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Investigating the origin of parthenogenesis through interspecific hybridization can provide insight into how meiosis may be altered
by genetic incompatibilities, which is fundamental for our understanding of the formation of reproductive barriers. Yet the genetic
mechanisms giving rise to obligate parthenogenesis in eukaryotes remain understudied. In the microcrustacean Daphnia pulex
species complex, obligately parthenogenetic (OP) isolates emerged as backcrosses of two cyclically parthenogenetic (CP) parental
species, D. pulex and D. pulicaria, two closely related but ecologically distinct species. We examine the genome-wide expression in
OP females at the early resting egg production stage, a life-history stage distinguishing OP and CP reproductive strategies, in
comparison to CP females of the same stage from the two parental species. Our analyses of the expression data reveal that
underdominant and overdominant genes are abundant in OP isolates, suggesting widespread regulatory incompatibilities between
the parental species. More importantly, underdominant genes (i.e., genes with expression lower than both parentals) in the OP
isolates are enriched in meiosis and cell-cycle pathways, indicating an important role of underdominance in the origin of obligate
parthenogenesis. Furthermore, metabolic and biosynthesis pathways enriched with overdominant genes (i.e., expression higher
than both parentals) are another genomic signature of OP isolates.
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INTRODUCTION
Understanding the origin and evolutionary consequences of
obligately asexuality (i.e., parthenogenesis) in eukaryotes is critical
for deciphering why these lineages are evolutionarily short-lived
(Bell 1982; Maynard Smith 1978; Otto 2009). It is well known that
the evolutionary consequences of obligate asexuality mainly result
from the evolutionarily negligible amount of meiotic recombina-
tion in asexual genomes. These include the inability to rapidly
adapt due to reduced efficiency of selection (Colegrave 2002;
Colegrave et al. 2002; Cooper 2007; Goddard et al. 2005; Kaltz and
Bell 2002; Kosheleva and Desai 2018; Poon and Chao 2004), the
irreversible accumulation of slightly deleterious mutations (i.e.,
Muller’s ratchet, Felsenstein 1974; Muller 1964), and the muta-
tional meltdown of asexual populations/lineages (Gabriel et al.
1993; Lynch et al. 1993).
However, the genetic mechanisms underlying the origin of

parthenogenetic species remain understudied, despite its poten-
tial for informing us about the evolutionary dynamics of asexual
taxa. In eukaryotes, obligate parthenogens originate from sexually
reproducing ancestors through means of spontaneous mutations,
hybridization between closely related sexual lineages, and
parasitic infections (Simon et al. 2003). During this sexual-
asexual transition, meiosis is altered (e.g., becoming a mitosis-
like cell division) to produce chromosomally unreduced gametes.
The cytological modifications of meiosis in parthenogens are well
studied and differ dramatically between lineages (Neiman et al.
2014; Stenberg and Saura 2009). For example, some lineages
engage in apomixis in which the reductional phase of meiosis is
skipped to produce unreduced eggs, while others undergo
automixis in which the fusion of meiotic products restores the

parental ploidy level (Stenberg and Saura 2009). However, due to
a lack of understanding of the genetic and molecular mechanisms
underlying germline cell division in parthenogens, it remains
unknown how these cytological modifications arise.
We suggest that the efforts in resolving this knowledge gap,

although still rare, will have implications beyond understanding
the evolution of asexuality. For example, understanding how
asexuality can originate through hybridization can provide us
insights into how meiosis can be disrupted by interspecific genetic
incompatibilities, which is essential to our understanding of how
reproductive barriers may arise during speciation. In speciation
research, the Dobzhansky-Muller model of hybrid incompatibility
posits that genetic elements in two diverging lineages, when
placed in the same genetic background, may negatively interact
and result in fitness reduction and sterility in hybrids (Dobzhansky
1937; Muller 1940). Substantial empirical evidence supporting
Dobzhansky-Muller incompatibilities has emerged over the years
(Barbash et al. 2003; Mack and Nachman 2016; Presgraves 2003;
Rawson and Burton 2002). However, obligate parthenogens with
hybrid origin have not been explicitly considered under this
theoretical framework except that Janko et al. (2018) considered
obligate asexuality as a reproductive barrier.
Compared to other modes of origin, hybridization is attributed

to the largest number of obligate parthenogens by far, with nearly
all vertebrate parthenogens having hybrid ancestry (Avise 2015). It
is still controversial whether hybridization directly leads to
parthenogenesis in the F1 generation (Kearney et al. 2009), as
only a few attempts succeeded in generating parthenogenetic F1s
by crossing identified parental lineages found in nature (e.g., Hotz
et al. 1985; Janko et al. 2018; Schultz 1973; White et al. 1977). Also,
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some obligate parthenogens (e.g., Daphnia) are backcrosses
derived from complex introgression events (Xu et al. 2013; Xu
et al. 2015). Because parthenogenetic hybrids are largely incapable
of backcrossing with parental lineages, we argue that obligate
parthenogenesis in hybrids is analogous to hybrid sterility in
reducing gene flow between diverging lineages. Therefore,
identifying the genetic elements involved in the hybrid origin of
obligate parthenogenesis would greatly expand our understanding
of the genetics of hybrid incompatibility.
In this work, we examine whether gene expression plays a role

in the hybrid origin of obligate parthenogenesis in the freshwater
microcrustacean Daphnia pulex species complex. It has long been
recognized that differences in gene expression are an important
source of phenotypic changes (Stern and Orgogozo 2008; Wray
2007). Gene expression has been examined in various asexual taxa
to probe the possible causes of parthenogenesis (Gallot et al.
2012; Hanson et al. 2013; Srinivasan et al. 2014). Nonetheless, for
hybrid obligate parthenogens it remains unclear how their gene
expression varies relative to the parental species, whether any
significant expression changes affect germline cell division, and
how regulatory divergences contribute to expression changes.
We address these issues using obligately parthenogenetic (OP)

Daphnia that are backcrosses of two parental species, the
cyclically parthenogenetic (CP) D. pulex and D. pulicaria, members
of the D. pulex species complex. Daphnia typically reproduces by
cyclical parthenogenesis (Fig. 1A). Under favorable environmental
conditions, females produce directly developing embryos through
parthenogenesis, generating genetically identical daughters
(barring de novo mutations). However, in unfavorable conditions
(e.g., food shortage), some asexual broods become males through
environmental sex determination, and females switch to produ-
cing haploid eggs. Sexual reproduction between the two produces
diapausing, fertilized embryos deposited in a protective case (i.e.,
ephippium). Interestingly, many populations in the northeast of
North America reproduce by obligate parthenogenesis (Fig. 1B),
i.e., reproducing by parthenogenesis in favorable conditions, but
also producing ephippial resting embryos by parthenogenesis in
deteriorating conditions (Hebert et al. 1993).

It should be noted that the parthenogenesis of both directly
developing embryos and resting embryos in Daphnia are most
likely achieved by modifications at anaphase I in which no
segregation of homologous chromosomes occurs and anaphase I
is not followed by the formation of daughter cells, i.e., no
cytokinesis (Hiruta et al. 2010; Zaffagnini and Sabelli 1972).
Therefore, we hypothesize that in hybrid OP Daphnia isolates the
anaphase promotion complex and spindle checkpoint assembly,
which play critical roles in chromosome segregation and
cytokinesis (Cooper and Strich 2011; Gorbsky 2015), are affected
by aberrant gene expression due to regulatory incompatibility
between the parental species, CP D. pulex and D. pulicaria.
Previous work has revealed that these OP isolates originated

through repeated backcrossing between the parental species (Xu
et al. 2013; Xu et al. 2015). Genome-wide association mapping
showed that the microsatellite and SNP alleles associated with OP
(concentrated on chromosomes 8 and 9) are only present in D.
pulicaria (a closely related species exclusively inhabiting perma-
nent lake habitats), suggesting that a historical introgression event
led to the origin of OP (Lynch et al. 2008; Xu et al. 2015).
Several lines of evidence strongly suggest ecological divergence

and genetic incompatibility between these two parental species.
As members of the D. pulex species complex, CP D. pulex and D.
pulicaria are estimated to have started divergence from 800,000 –
2,000,000 years ago (Colbourne and Hebert 1996; Cristescu et al.
2012; Omilian and Lynch 2009). These two species are morpho-
logically similar (Brandlova et al. 1972) but occupy distinct,
overlapping freshwater habitats in North America. Daphnia pulex
mostly lives in ephemeral fishless ponds, whereas D. pulicaria
inhabits stratified permanent lakes. These two species show clear
physiological differences (Caceres and Tessier 2004a; Caceres and
Tessier 2004b; Dudycha 2004; Dudycha and Tessier 1999),
indicating strong local adaptation and divergent selection in their
distinct habitats.
Although D. pulex and D. pulicaria can still generate fertile CP F1

offspring in laboratory crossing experiments (Heier and Dudycha
2009), some initial evidence points to the presence of both
incomplete prezygotic and postzygotic isolation. The prezygotic
barrier lies in the effects of photoperiods in triggering sexual
reproduction in these two species (Deng 1997), with D. pulex
switching to sexual reproduction at long day hours (16 h/day) and
D. pulicaria switching to sex at short day hours (10 h/day). On the
other hand, postzygotic barriers likely exist as interspecific crosses
have lower survival and hatching success than conspecific crosses
(Chin et al. 2019).
Despite these reproductive barriers, ample opportunities exist

for interspecific introgression between D. pulex and D. pulicaria
when ecological barriers break down (Millette et al. 2020) and
phenotypic changes consequently emerged, strongly indicating
the widespread presence of genetic incompatibility between
them. In addition to obligate parthenogenesis caused by the
introgressed D. pulicaria alleles in a CP D. pulex genetic
background, some CP D. pulex isolates lost the capability of
producing males because they carry an introgressed D. pulicaria
haplotype at the sex determination loci (Ye et al. 2019), which do
not sufficiently respond to environmental cues for initiating the
male developmental program in embryos based on gene
expression data (Ye et al. 2019).
Building upon this rich biological background of the Daphnia

system, this study examines the gene expression of females at the
early stage of resting embryo production (Fig. 1) to identify the
genetic signatures underlying the CP to OP transition. We
specifically address (1) the genome-wide expression changes in
hybrid OP Daphnia in comparison to their parental species and (2)
whether significant gene expression changes affect meiosis and
cell cycle (e.g., anaphase promotion complex) in OP individuals
and how that may play a role in the origin of obligate
parthenogenesis.
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Fig. 1 Life history of Daphnia. A Cyclical parthenogenesis. B Obligate
parthenogenesis. Although we show the production of male progeny,
it should be noted that some cyclically and obligately parthenogenetic
Daphnia lineages are not capable of producing males. The asterisk
shows the stage where we collected female whole-body tissue.
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MATERIALS AND METHODS
RNA-seq experiment of females at early resting embryo
production
Whole-body tissues of mature females at the early stage of resting egg
production were collected for 5 OP isolates (Maine344-1, MC08, K09, DB4-
4, Maine348-1), 2 CP D. pulex (POVI4, PA42), and 2 D. pulicaria (AroMoose,
LK16) isolates, respectively. These isolates were collected from different
geographic locations (Supplementary Table S1). Each isolate has been
maintained in lab conditions as an asexual mass culture (50–60 animals in
a quart jar), which was initiated from a single asexually reproducing
female. As gene expression is greatly affected by environmental conditions
and by maternal effects, the experimental animals of each isolate were
maintained for two asexual generations under 18 °C, and 12:12 (light:dark
hours) photoperiod and were fed with the same amount of green algae
Scenedesmus obliquus as food.
The asexually produced females of the second generations constitute

our focal experimental animals. As these animals became mature, we
examined these animals daily to search for females engaging in resting
egg production. As female Daphnia starts resting egg production through
normal meiosis in a CP isolate or parthenogenesis in an OP isolate, its ovary
shows a characteristic milky color and smooth texture (Hiruta and Tochinai
2014) in contrast to the clear ovary with many oil droplets in females
engaging in the parthenogenetic reproduction of directly developing
offspring (Supplementary Fig. S1). In 1–2 days, an ephippium will start to
form in the back of the female due to carapace modification while the
ovary continues to develop and become bigger. For the RNA-seq
experiments, we collected animals showing the characteristics of early
ovary development without sign of ephippium formation, which is what
we defined as early resting egg production. Three biological replicates of
females in early resting egg production (20–30 individuals in each
replicate) for each Daphnia isolate were collected.
For each replicate, the RNA was extracted using the Zymo Insect RNA kit

(Zymo Research). The extracted RNA was prepared for short-read
sequencing library construction using the NEB NextUltra RNA-seq kit
(New England Biolabs). The constructed libraries were sequenced with
150 bp paired-end reads on an Illumina HiSeq 2500 and 6000 sequencing
platforms. The raw sequence data for this work has been deposited at NCBI
SRA under PRJNA726725.

Inheritance mode of gene expression in OP hybrids
As the parental gene regulatory elements coexist in the OP hybrids, their
interaction determines the expression of genes under control. As we
hypothesized that the under-expression of genes involved in meiosis and
cell cycle is key to the origin of obligate parthenogenesis, we compared
the expression level of each gene in the OP hybrids to that of the two CP
genotypes representative of each parental lineage (see below). By doing
so, we can classify the gene expression inheritance mode of each gene
using the following set of rules (Fig. 2A).
A gene is considered underdominant if its expression in the OP hybrid is

significantly lower than either parental species, whereas a gene is
considered overdominant if its expression is higher than either parental
species. If the expression of a gene in OP is the same as one parent but
significantly different from the other, the inheritance is dominated by one
parent, i.e., D. pulex- or D. pulicaria-dominant. If a gene in OP is expressed
at an intermediate level relative to the parentals (i.e., higher than one
parental but lower than the other), this gene is considered additive. Last, if
the expression of a gene in OP is found the same as both parental species,
this gene is considered conservative.
To quantify the gene expression differences between the OP isolates and

parental species, the raw reads of these isolates were mapped to the D. pulex
reference assembly (Ye et al. 2017) using the software STAR v2.7.4 (Dobin
et al. 2013) using the default parameters. For all parental species, isolates and
OP hybrids only the uniquely mapped reads were retained for quantifying
gene expression levels. The amount of sequence reads overlapping the gene
body of each expressed gene was calculated using the program feature-
Counts from the package subread v1.6.5 (Liao et al. 2014).
We used the program DESeq2 v1.34 (Love et al. 2014) to obtain the

normalized expression level of each expressed gene in OP hybrids and
parental isolates using the median of ratios method. For each gene, we
performed pairwise differential expression tests (i.e., Wald test) among
one OP hybrid, D. pulex, and D. pulicaria. Each OP hybrid was individually
compared with the parental species, and the parental species were
represented by all the biological replicates of the two representative

isolates (e.g., D. pulex is represented by the biological replicates of POVI4
and PA42). The p values for the differential expression test were
corrected for a false discovery rate of 0.05 using the Benjamini-Hochberg
method.
A gene’s hybrid expression pattern in an OP hybrid can be delineated if

at least two of the three pairwise Wald test comparisons are statistically
significant using a false discovery rate of 5%. Based on the outcome of
these comparisons, we categorized the inheritance mode of genes in each
OP hybrid following the rules outlined above (Fig. 2A). However, for genes
with only one statistically significant comparison, we were not able to
establish an expression mode and labelled them as ambiguous.

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
and GO term analysis
To identify the functional implications of altered gene expression (i.e.,
underdominance and overdominance), we performed a few analyses using
annotated KEGG pathways. We mapped the underdominant and over-
dominant genes into KEGG pathways in each OP isolate using the pathway
reconstruction tool (https://www.genome.jp/kegg/tool/map_pathway.html).
Within each OP isolate, we calculated the ratio of under- and overdominant
genes for each pathway. and identified the common pathways that were
ranked in the top 5 percentile in each OP isolate to understand which
pathways were most strongly impacted by under- and overdominance.
We also performed KEGG pathway-enrichment analysis and GO (Gene

Ontology) term enrichment analysis using the genes that were identified
to be underdominant or overdominant in all OP isolates to understand
which cellular pathways and functions are disproportionately affected. To
alleviate the concern that our sampling of the parental species did not
cover the entire expression landscape (e.g., some under- and over-
dominant genes may be false positives), we further selected the
underdominant and overdominant genes that were not differentially
expressed within either parental species or between the parental species.
The GO enrichment analysis was performed in the topGO package v2.40
(Alexa and Rahnenfuhrer 2019) using the “classic” method and Fisher’s
exact test, whereas the KEGG pathway-enrichment analysis was done using
a hypergeometric test with a custom script in R 4.0.2 (https://github.com/
UtaDaphniaLab/Pathway-Enrichment-Test).
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percentage in the parenthesis.

S. Xu et al.

134

Heredity (2022) 128:132 – 138

https://www.genome.jp/kegg/tool/map_pathway.html
https://github.com/UtaDaphniaLab/Pathway-Enrichment-Test
https://github.com/UtaDaphniaLab/Pathway-Enrichment-Test


RESULTS
Inheritance mode of gene expression in OP hybrids
We compared the transcript abundance of each expressed gene in
OP hybrids to the two parental species to examine each gene’s
expression inheritance mode. Conserved expression was the most
abundant mode in all OP hybrids, ranging between 33–56%
among all isolates (Fig. 2B). We noted that in the less-well-
sequenced samples (MC08 and Main3441; each was sequenced
with ~10 million reads), conserved expression is much higher (54
and 56% in MC08 and M3441, respectively) than in three samples
of higher sequence depth (33–38% in M348, K09, DB4, each
sequenced with ~20 million reads).
A striking pattern in the well-sequenced samples (i.e., M348,

K09, DB4) is that underdominance and overdominance is the two
most abundant expression mode (Fig. 2B), with overdominance
ranging between 23 and 25% and underdominance between
21–23%. Therefore, significantly altered expression due to under-
dominance and overdominance combined constitute 45–48% of
the genes. In the less-well-sequenced samples, overdominance
ranged between 11 and 12% and underdominance between 9
and 10%. However, overdominance is consistently 2–3% higher
than underdominance in all OP isolates (paired t test p= 0.0032).
Regarding the other expression modes, additive genes make up

3–9% of the total genes in all the samples. More interestingly, the
percentage of D. pulicaria-dominant genes (9–13%) is at least two
times greater than that of D. pulex-dominant genes (3–5%) in each
OP hybrid, suggesting more genes resembling the expression
pattern in D. pulicaria than in D. pulex. We noted that the mapping
rate of the two parental species to the D. pulex PA42 reference
assembly is highly similar (75–80%), which probably did not bias
the inference of parental dominance.

KEGG pathways of top-ranked underdominance (UD) and
overdominance (OD) index
For each OP isolate, we calculated the ratio of UD and OD genes
(i.e., UD and OD index) for each KEGG pathway. This index
indicates a possible functional link between under- and over-
dominant genes and obligate parthenogenesis in Daphnia.
Notably, we found that the KEGG pathways with a UD index in
the top five percentile among all five OP isolates (Fig. 3A) were
Cell Cycle and Meiosis. Pathways involved in embryo development
(i.e., Hedgehog signaling Pathway, P53 signaling pathway) were
also among the top-ranked pathways with regards to UD index,
although they were only shared by 4 of the 5 OP isolates (Fig. 3A).
On the other hand, KEGG pathways of OD index values in the top

five percentile (Fig. 3B) were all associated with biosynthesis and
metabolism (e.g., Galactose metabolism, Histidine metabolism,

Biosynthesis of unsaturated amino acids) with the exception of
EGFR tyrosine kinase inhibitor resistance, although it should be
noted that these pathways were shared by only four of the five OP
isolates.

KEGG pathway-enrichment analysis
Among genes that are UD (531 genes) or OD (569 genes) in all 5
OP isolates (for gene lists see Supplementary Files 1 and 2), 215
UD and 265 OD genes did not have significant expression
variation at within- and between-species level (for gene lists see
Supplementary Files 3 and 4). The associated KEGG pathways of
these gene set generated using the software GAEV (Huynh and Xu
2018) are shown in Supplementary Files 5 and 6. KEGG enrichment
analysis based on these genes revealed that UD genes were
enriched in six pathways related to cell cycle meiosis, and oocyte
development (hypergeometric test p < 0.05 with false discovery
rate of 0.05), which are Cell Cycle, Meiosis-yeast, Cell Cycle-yeast,
Oocyte Meiosis, p53 signaling pathway, and progesterone-
mediated oocyte maturation (Fig. 4A). Furthermore, OD genes
were found to be enriched in 23 KEGG pathways (hypergeometric
test p < 0.05 with false discovery rate of 0.05), most of which
concern metabolism and biosynthesis (Fig. 4B).

GO term enrichment analysis
Nearly all GO terms enriched for the UD genes (p < 0.01) were
associated with cell cycle, cell division, cell cycle transition,
chromosome segregation, and spindle checkpoint assembly
(Supplementary Table S2). For example, the top five GO terms
significantly enriched for UD genes were “regulation of mitotic cell
cycle”, “cell cycle”, “regulation of cell cycle process”, “mitotic cell
cycle process”, and “mitotic cell cycle”. Many GO terms concerning
cell cycle transition, chromosome segregation, chromatid separa-
tion, spindle assembly checkpoint also showed significant
enrichment. On the other hand, the majority of GO terms enriched
for OD genes were associated with cell metabolism and
biosynthesis (Supplementary Table S3), with a notable exception
of the top three significant terms (protein glycosylation, macro-
molecule glycosylation, and glycosylation) concerning protein and
macromolecule glycosylation.

Expression pattern of UD and OD genes
Comparing the transcript abundance of UD and OD genes in each
OP isolate to the two parental species, we found that the mean
log2-fold expression change of UD genes across five OP isolates is
−2.29, whereas the mean log2-fold overexpression of OD genes is
1.93 (Fig. 5A). The absolute change of UD gene is significantly
larger than that of OD genes (two sample t test, p < 2 × 10−16).
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We identified several UD genes that are shared by all OP isolates
and do not show expression variation both within and between
species. Their log2-fold under-expression relative to the parental
species ranged between −0.5 and −4.5 (Fig. 5B) in OP isolates.
Many of these genes are key players in the anaphase promotion
complex (e.g., Cdc20), spindle checkpoint assembly (e.g., Mad2),
and cell cycle control (e.g., cell cyclin B).

DISCUSSION
Examining gene expression in obligate parthenogens of hybrid
origin in comparison with sexual parental species is an effective
approach to understanding how expression changes and inter-
specific genetic incompatibility may play a role in the origin of
asexuality. Although the effects of hybridization and obligate
parthenogenesis on gene expression remain tangled in this study,
our analyses of the gene expression changes in OP Daphnia
relative to the CP parental species, D. pulex and D. pulicaria,
revealed several important genetic modifications likely involved in
the origin of obligate parthenogenesis.
First, significantly altered gene expression (i.e., under- and

overdominant combined) is abundant in OP Daphnia (i.e., from 20
to 48%), while conserved expression has the highest number of genes
out of any single inheritance mode of expression (Fig. 2B). The
proportion of under- and overdominant genes varies between the
examined OP samples, which could reflect true biological variation
among OP Daphnia or could be due to diminished detection power
associated with sequencing depth variation (e.g., some of our samples
were sequenced at lower depth than others). Moreover, the number
of overdominant genes in OP Daphnia is consistently 2–3% higher
than that of underdominant genes in all the examined samples.
Clearly, compared to either parental species, OP Daphnia harbors
genes with significantly altered expression patterns. This stands in
stark contrast with the observation in the hybrid genome of asexual
Cobitis loaches, where dominance by one parental species accounts
for the expression in 83–89% genes and under- and overdominant
expression appears to be rare (Bartos et al. 2019). Because this kind of
data is still largely lacking, it remains to be seen how the amount of
under- and overdominant genes in Daphnia compares to other

hybrid obligate parthenogens and whether overdominant expression
consistently exceeds underdominant expression.
Second, while a few previous studies have examined gene

expression in relation to the origin of parthenogenesis (Hanson
et al. 2013; Parker et al. 2019; Srinivasan et al. 2014), our analyses
are novel in demonstrating that the under-expression of meiosis
and cell-cycle genes and overexpression of metabolic genes is
likely a key genomic signature of parthenogenesis in Daphnia. This
is manifested in the significant enrichment of underdominant
genes in meiosis and cell-cycle pathways and GO terms and
enrichment of overdominant genes in metabolic pathways and
GO terms in the early resting egg production stage of OP Daphnia.
It should be noted that the set of over- and underdominant genes
used in the KEGG pathway and GO term analyses likely have
conservative expression at within and between species levels
because we excluded the genes that show differential expression.
This transcriptomic signature is not only a characteristic of early

resting egg production through parthenogenesis in OP hybrids, but
also identified in the females at the early stage of asexually producing
directly developing embryos in CP D. pulex and CP D. pulicaria when
compared to the early stage of meiotically producing haploid eggs
(Huynh et al. 2021). In cyclical parthenogens, the early stage of
ameiotic (asexual) compared to meiotic (sexual) egg production also
shows significant enrichment of under-expressed genes in meiosis
and cell-cycle pathways and enrichment of over-expressed genes in
metabolic pathways (Huynh et al. 2021). We therefore hypothesize
that the origin of obligate parthenogenesis in Daphnia involves the
use of existing ameiotic germline cell division pathway (normally used
in the production of asexual, directly developing embryos) in the
production of resting eggs. This extension of existing ameiotic
division to resting egg production in OP hybrids carries the
transcriptomic signature of underdominant expression of meiosis
and cell-cycle genes, likely caused by genetic incompatibilities in the
parental species. On the other hand, the overexpression of metabolic
genes at resting egg production may be a trigger of the ameiotic
pathway or simply a response to environmental cues. Further tests of
these hypotheses would entail knock-down and overexpression
analyses of genes of interests in relation to obligately parthenogenetic
reproduction.
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One noteworthy underdominant gene (i.e., Cdc20) has also been
identified as candidate genes involved in the origin of obligate
parthenogenesis in Daphnia (Xu et al. 2015), whereas another
underdominant gene Mad2 is an important member of the spindle
checkpoint assembly (Li and Murray 1991; Tsuchiya et al. 2011). As
the parthenogenetic production of resting embryos in OP Daphnia is
most likely achieved through a modified form of meiosis based on
previous cytological work (Zaffagnini and Sabelli 1972) where
segregation is suppressed and anaphase I does not lead to
cytokinesis, the under-expression of these genes in OP Daphnia
may very well be essential to these modifications. Cdc20 is a key cell
cycle regulator (Yu 2007) and its under-expression may play a
significant role. Although our results are based on RNA-seq of whole-
body tissue, this idea draws support from emerging molecular
evidence. For example, the under-expression of Cdc20 in mouse
results in failed segregation of chromosomes in oocytes (Jin et al.
2010). This idea is worth of further investigation at the tissue-specific
and cellular level.
Third, the genetic mechanisms underlying the under- and

overdominant expression of the identified genes remain to be
examined. Identifying the genetic loci and variants regulating the
expression of these genes through eQTL (expression quantitative

trait loci) mapping (Nica and Dermitzakis 2013) would be helpful
for us to answer questions such as whether the altered expression
is a direct consequence of hybridization between D. pulicaria and
D. pulex or is a consequence of parthenogenesis itself.
Lastly, we note there are other genetic components involved in

obligate parthenogenesis that need to be further investigated,
e.g., the suppression of recombination during homologous pairing
and the bypass of oocyte development arrest without fertilization
(Lynch et al. 2008). Hopefully, future studies can identify the
possible candidate genes. Most importantly, we believe that
molecular functional characterization of the roles of the identified
candidate genes in OP is much needed, which can provide a novel
perspective on the origin of parthenogenesis and on the genetic
incompatibility in closely related species.

Data archiving
Data has been deposited with NCBI under the accession ID
PRJNA726725.
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