Abstract
Silphium integrifolium (Asteraceae) has been identified as a candidate for domestication as a perennial oilseed crop and is assumed to have sporophytic self-incompatibility system—the genetic basis of which is not well understood in the Asteraceae. To address this gap, we sought to map the genomic location of the self-recognition locus (S-locus) in this species. We used a biparental population and genotyping-by-sequencing to create the first genetic linkage map for this species, which contained 198 SNP markers and resolved into the correct number of linkage groups. Then we developed a novel crossing scheme and set of analysis methods in order to infer S-locus genotypes for a subset of these individuals, allowing us to map the trait. Finally, we evaluated potential genes of interest using synteny analysis with the annual sunflower (Helianthus annuus) and lettuce (Lactuca sativa) genomes. Our results confirm that S. integrifolium does indeed have a sporophytic self-incompatibility system. Our method is effective and efficient, allowed us to map the S. integrifolium S-locus using fewer resources than existing methods, and could be readily applied to other species.
Your institute does not have access to this article
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




Data availability
All code and data to replicate analyses may be found on GitHub, at https://github.com/UMN-BarleyOatSilphium/SilphiumSLocus. All sequence data may be accessed under BioProject PRJNA695552.
References
Allen AM, Hiscock SJ (2008) Evolution and phylogeny of self-incompatibility systems in angiosperms. In: Franklin-Tong VE ed. Self-incompatibility in flowering plants: Evolution, Diversity and Mechanisms. Springer-Verlag, Heidelberg, DE, p 73–101
Allen AM, Thorogood CJ, Hegarty MJ, Lexer C, Hiscock SJ (2011) Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann Bot 108(4):687–698
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Badouin, H, Boniface, MC, Pouilly, N, Fuchs, AL, Vear, F, Langlade, N et al. (2021). Pooled Single-Molecule transcriptomics identifies a giant gene under balancing selection in sunflower. bioRxiv 2021. 435796
Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L et al. (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656):148–152
Bod’ová K, Priklopil T, Field DL, Barton NH, Pickup M (2018) Evolutionary pathways for the generation of new self-incompatibility haplotypes in a nonself-recognition system. Genetics 209(3):861–883
Brennan AC, Harris SA, Hiscock SJ (2006) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range. Evolution 60(2):213–224
Breton CM, Farinelli D, Shafiq S, Heslop-Harrison JS, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10(4):1055–1067
Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890
Camargo LEA, Savides L, Jung G, Nienhuis J, Osborn TC (1997) Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Heredity 88(1):57–60
Castric V, Bechsgaard J, Schierup MH, Vekemans X (2008) Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet 4:e1000168
Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–40
Chen T, Guestrin C (2016) XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16). New York, NY, USA: Association for Computing Machinery, 785–794
DeHaan LR, Van Tassel DL, Anderson JA, Asselin SR, Barnes R, Baute GJ et al. (2016) A pipeline strategy for grain crop domestication. Crop Sci 56(3):917–930
Edh K, Widén B, Ceplitis A (2009) Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics 181(3):985–995
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one 6(5):e19379
Fujii S, Takayama S (2018) Multilayered dominance hierarchy in plant self-incompatibility. Plant Reprod 31(1):15–19
Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T et al. (2013) High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). Theor Appl Genet 126(8):2103–2121
Harkness A, Brandvain Y (2021) Nonself-recognition-based self-incompatibility can alternatively promote or prevent introgression. N. Phytologist 231(4):1630–1643
Harkness A, Goldberg EE, Brandvain Y (2021) Diversification or collapse of self-incompatibility haplotypes as a rescue process. The American Naturalist. https://doi.org/10.1086/712424
Hiscock SJ (2000) Genetic control of self-incompatibility in Senecio squalidus L.(Asteraceae): a successful colonizing species. Heredity 85(1):10–19
Hiscock SJ, McInnis SM, Tabah DA, Henderson CA, Brennan AC (2003) Sporophytic self‐incompatibility in Senecio squalidus L.(Asteraceae)—the search for S. J Exp Bot 54(380):169–174
Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Philosophical transactions of the Royal Society of London. Ser B Biol Sci 358(1434):1037–1045
Huang WJ, Liu HK, McCormick S, Tang WH (2014) Tomato Pistil Factor STIG1 promotes in vivo pollen tube growth by binding to Phosphatidylinositol 3-Phosphate and the extracellular domain of the pollen Receptor Kinase LePRK2. Plant Cell 26(6):2505–2523
Gandhi SD, Heesacker AF, Freeman CA, Argyris J, Bradford K, Knapp SJ (2005) The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theor Appl Genet 111(4):619–629
Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell–cell communication in plant reproduction and development. J Exp Bot 62(5):1677–1686
Kandel H, Hulke B, Ostlie M, Schatz B, Aberle E, Bjerke K et al. (2019) North Dakota Sunflower Variety Trial Results for 2019 and Selection Guide. North Dakota State University Extension, Fargo, ND, USA
Koseva B, Crawford DJ, Brown KE, Mort ME, Kelly JK (2017) The genetic breakdown of sporophytic self‐incompatibility in Tolpis coronopifolia (Asteraceae). N. Phytologist 216(4):1256–1267
Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799
Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN].
Price JH, Brandvain Y, Smith KP (2021) Measurements of lethal and non-lethal inbreeding depression inform the de novo domestication of Silphium integrifolium. Am J Bot 108(6):980–992
Ostevik KL, Samuk K, Rieseberg LH (2020) Ancestral reconstruction of karyotypes reveals an exceptional rate of nonrandom chromosomal evolution in sunflower. Genetics 214(4):1031–1045
Ouellette LA, Reid RW, Blanchard SG, Brouwer CR (2018) LinkageMapView—rendering high-resolution linkage and QTL maps. Bioinformatics 34(2):306–307
Rahman MH, Uchiyama M, Kuno M, Hirashima N, Suwabe K, Tsuchiya T et al. (2007) Expression of stigma-and anther-specific genes located in the S locus region of Ipomoea trifida. Sex Plant Reprod 20(2):73–85
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Reinert S, Van Tassel D, Schlautman B, Kane N, Hulke B (2019) Assessment of the biogeographical variation of seed size and seed oil traits in wild Silphium integrifolium Michx. genotypes. Plant Genet Resour: Charact Utilization 17(5):427–436
Reinert S, Price JH, Smart BC, Pogoda CS, Kane NC, Van Tassel D et al. (2020) Mating compatibility and fertility studies in an herbaceous perennial Aster undergoing de novo domestication to enhance agroecosystems. Agron Sustain Dev 40:27
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C et al. (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8(1):1–11
Rindos D (1984) The origins of agriculture: an evolutionary perspective. Academic Press, Orlando, FL, USA
Schiffner S, Jungers JM, Hulke BS, Van Tassel DL, Smith KP, Sheaffer CC (2020) Silflower seed and biomass responses to plant density and nitrogen fertilization. Agrosystems. Geosci Environ 3:e20118
Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132
Settle WJ (1967) The chromosome morphology in the genus Silphium (Compositae). Ohio J Sci 67(1):10–19
Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744
Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci 88(19):8816–8820
Tomita RN, Fukami K, Takayama S, Kowyama Y (2004) Genetic mapping of AFLP/AMF-derived DNA markers in the vicinity of the self-incompatibility locus in Ipomoea trifida. Sex Plant Reprod 16(6):265–272
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515
Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y, Crews TE et al. (2017) Accelerating silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci 57(3):1274–1284
Williams JS, Der JP, dePamphilis CW, Kao TH (2014) Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26(7):2873–2888
Acknowledgements
Funding for this work was provided by The Perennial Agriculture project in conjunction with The Land Institute and the Malone Family Land Preservation Fund, the United States Department of Agriculture’s National Institute of Food and Agriculture Grant no. 2019-67011-29607 to JHP, the Minnesota Department of Agriculture - Forever Green Agricultural Initiative, and NSF grant #1737827 Dimensions US-China to YB. The authors thank Shannon Lee Anderson, Karen Beaubein, and Jill Ekar for their help in completing the controlled crosses for this experiment. In addition, the authors thank Dr. Kevin Dorn for assistance in developing a GBS protocol, Dr. Adam Herman for bioinformatics advice, and Dr. Owen Beisel for inspiring the hill-climbing algorithm method. Finally, the authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing computing resources that contributed to the analysis of this study.
Author information
Authors and Affiliations
Contributions
The effort to develop a linkage map was initiated by KPS, DLVT, and YB, who also secured initial funding. DLVT created the mapping population, contributed text, and visualization, and provided feedback in writing. JHP constructed the linkage map, initiated and designed the S-locus mapping work, and developed the HC method. ARR developed the MCMC method. JHP and ARR conducted data analysis and wrote the manuscript. KPS and YB provided supervision, and feedback on analysis, writing, and visualization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Associate editor Marc Stift.
Supplementary information
Rights and permissions
About this article
Cite this article
Price, J.H., Raduski, A.R., Brandvain, Y. et al. Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity 128, 304–312 (2022). https://doi.org/10.1038/s41437-022-00530-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41437-022-00530-4