3 (0.332 ± 0.022 to 0.401 ± 0.013), for which
heritability estimates were low. On the other hand, higher
accuracies were observed for the BER trait (0.677 ± 0.027 to
0.761 ± 0.011), for which the heritability estimates were also
higher. Among the BLUP methods, SBLUP exhibited the lowest
performance, and GBLUP achieved the highest accuracy. In fact,
out of nine traits, GBLUP exhibited the highest accuracy for WY2
(0.501 ± 0.012), WY4 (0.468 ± 0.012), MWW (0.561 ± 0.019), and
BTW (0.641 ± 0.018). BRR achieved the highest genomic prediction
accuracy for WY1 (0.529 ± 0.011) and MSS (0.423 ± 0.023) traits
(Fig. 3). The BayesA, BayesB, and CBLUP, respectively, showed the

highest accuracy for the BER (0.761 ± 0.011), BPR (0.579 ± 0.017),
and WY3 (0.401 ± 0.013) traits (Fig. 3). Among Bayesian methods,
BayesA achieved the highest accuracies for three traits, i.e., WY2
(0.497 ± 0.014), BTW (0.578 ± 0.017), and BER (0.761 ± 0.011),
whereas BRR achieved the highest accuracies for four traits, i.e.,
MSS (0.423 ± 0.023), WY1 (0.529 ± 0.011), WY4 (0.459 ± 0.013), and
MWW (0.559 ± 0.018). The Bayesian LASSO and BayesB resulted in
the highest accuracy for WY3 (0.397 ± 0.013) and BPR (0.579 ±
0.017), respectively.

Genomic prediction accuracy with simulated dataset
The genomic prediction accuracies of the Bayesian and BLUP
alphabets for the simulated datasets are shown in Fig. 4. The
Bayesian models were found to achieve higher genomic
prediction accuracy when the traits were highly heritable (0.5,
0.7) and governed by few QTLs (5% markers as causal variants),
with each exhibiting a larger effect (Fig. 5) on the trait genetic
variability. When the trait heritability was low and controlled by
few QTLs, each having a larger effect, the GBLUP performed at
par with Bayesian methods, barring a few exceptions. On the
other hand, when many QTLs controlled the trait, the GBLUP

Fig. 2 Heritability estimates for all nine actual datasets with three BLUP and five Bayesian methods. The heritability is estimated by
following a repeated fivefold cross-validation approach, where the experiment is repeated 100 times. The heritability estimates for the wheat
yield datasets were higher for the BLUP methods. However, the Bayesian methods achieved higher heritability estimates for the rest of the five
traits. Heritability is computed as the ratio of the additive genetic variance to the phenotypic variance. For the BLUP alphabets, all markers are
used to estimate additive genetic variance, whereas only the markers with non-null effect are used for the Bayesian methods.
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method achieved higher accuracy than the Bayesian alphabets,
with some exceptions. For the trait with higher heritability and
controlled by many QTLs, each having a small effect (Fig. 5) on
the trait genetic variability, the Bayesian methods were
observed to perform either better than or at par with the
GBLUP method. It was also found that the genomic prediction
accuracies increase with an increase in the trait heritability,
irrespective of the population size, number of QTLs, and marker
density. Further, we observed that the genomic prediction
accuracy increases with an increase in the population size. For
the low heritable (0.3) trait, the BRR achieved the highest
accuracy among the considered Bayesian methods, regardless of
the genetic architecture of the trait. When the heritability was
high (0.5, 0.7), higher genomic prediction accuracy was achieved
with either BRR or BLASSO for all combinations of marker
density, population size, and QTL percentage. GBLUP achieved
higher accuracy for almost all the simulated datasets among the
BLUP alphabets. On the other hand, the SBLUP achieved the
lowest accuracy among all the Bayesian and BLUP alphabets.
The prediction accuracies are also seen to increase with an
increase in the marker density.

Bias in GEBV with simulated datasets
The bias in GEBV predictions for all the simulated datasets is
shown in Fig. 6. The bias in the GEBV declined with an increase
in the trait heritability, irrespective of the sample size, marker
density, and the methods used (Fig. 6). For instance, the
magnitude of bias in GEBV is closer to 1 for trait heritability 0.5
compared to 0.3, and heritability 0.7 compared to 0.5. The
SBLUP was found to mostly under-predict GEBVs irrespective of
the marker density, sample size, and trait heritability. Further, it
was observed that the GBLUP is the least biased method among
all the Bayesian and BLUP alphabets, irrespective of the trait
genetic architecture. Among Bayesian alphabets, both BLASSO
and BRR were found to be less biased in GEBV predictions.
However, GEBV was found to be over-predicted (bias >1) with
BLASSO for the highly heritable trait (0.7). Generally, the GEBV
was observed to be mostly under-predicted for BayesA,
followed by BayesB and BayesC. With an increase in population
size, the effect of heritability was seen to decline on the bias
estimation. For the given population size, the difference in the
bias in the GEBV prediction was found to be more between the
differently heritable traits. However, such a difference was

Fig. 3 The estimates of genomic prediction accuracy with actual datasets. The genomic prediction accuracy is measured via the Pearson’s
correlation coefficient between the genomic estimated breeding value (GEBV) and the observed phenotypic data representing the true
breeding value. A repeated fivefold cross-validation approach was adopted to compute the correlation, and the experiment was replicated
100 times. The final accuracy is computed by taking an average over all the fivefolds, and 100 replicates. The SBLUP achieved the lowest
accuracy among all the methods. The GBLUP achieved higher accuracy for the yield traits of wheat except for WY1. Except for BTW, the
Bayesian methods performed better for the rest of the four traits. The higher accuracy of BLUP and Bayesian methods are seen to be
according to their heritability estimates.
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observed to decline with an increase in the population size. Bias
in the GEBV was found to be at par for both GBLUP and CBLUP,
as GBLUP is a special case of the CBLUP method (Wang et al.
2018).

DISCUSSION
Genomic selection is an important tool that offers ample
opportunities to enhance the genetic gain for the complex traits
in plants and animals (Bhat et al. 2016). With the availability of

Fig. 4 The genomic prediction accuracy of the Bayesian and BLUP alphabets for different combinations of sample size, marker density,
heritability, and QTL size (5 and 20% markers as causal variants). It can be seen that with an increase in heritability, genomic prediction
accuracy also increased irrespective of sample size, marker density, and QTL size. The accuracy is also increased with an increase in the sample
size and the marker density. The genomic prediction accuracies are seen to be lowest for SBLUP, irrespective of the trait genetic architecture.
The GBLUP secured higher accuracy for the traits controlled by many QTLs, each having a small effect. On the other hand, the Bayesian
methods produced higher accuracy when a few QTLs governed the trait, each with a larger effect on the genotypic variability.

Fig. 5 Density graph of the effects considering 5 and 20% marker as causal variants (QTLs). For each marker density, the effects of the 5%
QTLs are larger than that of 20% QTLs.
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Fig. 6 The bias estimation in genomic estimated breeding value (GEBV) with the simulated dataset. The bias is measured as the regression
coefficients obtained by regressing the observed phenotypic values upon the predicted phenotypic values. Further, a repeated (100 times)
fivefold cross-validation approach was adopted to compute the coefficients. The final coefficient estimates were computed by taking the
average of the five folds and 100 replicates. The GBLUP is the least biased method for the GEBV prediction. GBLUP and CBLUP were identified
as robust methods among the BLUP alphabets, irrespective of the trait genetic architecture. The BRR and BLASSO were less biased among the
Bayesian models than the other variants.
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cost-effective and high-throughput genotypic platforms, such as
GBS, the application of GS has become more feasible in breeding
programs (Poland et al. 2012). The GS accounts for all genetic
variation and hence allows the selection of individuals with higher
breeding values. Moreover, the genetic gain per generation cycle
by applying GS is much higher than the conventional selection
methods (Bassi et al. 2016).
Several factors determine GS accuracy. Among these factors,

the choice of the GS model is an important one. Many statistical
models are developed for GS, where the Bayesian and BLUP
alphabets are the most frequently used methods (Pais de Arruda
et al. 2016; Zhang et al. 2015; Hoffstetter et al. 2016). However, a
comprehensive comparative analysis of the Bayesian and BLUP
alphabets was lacking. Therefore, the present study focused on
the comparative analysis of these methods with attention to
genomic prediction accuracy.
The BLUP alphabets may be more accurate in predicting

heritability with the DArT markers, which may be the probable
reason for the higher heritability estimates for the wheat dataset
with BLUP methods. The variation in the heritability estimates for
the four wheat yield traits corresponding to four different mega
environments may be attributed to the interaction of genotype
with the environment. For a given trait, heritability estimates were
observed to vary with the estimation methods. In the case of BLUP
alphabets, the effects of all the markers are accounted for
computing the additive genetic variance, whereas the selected
markers with non-null effects were only used for computing the
additive genetic variance in the case of Bayesian alphabets. It may
be one of the probable reasons for different heritability estimates
for Bayesian and BLUP alphabets. The variability in the heritability
estimates among the Bayesian methods may also be attributed to
the different assumptions regarding the distribution of the marker
effects, which as a result, affects the estimation of variance
components. In the case of BLUP alphabets, the approach for
estimating the GRM is different, which may be the possible reason
for different heritability estimates.
For the wheat yield traits, GBLUP achieved the highest accuracy

for WY2 and WY4, whereas CBLUP achieved the highest accuracy
for WY3. In other words, the BLUP alphabets achieved higher
accuracy than other methods, and it corresponded with the higher
heritability estimates observed with the BLUP methods. In four out
of the rest five traits, Bayesian methods achieved higher genomic
prediction accuracies, which is also in accordance with the higher
heritability estimates with the Bayesian alphabets. Further,
accuracies were observed to be less stable (high standard error)
for MSS, BTW, BPR, and MWW and more stable (less standard
error) for the yield traits and BER. The higher stability in prediction
accuracy in the wheat yield trait may be due to the large sample
size, whereas higher stability for BER may be attributed to the
higher trait heritability. The accuracy of GBLUP was observed to be
either higher or at par with the accuracy of CBLUP. Further, GBLUP
and CBLUP methods achieved higher accuracy than the SBLUP
method. Accuracies of SBLUP were observed to be lowest and
least stable than the other methods.
Besides the actual datasets, the genomic prediction accuracy

was also evaluated with the simulated datasets. From the
analysis, no single method was found to perform better for all
the simulated traits. Indeed, different methods performed better
with different trait genetic architectures. For the highly polygenic
trait, i.e., the trait controlled by many QTLs with each exhibiting a
small effect on the genetic variance, BLUP methods (except
SBLUP) were found to perform better as compared to the
Bayesian methods. However, for a trait governed by few QTLs
with each having a larger effect, the Bayesian methods were
often found to outperform BLUP methods. It was also noticed
that for the highly heritable trait, the Bayesian alphabets either
achieved higher accuracy than BLUP models or performed at par
with BLUP methods. Thus, it can be said that the suitable method

for genomic prediction largely depends on the genetic
architecture of a trait. Nonetheless, the genomic prediction
accuracies were observed to be increased with an increase in the
heritability of the trait, population size, and marker density. An
increase in the genomic prediction accuracy with an increase in
the marker density may be attributed to the tendency of more
QTL being in LD with a marker (Heffner et al. 2009; Desta and
Ortiz 2014). However the prediction accuracy may eventually
attain a plateau with an increase in the marker density
depending upon the within-population genetic diversity as well
as the genetic relatedness between the training population and
the selection candidates (de los Campos et al. 2013). An increase
in the marker density may also adversely affect the prediction
accuracy of the Bayesian methods because of slow or no
convergence of Markov chain Monte Carlo (MCMC) iterations
(Zhang et al. 2019). Besides, the inclusion of many markers
without any effect on the trait variance may result in the
overfitting of the model.
The GEBV was under-estimated with SBLUP irrespective of

heritability, marker density, and sample size. At the same time, the
bias was more stable with GBLUP and CBLUP irrespective of
heritability, sample size, marker density, and QTL number. It was
also noticed that the GBLUP method was the least biased among
all the methods as far as the GEBV prediction is concerned. The
bias in the GEBV prediction was generally found to decline for the
high heritability traits. Among Bayesian methods, BLASSO and BRR
were seen to be less biased. However, for the highly heritable
traits, the GEBV was overestimated with BLAASO. On the other
hand, the BayesA, BayesB, and BayesC methods highly under-
estimate the GEBV for the low heritability traits.
Though computational time depends upon the population size

and analysis method, BLUP methods take less time than Bayesian
counterparts. It is expected as Bayesian methods are dependent
upon the size of MCMC through simulated Markov chain
(Meuwissen et al. 2001) and Gibb sampler for the posterior
marginal distributions of the model parameters.

CONCLUSION
In this study, we evaluated the performance of three BLUP and
five Bayesian methods using actual (three datasets, nine traits)
and simulated (three marker density × three heritability × three
sample size × two QTL size) data. The performance of the models
was found to reflect the trait genetic architecture. The SBLUP
method was the least performer among all the methods. The
other two BLUP alphabets achieved higher accuracy for the traits
governed by many QTLs, each with small effects. On the other
hand, the Bayesian methods produced higher accuracy for the
traits governed by few QTLs, with each having a larger effect on
the genotypic variability. Concerning the bias in genomic
prediction accuracy, the GBLUP method was the least biased
approach among all the considered models. The knowledge
generated from this study is believed to supplement the existing
knowledge on the choice of genomic prediction methods for
breeding programs.
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