Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus


Silphium integrifolium (Asteraceae) has been identified as a candidate for domestication as a perennial oilseed crop and is assumed to have sporophytic self-incompatibility system—the genetic basis of which is not well understood in the Asteraceae. To address this gap, we sought to map the genomic location of the self-recognition locus (S-locus) in this species. We used a biparental population and genotyping-by-sequencing to create the first genetic linkage map for this species, which contained 198 SNP markers and resolved into the correct number of linkage groups. Then we developed a novel crossing scheme and set of analysis methods in order to infer S-locus genotypes for a subset of these individuals, allowing us to map the trait. Finally, we evaluated potential genes of interest using synteny analysis with the annual sunflower (Helianthus annuus) and lettuce (Lactuca sativa) genomes. Our results confirm that S. integrifolium does indeed have a sporophytic self-incompatibility system. Our method is effective and efficient, allowed us to map the S. integrifolium S-locus using fewer resources than existing methods, and could be readily applied to other species.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Visualization of the crossing design used in this experiment.
Fig. 2: Linkage map for Silphium integrifolium.
Fig. 3: Distribution of seed set values for reciprocal matings (pairs of individuals mated, with each individual used as both a male and female).
Fig. 4: Representation of all possible matings that could have been completed for this study, with each square representing one pairing.

Data availability

All code and data to replicate analyses may be found on GitHub, at All sequence data may be accessed under BioProject PRJNA695552.


  • Allen AM, Hiscock SJ (2008) Evolution and phylogeny of self-incompatibility systems in angiosperms. In: Franklin-Tong VE ed. Self-incompatibility in flowering plants: Evolution, Diversity and Mechanisms. Springer-Verlag, Heidelberg, DE, p 73–101

    Chapter  Google Scholar 

  • Allen AM, Thorogood CJ, Hegarty MJ, Lexer C, Hiscock SJ (2011) Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann Bot 108(4):687–698

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Badouin, H, Boniface, MC, Pouilly, N, Fuchs, AL, Vear, F, Langlade, N et al. (2021). Pooled Single-Molecule transcriptomics identifies a giant gene under balancing selection in sunflower. bioRxiv 2021. 435796

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L et al. (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656):148–152

    CAS  PubMed  Article  Google Scholar 

  • Bod’ová K, Priklopil T, Field DL, Barton NH, Pickup M (2018) Evolutionary pathways for the generation of new self-incompatibility haplotypes in a nonself-recognition system. Genetics 209(3):861–883

    PubMed  PubMed Central  Article  Google Scholar 

  • Brennan AC, Harris SA, Hiscock SJ (2006) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range. Evolution 60(2):213–224

    CAS  PubMed  Google Scholar 

  • Breton CM, Farinelli D, Shafiq S, Heslop-Harrison JS, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10(4):1055–1067

    Article  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  PubMed  Article  Google Scholar 

  • Camargo LEA, Savides L, Jung G, Nienhuis J, Osborn TC (1997) Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Heredity 88(1):57–60

    CAS  Article  Google Scholar 

  • Castric V, Bechsgaard J, Schierup MH, Vekemans X (2008) Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet 4:e1000168

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–40

    PubMed  PubMed Central  Article  Google Scholar 

  • Chen T, Guestrin C (2016) XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16). New York, NY, USA: Association for Computing Machinery, 785–794

  • DeHaan LR, Van Tassel DL, Anderson JA, Asselin SR, Barnes R, Baute GJ et al. (2016) A pipeline strategy for grain crop domestication. Crop Sci 56(3):917–930

    Article  Google Scholar 

  • Edh K, Widén B, Ceplitis A (2009) Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics 181(3):985–995

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one 6(5):e19379

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fujii S, Takayama S (2018) Multilayered dominance hierarchy in plant self-incompatibility. Plant Reprod 31(1):15–19

  • Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T et al. (2013) High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). Theor Appl Genet 126(8):2103–2121

    CAS  PubMed  Article  Google Scholar 

  • Harkness A, Brandvain Y (2021) Nonself-recognition-based self-incompatibility can alternatively promote or prevent introgression. N. Phytologist 231(4):1630–1643

    CAS  Article  Google Scholar 

  • Harkness A, Goldberg EE, Brandvain Y (2021) Diversification or collapse of self-incompatibility haplotypes as a rescue process. The American Naturalist.

  • Hiscock SJ (2000) Genetic control of self-incompatibility in Senecio squalidus L.(Asteraceae): a successful colonizing species. Heredity 85(1):10–19

    PubMed  Article  Google Scholar 

  • Hiscock SJ, McInnis SM, Tabah DA, Henderson CA, Brennan AC (2003) Sporophytic self‐incompatibility in Senecio squalidus L.(Asteraceae)—the search for S. J Exp Bot 54(380):169–174

    CAS  PubMed  Article  Google Scholar 

  • Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Philosophical transactions of the Royal Society of London. Ser B Biol Sci 358(1434):1037–1045

    CAS  Article  Google Scholar 

  • Huang WJ, Liu HK, McCormick S, Tang WH (2014) Tomato Pistil Factor STIG1 promotes in vivo pollen tube growth by binding to Phosphatidylinositol 3-Phosphate and the extracellular domain of the pollen Receptor Kinase LePRK2. Plant Cell 26(6):2505–2523

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gandhi SD, Heesacker AF, Freeman CA, Argyris J, Bradford K, Knapp SJ (2005) The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theor Appl Genet 111(4):619–629

    CAS  PubMed  Article  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell–cell communication in plant reproduction and development. J Exp Bot 62(5):1677–1686

    CAS  PubMed  Article  Google Scholar 

  • Kandel H, Hulke B, Ostlie M, Schatz B, Aberle E, Bjerke K et al. (2019) North Dakota Sunflower Variety Trial Results for 2019 and Selection Guide. North Dakota State University Extension, Fargo, ND, USA

    Google Scholar 

  • Koseva B, Crawford DJ, Brown KE, Mort ME, Kelly JK (2017) The genetic breakdown of sporophytic self‐incompatibility in Tolpis coronopifolia (Asteraceae). N. Phytologist 216(4):1256–1267

    CAS  Article  Google Scholar 

  • Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799

    CAS  PubMed  Article  Google Scholar 

  • Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN].

  • Price JH, Brandvain Y, Smith KP (2021) Measurements of lethal and non-lethal inbreeding depression inform the de novo domestication of Silphium integrifolium. Am J Bot 108(6):980–992

    PubMed  Article  Google Scholar 

  • Ostevik KL, Samuk K, Rieseberg LH (2020) Ancestral reconstruction of karyotypes reveals an exceptional rate of nonrandom chromosomal evolution in sunflower. Genetics 214(4):1031–1045

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ouellette LA, Reid RW, Blanchard SG, Brouwer CR (2018) LinkageMapView—rendering high-resolution linkage and QTL maps. Bioinformatics 34(2):306–307

    CAS  PubMed  Article  Google Scholar 

  • Rahman MH, Uchiyama M, Kuno M, Hirashima N, Suwabe K, Tsuchiya T et al. (2007) Expression of stigma-and anther-specific genes located in the S locus region of Ipomoea trifida. Sex Plant Reprod 20(2):73–85

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

  • Reinert S, Van Tassel D, Schlautman B, Kane N, Hulke B (2019) Assessment of the biogeographical variation of seed size and seed oil traits in wild Silphium integrifolium Michx. genotypes. Plant Genet Resour: Charact Utilization 17(5):427–436

    CAS  Article  Google Scholar 

  • Reinert S, Price JH, Smart BC, Pogoda CS, Kane NC, Van Tassel D et al. (2020) Mating compatibility and fertility studies in an herbaceous perennial Aster undergoing de novo domestication to enhance agroecosystems. Agron Sustain Dev 40:27

    Article  Google Scholar 

  • Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C et al. (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Rindos D (1984) The origins of agriculture: an evolutionary perspective. Academic Press, Orlando, FL, USA

    Google Scholar 

  • Schiffner S, Jungers JM, Hulke BS, Van Tassel DL, Smith KP, Sheaffer CC (2020) Silflower seed and biomass responses to plant density and nitrogen fertilization. Agrosystems. Geosci Environ 3:e20118

    Google Scholar 

  • Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132

    CAS  PubMed  Article  Google Scholar 

  • Settle WJ (1967) The chromosome morphology in the genus Silphium (Compositae). Ohio J Sci 67(1):10–19

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    CAS  Article  Google Scholar 

  • Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci 88(19):8816–8820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tomita RN, Fukami K, Takayama S, Kowyama Y (2004) Genetic mapping of AFLP/AMF-derived DNA markers in the vicinity of the self-incompatibility locus in Ipomoea trifida. Sex Plant Reprod 16(6):265–272

    CAS  Article  Google Scholar 

  • The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  • Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y, Crews TE et al. (2017) Accelerating silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci 57(3):1274–1284

    Article  Google Scholar 

  • Williams JS, Der JP, dePamphilis CW, Kao TH (2014) Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26(7):2873–2888

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


Funding for this work was provided by The Perennial Agriculture project in conjunction with The Land Institute and the Malone Family Land Preservation Fund, the United States Department of Agriculture’s National Institute of Food and Agriculture Grant no. 2019-67011-29607 to JHP, the Minnesota Department of Agriculture - Forever Green Agricultural Initiative, and NSF grant #1737827 Dimensions US-China to YB. The authors thank Shannon Lee Anderson, Karen Beaubein, and Jill Ekar for their help in completing the controlled crosses for this experiment. In addition, the authors thank Dr. Kevin Dorn for assistance in developing a GBS protocol, Dr. Adam Herman for bioinformatics advice, and Dr. Owen Beisel for inspiring the hill-climbing algorithm method. Finally, the authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing computing resources that contributed to the analysis of this study.

Author information

Authors and Affiliations



The effort to develop a linkage map was initiated by KPS, DLVT, and YB, who also secured initial funding. DLVT created the mapping population, contributed text, and visualization, and provided feedback in writing. JHP constructed the linkage map, initiated and designed the S-locus mapping work, and developed the HC method. ARR developed the MCMC method. JHP and ARR conducted data analysis and wrote the manuscript. KPS and YB provided supervision, and feedback on analysis, writing, and visualization.

Corresponding author

Correspondence to Kevin P. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor Marc Stift.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Price, J.H., Raduski, A.R., Brandvain, Y. et al. Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity 128, 304–312 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links