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Assessing the influence of the amount of reachable habitat on
genetic structure using landscape and genetic graphs
Paul Savary 1,2,3✉, Jean-Christophe Foltête2, Maarten J. van Strien4, Hervé Moal1, Gilles Vuidel2 and Stéphane Garnier3

© The Author(s), under exclusive licence to The Genetics Society 2021

Genetic structure, i.e. intra-population genetic diversity and inter-population genetic differentiation, is influenced by the amount
and spatial configuration of habitat. Measuring the amount of reachable habitat (ARH) makes it possible to describe habitat
patterns by considering intra-patch and inter-patch connectivity, dispersal capacities and matrix resistance. Complementary ARH
metrics computed under various resistance scenarios are expected to reflect both drift and gene flow influence on genetic
structure. Using an empirical genetic dataset concerning the large marsh grasshopper (Stethophyma grossum), we tested whether
ARH metrics are good predictors of genetic structure. We further investigated (i) how the components of the ARH influence genetic
structure and (ii) which resistance scenario best explains these relationships. We computed local genetic diversity and genetic
differentiation indices in genetic graphs, and ARH metrics in the unified and flexible framework offered by landscape graphs, and
we tested the relationships between these variables. ARH metrics were relevant predictors of the two components of genetic
structure, providing an advantage over commonly used habitat metrics. Although allelic richness was significantly explained by
three complementary ARH metrics in the best PLS regression model, private allelic richness and MIW indices were essentially
related with the ARH measured outside the focal patch. Considering several matrix resistance scenarios was also key for explaining
the different genetic responses. We thus call for further use of ARH metrics in landscape genetics to explain the influence of habitat
patterns on the different components of genetic structure.
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INTRODUCTION
The genetic structure of populations of the same species occupying
subdivided habitat patches is characterised by two components: (i)
the local genetic diversity within each population and (ii) the
genetic differentiation between populations. Genetic drift and gene
flow are the main processes influencing these two components
when assessed from neutral genetic markers (Hedrick, 2011). Their
combined effects depend on the habitat spatial pattern, i.e. the area
and the configuration of habitat patches (DiLeo and Wagner, 2016,
Keyghobadi, 2007). Indeed, on the one hand, when the effective
size of a population is limited by the small area or poor quality of a
habitat patch, genetic drift tends to erode its local genetic diversity
(Frankham et al., 2004), thereby increasing the risk of inbreeding
depression and local extinction (Frankham, 2005, Spielman et al.,
2004). It also increases its genetic differentiation from other
populations. On the other hand, if there are other habitat patches
within dispersal distance, gene flow events due to dispersal from
neighbouring populations can counterbalance this loss of local
genetic diversity while limiting genetic differentiation between
populations (Frankham, 2015, Ingvarsson, 2001, Lehnen et al., 2021).
Understanding precisely how these two components of the genetic
structure are influenced by the habitat spatial pattern is crucial in an
era when habitat destruction is globally threatening all biodiversity
levels (Díaz et al., 2019).

Describing the spatial pattern of habitat implies taking into
account both habitat amount and configuration (Villard and
Metzger, 2014), which are largely interdependent (Didham et al.,
2012, Saura, 2021). For a given amount of habitat in the landscape,
the configuration of habitat patches determines how much
habitat is reachable from every patch (Saura, 2021, Villard and
Metzger, 2014). The concept of habitat reachability integrates
both habitat amount and configuration and extends that of
habitat connectivity by considering both intra-patch and inter-
patch connectivity (Pascual-Hortal and Saura, 2006, Saura and
Rubio, 2010). The Amount of Reachable Habitat (ARH) computed
for a patch is made of the area of the patch itself, and of the areas
of its neighbouring patches according to species dispersal
capacities. In addition, a patch may contribute to the ARH at a
large scale by allowing “stepping-stone" dispersal over several
generations between patches that are very distant from each
other (Saura et al., 2014). To account for the latter situation when
computing the ARH for a patch, one must consider the topology
of the whole habitat network because it determines the role of
that patch for indirect connections between distant patches
(Saura and Rubio, 2010). Besides, as soon as the ARH includes
habitat areas outside the focal patch, it should best include the
resistance exerted by the landscape matrix on individual move-
ments between patches (Andersson and Bodin, 2009, Joly et al.,
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2014). In sum, computing a set of complementary metrics makes it
possible to measure the ARH from the species point of view and
according to its dispersal capacities through the landscape matrix
over large spatial scales and multiple generations (Saura and de la
Fuente, 2017).
ARH metrics have been developed from landscape graphs,

which represent habitat networks as sets of habitat patches
(nodes) connected by potential dispersal paths (links) (Galpern
et al., 2011, Saura and de la Fuente, 2017, Urban and Keitt, 2001).
These graphs offer a unified framework for the computation of
complementary habitat metrics in a more flexible way than
commonly used metrics such as the distance to the nearest patch
or the amount of habitat in a circular buffer area (see Fig. 1 for
background information on habitat metrics). Accordingly, ARH
metrics have proven helpful for explaining biological responses
such as the composition of species communities (Awade et al.,
2012, Mony et al., 2018) and are commonly used for conservation
purposes (Bergès et al., 2020, Saura and de la Fuente, 2017). They
have more rarely been used to explain the genetic structure of
populations despite their potential relationships with both genetic
drift and gene flow processes (but see Bertin et al. (2017), Flavenot
et al. (2015) and Schoville et al. (2018)). Three metrics can be
sufficient for describing the habitat pattern properties determin-
ing the ARH (Baranyi et al., 2011, Rayfield et al., 2011). These
metrics should reflect the potential size of the population

occupying a patch and the contribution of a patch to dispersal
fluxes and to long-distance dispersal events occurring through
multiple generations over the whole habitat network. These
properties have been named recruitment, flux and traversability
by Urban and Keitt (2001), respectively.
In population genetics, the potential advantage of ARH metrics

over other habitat metrics lies on the following rationale. Genetic
drift depends on population size, which can be approximated by the
capacity of a patch (i.e. recruitment component of the ARH, Fig. 1C).
Besides, even if every suitable habitat patch in the landscape may
not be systemically occupied by a population (Pasinelli et al., 2013),
we can expect gene flow intensity between a given population and
the others to increase with the flux component of the ARH. For a
given patch, this component is measured by considering the
potential connections to other habitat patches (e.g. with the F
metric, Fig. 1D). Finally, the relative location of a patch in the
topology of the whole network, taken into account in the
traversability component of the ARH, is known to be a good
predictor of multi-generational gene flow (Boulanger et al., 2020, van
Strien, 2017, van Strien et al., 2014) (as reflected for example by
the Betweenness Centrality (BC) metric, Fig. 1E). In contrast, while the
distance to the nearest patch may only partially reflect the
contribution of a patch to gene flow events (Fig. 1A), the amount
of habitat in a buffer area (Fig. 1B) may not allow for distinguishing
the effect of the habitat pattern on drift versus gene flow processes.

Fig. 1 Habitat metrics. Differences between common habitat metrics computed from a land cover map (A, B) and ARH metrics computed
from a landscape graph (C, D, E). Grey areas correspond to habitat. The table (F) illustrates these differences by considering the metrics
computed for three habitat patches (a, b, c). A The distance to the nearest habitat patch (DistNN) is computed for each habitat patch. B The
amount of habitat in a circular buffer (so-called 'buffer' metric) is computed as the area of the pixels located within the black circle centred on
each patch centroid. C The capacity is the area of each patch (node) of the landscape graph. D The Flux metric for patch i is the sum of the
area of all the habitat patches j of the graph weighted by the dispersal probability between i and every patch j. E The Betweenness Centrality
metric corresponds to the number of times every patch is located on a least-cost path between two other patches of the graph, weighted by
the product of the connected patch areas and the dispersal probability between them. Brown lines on B, D and E correspond to landscape
graph links.
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The most frequent landscape genetic analyses focus on the
relationship between genetic and landscape distances between
patches (link-level, sensu Wagner and Fortin (2013)) to test for the
effect of landscape structure on genetic differentiation (DiLeo and
Wagner, 2016). In contrast, landscape influence on local genetic
diversity or population-specific indices of genetic differentiation
(node- or neighbourhood-level analyses, sensu Wagner and Fortin
(2013)) have rarely been studied (DiLeo and Wagner, 2016)(see
Barr et al. (2015), Millette and Keyghobadi (2015) or Toma et al.
(2015) for examples). In addition, genetic diversity estimates tend
to be taken as a result of genetic drift in empirical studies, while
genetic differentiation is mainly explained by levels of gene flow.
However, genetic diversity and differentiation are both influenced
by the interaction of drift and gene flow. Furthermore, node-based
studies mostly focus on either genetic diversity or differentiation
(Flavenot et al., 2015, Toma et al., 2015) and consider simple
habitat metrics such as habitat amount in circular neighbourhoods
around populations and distances to nearest habitat patches
(Hahn et al., 2013, Taylor and Hoffman, 2014). Because ARH
metrics comprehensively reflect the drivers of both drift and gene
flow, they could be relevant predictors of both genetic diversity
and differentiation (Foltête et al., 2020). This would help under-
standing how each response is influenced by the habitat spatial
pattern. Computing ARH metrics under different matrix resistance
scenarios additionally offers the opportunity to assess the role of
matrix resistance in these relationships.
ARH metrics are even more relevant for landscape genetics

since the genetic structure of a set of populations can also be
represented as a genetic graph in which nodes are sampled
populations whereas links are weighted by genetic distances and
represent substantial gene exchanges between populations (Dyer,
2015, Greenbaum and Fefferman, 2017, Savary et al., 2021a). Their
nodes can be weighted by local genetic diversity indices (node-
level) as well as indices considering genetic differentiation with
other populations (neighbourhood-level) (Koen et al., 2016). In the
latter case, the topology of the population network can be taken
into account through graph pruning, which removes certain links
between populations. It makes it possible to consider gene
exchanges at different spatial scales when computing these
genetic differentiation indices (Savary et al., 2021a). As evidenced
by DiLeo and Wagner (2016), node- and neighbourhood-level
approaches are the only landscape genetic approaches making it
possible to study the relationships between (i) either genetic
diversity or differentiation and (ii) either habitat amount or
configuration.
Accordingly, in this study, we aimed at answering the following

question: are ARH metrics better predictors of genetic structure
than commonly used habitat metrics? To that purpose, we used
an empirical genetic dataset concerning the large marsh grass-
hopper (Stethophyma grossum). This species has limited dispersal
capacities and forms discrete populations in small habitat patches,
making it a good model for understanding how the spatial
patterns of habitat influence genetic structure. We computed local
genetic diversity and genetic differentiation indices from genetic
graphs. In parallel, we computed three ARH metrics (capacity, F,
BC) at different scales in landscape graphs, while taking into
account different matrix resistance scenarios. We also computed
the distance to the nearest neighbouring patch (DistNN hereafter)
and the amount of habitat in a circular buffer (buffer metric
hereafter), two commonly used habitat metrics, for comparison
purposes. We finally assessed the relationships between these
genetic responses and landscape predictors through correlation
analyses as well as partial least square regressions. These analyses
also allowed us to compare the relationship between ARH metrics
and either genetic diversity or differentiation, and the way the
spatial scale and the resistance scenario influenced it.

MATERIAL AND METHODS
Study species and sampling area
We analysed an empirical dataset acquired and described by Keller et al.
(2013) and van Strien et al. (2014). The large marsh grasshopper
(Stethophyma grossum) is a specialist orthoptera species exhibiting a
patchy distribution throughout most of Europe where it finds its habitat in
periodically flooded grasslands and open wetlands (Bönsel and Sonneck,
2011, Reinhardt et al., 2005, Sonneck et al., 2008). In this species, dispersal
seems possible even in suboptimal open areas such as dry grasslands
(Marzelli, 1994) and the species is able to cross streams but suitable
patches surrounded by trees cannot be reached (Reinhardt et al., 2005).
Exceptionally, individuals can cover up to 1500m, as observed by Griffioen
(1996) in a permeable landscape.
Keller et al. (2013) modelled the potential habitat of the large marsh

grasshopper in the surroundings of the city of Langenthal in the
Oberaargau region of the Swiss plateau. This 180 km2 area is characterised
by intensive agriculture areas with forest patches and settlements. Across
the potential habitat areas, 39 large marsh grasshopper populations were
sampled exhaustively (Fig. 2) in July and August 2010. The tibia and tarsus
of a mid-leg of each individual were sampled for genetic data analyses.
The genetic data analyses of eight microsatellite markers are described in

Keller et al. (2013). Like those authors, we excluded the Sgr14 microsatellite
marker from the analyses because of genotyping errors and high null allele
frequency. This did not prevent us from detecting significant levels of
genetic differentiation. Besides, we excluded two populations located on the
eastern margin of the study area, as well as three other populations whose
low numbers of individuals would have impaired our rarefied estimations of
local genetic diversity (see below). In sum, we considered 34 populations
with at least 12 individuals for a total of 886 individuals.

Genetic structure indices
At the intra-population level, we estimated the total (AR) and private (Priv.
AR) allelic richness from rarefaction indices calculated using ADZE (Szpiech
et al., 2008) to account for sample size differences. Note that the private
allelic richness index indicates the number of alleles found in a given
population while absent from all the others (Kalinowski, 2004). Thus, it can
be considered as both a local genetic diversity index and a genetic
differentiation index. For assessing genetic differentiation between pairs of
populations, we computed the matrix of DPS (calculated as 1—pairwise
proportion of shared alleles) (Bowcock et al., 1994). This distance has been
shown to respond quickly to recent landscape changes, making it relevant
for estimating contemporary gene flow in landscape genetic analyses
(Murphy et al., 2010). We also computed the matrix of pairwise FST (Weir
and Cockerham, 1984), which is known to reflect historical gene flow
(Latta, 2006, Murphy et al., 2010).
We then built genetic graphs whose nodes represented grasshopper

populations. Links were weighted with either DPS or FST values. In the
complete graphs, every population was connected to every other
population but we also created pruned graphs in which only a subset of
links was included. In order to avoid any artefactual correlation between
habitat metrics and graph-based genetic indices, we used a pruning
method taking only genetic distances into account. To that purpose, we
identified the so-called “percolation threshold” using an edge-thinning
method (Urban and Keitt, 2001). Following Rozenfeld et al. (2008), we
computed this threshold from genetic data, searching for the genetic
distance associated with the graph link whose removal would break the
graph into two components. All the links corresponding to genetic
distances larger than this threshold were removed. Gene flow has been
shown to be frequent but spatially limited in this area (Keller et al., 2013)
and we therefore assumed that above this genetic threshold distance,
genetic differentiation between populations poorly reflected landscape
effects on gene flow. From these graphs, we computed the mean of the
inverse weight of the links connected to each node (thereafter referred to
as MIW-DPS and MIW-FST according to the genetic distance used). High
values of MIW indicate a high degree of genetic similarity of a population
with the others. This metric has been shown to correlate well with the
number of migrants (Koen et al., 2016) and other population-specific
genetic differentiation indices have already been recommended and used
for landscape genetic analyses (DiLeo and Wagner, 2016, Gaggiotti and
Foll, 2010, Millette and Keyghobadi, 2015, Peterman et al., 2015). Genetic
graphs were constructed and metrics were computed using the
graph4lg package in R (Savary et al., 2021b).
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Habitat metric calculations
We used rasterised (resolution: 10 m) land cover data from the sampling
year in the area encompassing buffers of 5 km radius around each
sampling site. In this area, we described the habitat spatial pattern by
computing three ARH metrics (capacity, F, BC) from a landscape graph
(Fig. 3).

Landscape graph construction. We considered six land cover types: (i)
potential habitat areas, (ii) forest areas, (iii) settlements, (iv) agricultural
areas, (v) wetlands and water areas, and (vi) railways and roads. Potential
habitat areas corresponded to areas close to open water (≤500 m), within
open agricultural areas and where water from the surroundings (500m
radius) can accumulate (Keller et al., 2013). We created a resistance surface

by combining these land cover data. The sampling of Keller et al. (2013)
was exhaustive within the modelled potential habitat. Therefore, we built
landscape graphs whose nodes were the 37 sampling sites in which
several individuals were observed. The terms nodes, patches and
populations are used interchangeably here. We used the resistance surface
for computing the cost-distances between the nodes, which were used to
weight the graph links.
We distinguished several “expert-based” scenarios of landscape matrix

resistance when assigning a cost value to every land cover type on the
resistance surface. In the first four scenarios, we set the cost values as
indicated in Table 1. With these four scenarios, we varied the influence of
wetlands and water areas (cost values: 50 or 1000, W50 and W1000
respectively) and of the roads and railways (cost values: 50 or 1000, R50

Fig. 3 Genetic indices and habitat metrics computed in both types of graphs to depict both genetic structure (diversity, differentiation)
and the amount of reachable habitat and to perform correlation and partial least squares analyses. “Prun.": pruned graph, “Comp.":
complete graph, “Cost dist.": cost-distances, “Euc. dist.": Euclidean distances.

Fig. 2 Study area. Location of the sampled populations in the surroundings of Langental in the Oberaargau region.
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and R1000, respectively) because we wanted to test for the respective
influence of these potential linear barriers on gene flow. Cost values
associated with other land cover types were set assuming that this species
moves easily in potential habitat areas or open areas, whereas it is hardly
able to move across forests and anthropogenic areas (Bönsel and Sonneck,
2011, Griffioen, 1996, Marzelli, 1994).
We computed the least-cost paths between every pair of habitat patches

using Dijkstra’s algorithm and weighted the links with the corresponding
cost-distances. In a fifth scenario, we built a graph whose link weights were
geodesic Euclidean distances between patches. As this species is assumed
to disperse by stepping stones given its limited dispersal capacities, for
every resistance scenario, the landscape graphs were pruned with a
Delaunay triangulation resulting in a planar graph (Fig. 2).

Amount of reachable habitat metrics. To account for the influence of the
ARH on genetic drift and gene flow, we took advantage of the spatial
graph approach for computing three complementary ARH metrics. The
graph nodes were located at the centroid pixel of every sampled habitat
patch and we first computed their capacity as the area of potential habitat
reachable at the patch scale. To that end, we assigned to every potential
habitat cell surrounding the central pixel of the sampling site a weight that
decreases with its cost-distance to this pixel. The weight of the potential
habitat cell j located at a cost-distance dij from the central pixel of site i is
equal to e�αdij , such that the Capacityi of patch i is equal to:

Capacityi ¼
XN

j¼1

e�αdij

where N is the total number of potential habitat cells. We set α values such
that p ¼ e�αdij ¼ 0:05 at a cost-distance equivalent to 1500 m from the
sampling site centroid, because distance-weighting exponential functions
assuming that landscape effects on biological responses progressively decay
with distance have been shown to outperform weighting functions based on
fixed distance thresholds (Miguet et al., 2017). We converted this geodesic
metric distance into cost-distance units using a log-log regression, following
Tournant et al. (2013). After performing the same calculations for distances of
500 and 1000 m with very similar results, we retained 1500 m as the best scale
because it is in the same order of magnitude as the maximum dispersal
capacity of the species. Given that the large marsh grasshopper occupies
small localised habitat patches, this metric reflects the amount of habitat
reachable by individuals at the scale of the discrete patch occupied by their
population. It is thus a suitable proxy for the effective population size driving
genetic drift (DiLeo and Wagner, 2016). It was computed for each resistance
surface and cost scenario.
As the capacity reflects the intra-patch component of the ARH, we

computed two other metrics reflecting the ARH due to other patches:

● The Flux metric (F) represents the amount of habitat that is reachable
when dispersing from a focal patch to other habitat patches. It can
also be thought of as the amount of habitat from which migrants can
originate. We computed the F using the following formula:

Fi ¼
Xn

j¼1;j≠i

Capacityβj e
�αdij

with i the index of the focal patch and j the index of all the other n patches,
dij the distances (cost-distance or geodesic Euclidean distance) between
patches i and j, Capacityj is the capacity of patch j and β indicates whether
the patch capacity is taken into account (β= 1) or not (β= 0) in the
calculation. Note that when β= 0, the F metric is essentially a topological
metric reflecting the influence of the number and proximity of patches
that are reachable. α was computed according to different dispersal
kernels in order to test for the influence of the scale at which dispersal
takes place. To that purpose, we set α values such that p ¼ e�αdij ¼ 0:05 for

distances dij ranging from 1500 to 7500m (with steps of 500 m). We
thereby considered the ARH beyond the scale at which patch capacities
were computed and until large scales as compared with the species
dispersal capacities. For the sake of brevity, we refer to these distances dij
at which pdij ¼ 0:05, either cost-distances or geodesic distances, as
maximum dispersal distances (MDD) and express them in equivalent
metric units after conversion.
● The Betweenness Centrality metric (BC) represents the number of

times a focal patch (node/population) is a step on the indirect least-
cost path from one patch to another when considering all possible
patch pairs, excluding pairs involving the focal patch itself. It therefore
reflects the role of that patch for potential dispersal movements at the
scale of the whole habitat network and across several generations
(traversability). Each term of this metric is weighted by the product of
connected patch capacities (if β= 1) and dispersal probabilities
associated with the inter-patch distance such that:

BCi ¼
X

j

X

k

Capacityβj Capacity
β
k e

�αdjk

j; k 2 1; ¼ ; nf g; k < j; i 2 Pjk

where Pjk represents the set of patches that are located along the least-cost
path between patches j and k. We used the same α and β values as for the
F index.
Because patches with large BC values may play a key role for dispersal

between a large number of habitat patches (β= 0) and/or a great amount
of habitat areas (β= 1), populations occupying these patches are expected
to be genetically similar to the others and to have a high genetic diversity
(Zetterberg et al., 2010).

As these three ARH metrics are complementary and make it possible to
cover a large range of calculation parameters, other habitat metrics found
in the literature (Capurucho et al., 2013, Peterman et al., 2015, Taylor and
Hoffman, 2014) are particular cases of these metrics. Thus, although we
aimed at assessing the relevance of the unified and flexible framework of
the ARH metrics, we computed buffer metrics and the DistNN, two other
habitat metrics, for comparative purposes. We first computed the buffer
metrics, which measure the amount of potential habitat in circular
neighbourhoods around each sampling sites considering similar scales as
for the ARH metrics calculation. When considering small radius (from 100
to 500m with steps of 100 m), “local buffer” metrics were akin to the
capacity metric whereas “large buffer” metrics (from 1000 to 5000m with
steps of 500m) more closely reflected the F metric calculation. We also
computed the amount of potential habitat in non-circular neighbourhoods
whose radius depended on cost-distance values according to every cost
scenario. We use the terms “Local.Buffer” and “Large.Buffer” hereafter. In
the Euclidean resistance scenario, the buffer is circular, and non-circular in
the other scenarios. Finally, we computed the distance from each
population to the nearest neighbour habitat patch occupied by a sampled
population (DistNN) under every cost scenario. We built landscape graphs
and computed metrics using Graphab 2.4 software (Foltête et al., 2012).

Analyses of the relationship between habitat metrics and
genetic structure indices
Correlation analyses. We first assessed the correlations between the
habitat metrics and the genetic indices (Fig. 3). Because all these variables
were not normally distributed, we computed the Spearman rank
correlation coefficient and tested for the significance of the correlations.
We adjusted the p-values using the Benjamini and Hochberg (1995)
method to control for the False Discovery Rate.

Partial Least Squares regressions. Simple correlation analyses allowed us
to identify the habitat metrics, spatial scales and matrix resistance

Table 1. Scenarios of matrix resistance considered for computing cost-distances between habitat patches.

Scenario Potential habitat Forest Settlements Agricultural areas Wetlands, water Roads, railways

W50-R50 1 1000 1000 50 50 50

W1000-R50 1 1000 1000 50 1000 50

W50-R1000 1 1000 1000 50 50 1000

W1000-R1000 1 1000 1000 50 1000 1000
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scenarios most strongly related to each genetic response. However, they
could not depict the complex relationships between genetic indices and
our set of complementary ARH metrics. We therefore carried out Partial
Least Squares regressions (PLS-R)(Carrascal et al., 2009) in which genetic
indices were the response variables whilst ARH metrics were the predictor
variables (Fig. 3). PLS regressions are an alternative to multiple linear
regression and principal component regression (Roy et al., 2015, Wold
et al., 2001), particularly adapted when predictor variables are collinear.
The main difference with Principal Component Regression is that both the
response and predictor variables are considered for creating a factorial
space (Long, 2013). Response variables were rank-transformed because of
departures from normal distributions. We assessed the complementarity of
the ARH metrics through multivariate analyses, by testing for all
combinations of three predictor variables involving a patch capacity, F
and BC metric.
Following Tenenhaus (1998), we computed the Q2 index to assess the

role of every component in improving the prediction of the response
variable when performing leave-one-out cross-validation. We only
described the results obtained with models in which at least one
component significantly improved the prediction of the response variable,
i.e. when the Q2 associated with this component is larger than 0.0975
(Supplementary information 2). We compared these models according to
the Q2 values associated with their significant components. Variable
influences were assessed by computing their squared weights on the
significant components. Variable weights were validated through boot-
strap procedures following Pérez-Rodríguez et al. (2018). For every top
model, the dataset was sampled with replacement 1000 times and the
variable weights were estimated. If the 2.5–97.5% interval of the series of
obtained values did not overlap zero, then we considered that the variable
contributed significantly to the construction of the component.

RESULTS
Landscape and genetic graphs
The planar landscape graphs included 37 nodes and 95 links (Fig. 2)
and the complete genetic graphs included 34 nodes connected by
561 links. The genetic graphs pruned using percolation thresholds
computed from DPS or FST values both included 412 links, although
they had slightly different topologies (Figure S1).

Correlations between ARH metrics and genetic responses
The DistNN metric never significantly correlated with any genetic
index (Table 2). Although the Local.Buffer metric consistently
exhibited positive correlations with genetic indices (up to r=
0.347 with allelic richness), this correlation was never significant.
Besides, the Large.Buffer metric was only significantly correlated
to the allelic richness when considering a radius equivalent to
1000m or 4500m in the cost scenarios assigning water areas a
low resistance (W50-R1000: r= 0.482 and W50-R50: r= 0.432,
respectively). Overall, these commonly used habitat metrics
performed poorly as compared with ARH metrics derived from
landscape graphs.
Allelic richness was positively correlated with patch capacity

(r= 0.447). This correlation was only significant when the capacity
was computed under the cost scenario assigning a low resistance
to water areas and a high resistance to roads and railways (W50-
R1000). Thus, the local genetic diversity of a population is greater
when this population occupies a patch with a large habitat surface
reachable without crossing roads or railways. In contrast, patch
capacities were not significantly correlated with any index of
private allelic richness or relative genetic differentiation (MIW)
derived from the genetic graphs, whatever the genetic distance
and graph topology considered in the calculation.
All genetic indices tended to correlate more strongly with the

Flux (F) metrics than they did with the Betweenness Centrality (BC)
metrics (Table 2). Allelic richness and private allelic richness were
respectively positively and negatively correlated with both metrics
(Figs. S2 and S3). While allelic richness was more strongly
correlated with the F metric computed considering cost-distances,
especially when assigning roads and railways a high resistance

(W50-R1000: r= 0.538 or r= 0.566 when MDD = 1500 and β= 0
or β= 1 respectively, Table 2), private allelic richness was more
strongly correlated with this metric when computed using
Euclidean distances (r=−0.609 or r=−0.593 when MDD=
5500 or 2500 and β= 0 or β= 1, respectively, Table 2). The
MDD did not have much influence on the correlation coefficients
(Fig. S2) and we could not identify a scale of effect. Overall, the
correlation values depended only slightly on the weight given to
patch capacities (β value) when computing the metrics.
The MIW indices were positively and most often significantly

correlated with the F and BC metrics (Table 2), indicating that
populations located in habitat patches surrounded by large and
nearby habitat patches tended to be genetically more similar to
others than populations located in habitat patches isolated from
large habitat patches (Fig. 4). Overall, the correlations were
stronger when computing the MIW indices from pruned graphs
rather than from complete graphs (Table 2). This was especially
apparent when using the DPS to weight the genetic graph links.
However, these correlations were influenced by both the genetic
distance used in the calculation and the type of distances
(geodesic or cost-distances) used to compute the F and BC
metrics. MIW-DPS indices were more strongly correlated with F
metrics computed using Euclidean distances whereas MIW-FST
indices were more strongly correlated with F metrics computed
using cost-distances under the scenarios W50-R50 or W50-R1000
which both assign a low resistance to water areas (Fig. 4). In both
cases, correlation coefficients reached their highest values when
the MDD was between 2000 and 3000 m.

Partial Least Squares regressions
Among all combinations of capacity, F and BC metrics, only one
component had a significant effect in the PLS-R models explaining
one of the genetic indices, except in one case where two
components significantly explained the MIW-DPS derived from a
pruned graph. Among these combinations, the best models were
very similar for a given response variable. Overall, the best model
fits were obtained when patch capacities were not included in the
calculation of the F metric (β= 0) and, except for the MIW-FST,
included in the calculation of the BC metric (β= 1). Yet, these
differences were most often subtle (Table 3). Accordingly, we only
describe the results of the best models created with each
response variable (Table 3).
The allelic richness was best explained when fitting a PLS-R

model including the three following ARH metrics: capacity
computed under the cost scenario W50-R1000, F metric computed
under the same scenario with β= 0 and a MDD of 2000m, and BC
metric computed under the cost-scenario W1000-R1000 with β=
1 and a MDD of 7500 m. These variables were highly and
positively correlated with the first component (Capacity: r= 0.829,
F: r= 0.860, BC: r= 0.787 in the best model, Table 3 and
Supplementary information 1, Fig. S5A). The R2 associated with
this component was equal to 0.325 in the best model, whereas the
corresponding Q2 was about 0.280 (Table 3).
In contrast, the only variable contributing significantly to the

first component derived from the best PLS-R model explaining the
private allelic richness was the F computed using Euclidean
distances, with β= 0 and MDD of 1500 or 2000m (Table 3). This
variable was negatively correlated with the first component
(r=−0.816) indicating that the private allelic richness is lower
when habitat patches are surrounded by other nearby habitat
patches (Supplementary information 1, Fig. S5B). Both the R2 and
the Q2 values associated with this first component were larger
than in the PLS-R models explaining allelic richness (R2= 0.515,
Q2= 0.415).
The best PLS-R models explaining the MIW indices were

obtained when computing them from pruned genetic graphs,
the pruning step making the greatest differences in model fits
when computing the MIW-DPS (Table 3). Model goodness of fit
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was overall better when modelling the MIW-FST than the MIW-DPS.
The first component alone explained about 40% of the variance of
the MIW index and up to 50% when modelling the MIW-FST
derived from a pruned graph (Table 3). This share was moderately

reduced when performing the cross-validation (Q2: from 0.314 to
0.443, Table 3). Here again, only the F contributed significantly to
the first component, which was in most cases the only component
explaining significantly the MIW (Supplementary information 1,

Table 2. Spearman correlation coefficients between genetic indices and ARH metrics according to the cost scenario used, the MDD considered and
the weight given to patch capacities in the metric calculation (β value). The largest correlation coefficient obtained for each genetic index, habitat
metric and β value are displayed. The ’Signif.’ column indicates whether the correlation is still significant after p value adjustment (p < 0.05, **p < 0.01,
***p < 0.001). For the cost scenarios, refer to Table 1. “DistNN” means “Distance to the Nearest Neighbour”.

Genetic index Habitat metric Correlation

Metric Cost sc. MDD β rSpearman Signif.

AR Capacity W50-R1000 1500 + 0.447 *

AR Local.Buffer Euc. 200 + 0.347

AR DistNN W50-R1000 + + −0.057

AR F W50-R1000 1500 0 0.538 *

AR F W50-R1000 1500 1 0.566 *

AR Large.Buffer W50-R1000 1000 + 0.482 *

AR BC W1000-R1000 7500 0 0.382

AR BC W1000-R1000 7500 1 0.387

Priv. AR Capacity W50-R1000 1500 + 0.238

Priv. AR Local.Buffer W50-R1000 300 + 0.289

Priv. AR DistNN W50-R50 + + −0.181

Priv. AR F Euc. 5500 0 −0.609 **

Priv. AR F Euc. 2500 1 −0.593 **

Priv. AR Large.Buffer W50-R1000 2000 + 0.391

Priv. AR BC Euc. 3000 0 −0.437 *

Priv. AR BC Euc. 1500 1 −0.387

MIWcomp.DPS Capacity W50-R1000 1500 + 0.203

MIWcomp.DPS Local.Buffer W50-R50 500 + 0.274

MIWcomp.DPS DistNN W50-R50 + + 0.126

MIWcomp.DPS F Euc. 3000 0 0.500 *

MIWcomp.DPS F Euc. 3500 1 0.467 *

MIWcomp.DPS Large.Buffer Euc. 5000 + −0.348

MIWcomp.DPS BC Euc. 1500 0 0.380

MIWcomp.DPS BC Euc. 1500 1 0.335

MIWprun.DPS Capacity W50-R1000 1500 + 0.176

MIWprun.DPS Local.Buffer W50-R50 500 + 0.279

MIWprun.DPS DistNN W50-R50 + + 0.113

MIWprun.DPS F Euc. 3000 0 0.632 **

MIWprun.DPS F Euc. 3500 1 0.597 **

MIWprun.DPS Large.Buffer Euc. 5000 + −0.356

MIWprun.DPS BC Euc. 1500 0 0.453 *

MIWprun.DPS BC Euc. 1500 1 0.411

MIWcomp.FST Capacity W50-R1000 1500 + 0.329

MIWcomp.FST Local.Buffer W50-R50 500 + 0.303

MIWcomp.FST DistNN Euc. + + -0.053

MIWcomp.FST F W50-R50 3000 0 0.663 **

MIWcomp.FST F W50-R50 1500 1 0.602 **

MIWcomp.FST Large.Buffer W50-R1000 1000 + 0.370

MIWcomp.FST BC W50-R1000 7000 0 0.472 *

MIWcomp.FST BC W1000-R1000 1500 1 0.441 *

MIWprun.FST Capacity W50-R1000 1500 + 0.327

MIWprun.FST Local.Buffer W50-R50 500 + 0.310

MIWprun.FST DistNN W1000-R1000 + + 0.059

MIWprun.FST F W50-R50 2000 0 0.686 **

MIWprun.FST F W50-R50 1500 1 0.624 **

MIWprun.FST Large.Buffer W50-R1000 1000 + 0.358

MIWprun.FST BC W50-R1000 7000 0 0.507 *

MIWprun.FST BC W1000-R1000 1500 1 0.454 *
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Figs. S5C and S5D). While the F was computed from Euclidean
distances with β= 0 and MDD of 3500m in the best model
explaining the MIW-DPS, it was computed with cost-distances
under the scenario W50-R1000 with β= 0 and considering
dispersal at a smaller scale (MDD = 2500m) in the best model
for MIW-FST (Table 3). In all cases, the correlation between the first
component of the PLS models and the F was strong and positive (r
about 0.97).

DISCUSSION
We assessed the advantage of using complementary metrics
measuring the amount of reachable habitat (ARH) instead of two
other commonly used habitat metrics for explaining population
genetic structure. The three ARH metrics derived from the unified
and flexible framework offered by landscape graphs, i.e. the patch
capacity, Flux and Betweenness Centrality metrics, were relevant
predictors of the two components of genetic structure, i.e. genetic
diversity and genetic differentiation. They provided an advantage
over the distance to the nearest neighbour patch (DistNN) and the
amount of habitat in buffer areas (Local.Buffer or Large.Buffer) that
were poor predictors in this study. Besides, although allelic
richness was significantly explained by the three complementary
ARH metrics in the best PLS-R model, private allelic richness and
MIW indices were essentially related to the ARH measured outside
the focal patch. Finally, considering several matrix resistance
scenarios for computing ARH metrics was key for evidencing that
local genetic diversity seemed to be negatively influenced by
transport infrastructures and positively by water surfaces, whereas
these landscape features did not influence genetic differentiation
in the same way when measured with either the DPS or the FST.

Are ARH metrics relevant predictors of genetic structure?
All the genetic indices describing the genetic structure of the
grasshopper populations were significantly correlated with at least

one ARH metric and explained by these metrics in PLS models. In
contrast, the two habitat metrics (DistNN and buffer metrics)
previously used in landscape genetic analyses were hardly
significantly correlated with the genetic indices, and in these rare
cases, the correlation was much lower. Our results therefore
confirm that the three ARH metrics here considered are relevant
for describing the habitat pattern driving both genetic drift
(capacity) and gene flow (Flux, BC) processes. Interestingly, our
results match the results of Moilanen and Nieminen (2002)
regarding the respective performance of several habitat metrics in
predicting colonisation events. Although based on different
biological responses, their results and ours provided similar
evidence for the poor performance of metrics considering habitat
amount in neighbourhoods delineated with fixed radius or
distances to nearest patches, as compared with metrics consider-
ing dispersal probabilities to neighbouring patches.
As the computation of ARH metrics is very flexible, they include

habitat metrics already computed in previous studies, as for
example the amount of habitat in a circular neighbourhood with a
radius of 15 km, identified by Capurucho et al. (2013) as the best
predictor of genetic diversity in a tropical bird species (see
Keyghobadi et al. (2005), Millette and Keyghobadi (2015) or
Peterman et al. (2015) for other examples). Using complementary
ARH metrics in this and similar study could thus have provided
stronger statistical relationships and complementary insights into
drift and gene flow processes driving genetic responses. In sum,
although other metrics can explain genetic structure, landscape
graphs offer a unified and flexible framework for understanding
the influence of habitat patterns on genetic structure.
Including patch capacities in the calculation of the F and BC

metrics only marginally influenced our results. Therefore, the
number of reachable patches in a habitat network alone was often
a good predictor of genetic structure. This recalls the results of
Peterman et al. (2015) which have identified the isolation of a
patch relative to others as the best predictor of population-

Fig. 4 Variation of the Spearman correlation coefficients between the relative genetic differentiation index MIW computed from the
pruned genetic graphs and the F metric according to the genetic distance, cost scenarios and dispersal kernels used to compute these
indices. The x axis indicates the dispersal kernels used to compute the metrics and corresponds to the MDD (maximum dispersal distances). In
this figure, the F metric was computed without weighting patch capacities (β= 0). Point colours refer to the cost scenario used to compute
cost-distances (see Table 1). The left and right panels display the variations observed when computing MIW from a genetic graph weighted
with DPS and FST values respectively. Crosses indicate that the correlation is not significant after p-value adjustment.
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specific genetic differentiation indices. Thus, the advantage of the
landscape graph approach for measuring the ARH could stem
from their direct consideration of population topology, already
recognised as an important driver of dispersal and gene flow
patterns (Saura et al., 2014, van Strien, 2017).

Does the ARH influence genetic diversity and genetic
differentiation to the same degree and at the same spatial
scale?
It has previously been observed that genetic differentiation and
local genetic diversity indices were not influenced to the same
degree and at the same spatial scale by the habitat pattern
(Balkenhol et al., 2013, Keyghobadi et al., 2005, Kierepka et al.,
2020, Taylor and Hoffman, 2014). Our results confirm these
previous results given that we used a common statistical approach
for analysing these two components of genetic structure. On the
one hand, allelic richness was significantly correlated with both
the F metric and the patch capacity and was the only genetic
index significantly explained by the capacity in the PLS models.
On the other hand, private allelic richness and MIW indices
appeared to be only related to F and BC metrics. Thus, local
genetic diversity was influenced by the ARH at the scale of the
focal patch and outside that patch, whereas genetic differentiation
was influenced by the ARH outside the focal patch only. While
genetic diversity and differentiation are expected to be driven by

both gene flow and drift, DiLeo and Wagner (2016) suggested that
a stronger effect of the local habitat amount on genetic diversity
could stem from the close relationship between habitat amount
and population size. In contrast, the effect of the large scale
habitat pattern on migration rates seems to influence genetic
differentiation more substantially than the effect of habitat area
on drift does (Cushman et al., 2012).
The relative genetic differentiation among populations was

better explained by the spatial pattern of habitats when
computed from pruned genetic graphs. The relevance of graph
pruning for landscape genetic analyses has already been
suggested by Wagner and Fortin (2013) for link-level analyses
and evidenced by Arnaud (2003), Angelone et al. (2011) and
Savary et al. (2021a), among others. Besides, Shirk and Cushman
(2011) have highlighted the importance of considering the spatial
distribution of populations for computing genetic diversity indices
in a genetic neighbourhood including several populations. Here,
we further stress the relevance of reducing the set of population
pairs considered for computing neighbourhood-level genetic
indices from genetic graphs. The stronger relationship between
the ARH and the relative genetic differentiation when considering
only population pairs connected by frequent gene flow events
confirms the result obtained by Keller et al. (2013) when analysing
this dataset. They showed that the relationship between genetic
differentiation and geodesic distance was positive only up to a

Table 3. Results of the Partial Least Squares regression (PLS-R) of the genetic indices by the capacity, flux and betweenness centrality metrics. For
each genetic index and patch capacity weighting parameter for computing F and BC (β value), the best model according to the Q2 associated with
the first PLS component (Q2.t1) is displayed (largest Q2 value for each genetic index displayed in italics). When β is equal to 1, patch capacities are
included in the metric calculation and not otherwise (β= 0). MDD indicates the distance at which the dispersal probability is set to 0.05 for the metric
calculation. For the cost scenarios, refer to Table 1. The r.t1 column gives the Pearson correlation coefficient between the PLS components t1 and the
habitat metrics. These values are displayed in bold when the metrics significantly contribute to the construction of the PLS components. R2.t1 and
Q2.t1 values associated with the first component respectively indicate the proportion of the response variable variance and the cross-validated
proportion of this variance explained by each PLS component. Q2 values above 0.0975 indicate that the PLS component has a significant effect on
the response variable and are displayed in bold. Q2.t2 values associated with the second component are also displayed for information purposes.
MIWcomp.DPS and MIWprun.DPS refer to the MIW-DPS computed from complete and pruned genetic graphs respectively (similar notation for the MIW-FST).

Capacity F BC Model fit

Gen. index Cost sc. r.t1 β MDD Cost sc. r.t1 β MDD Cost sc. r.t1 Q2.t1 R2.t1 Q2.t2

AR W50-R1000 0.848 0 2000 W50-R1000 0.885 0 1500 W1000-R50 0.331 0.273 0.326 −0.035

ar w50-r1000 0.829 0 2000 w50-r1000 0.860 1 7500 w1000-r1000 0.787 0.280 0.325 −0.098

AR W50-R1000 0.847 1 2000 W50-R1000 0.916 0 5500 W1000-R1000 0.870 0.214 0.246 −0.095

AR W50-R1000 0.860 1 2000 W50-R1000 0.880 1 7500 W1000-R1000 0.807 0.230 0.270 −0.136

Priv. AR W50-R1000 0.201 0 1500 Euclid. −0.947 0 5500 W1000-R1000 −0.396 0.317 0.443 −0.003

Priv.ar w50-r1000 0.427 0 2500 Euclid. −0.813 1 6000 w1000-r1000 0.160 0.411 0.511 −0.147

Priv. AR W50-R1000 0.221 1 2000 Euclid. −0.943 0 7000 W1000-R1000 −0.385 0.309 0.437 −0.006

Priv. AR W50-R1000 0.448 1 2500 Euclid. −0.790 1 7000 W1000-R1000 0.182 0.410 0.508 −0.141

MIWcomp.DPS W1000-R50 −0.216 0 4000 Euclid. 0.952 0 2500 Euclid. 0.880 0.148 0.217 −0.076

miwcomp.dps w50-r1000 0.390 0 4500 Euclid. 0.929 1 6500 w1000-r1000 0.492 0.178 0.291 0.063

MIWcomp.DPS W1000-R50 −0.178 1 2500 Euclid. 0.927 0 3500 Euclid. 0.905 0.110 0.182 −0.077

MIWcomp.DPS W50-R1000 0.491 1 3500 Euclid. 0.904 1 5500 W1000-R1000 0.542 0.098 0.211 0.025

MIWprun.DPS W1000-R50 −0.131 0 3000 Euclid. 0.958 0 2000 Euclid. 0.901 0.312 0.366 −0.081

miwprun.dps w50-r1000 0.284 0 3500 Euclid. 0.974 1 7500 w1000-r1000 0.477 0.314 0.394 0.101

MIWprun.DPS W1000-R50 −0.093 1 3000 Euclid. 0.938 0 1500 Euclid. 0.899 0.270 0.325 −0.077

MIWprun.DPS W1000-R50 −0.084 1 3500 Euclid. 0.947 1 1500 Euclid. 0.891 0.241 0.303 −0.065

miwcomp.fst w1000-r50 0.117 0 2000 w50-r1000 0.969 0 3500 Euclid. 0.618 0.381 0.445 −0.115

MIWcomp.FST W50-R1000 0.387 0 3500 Euclid. 0.942 1 2500 W1000-R50 0.091 0.355 0.448 −0.070

MIWcomp.FST W1000-R50 0.228 1 2500 W50-R1000 0.974 0 3000 Euclid. 0.615 0.324 0.393 −0.091

MIWcomp.FST W1000-R50 0.234 1 2500 W50-R1000 0.969 1 2000 Euclid. 0.701 0.295 0.365 −0.065

miwprun.fst w1000-r50 0.147 0 2500 w50-r1000 0.972 0 3500 Euclid. 0.643 0.443 0.504 −0.103

MIWprun.FST W1000-R50 0.164 0 2500 W50-R1000 0.965 1 3000 Euclid. 0.714 0.408 0.474 −0.076

MIWprun.FST W1000-R50 0.226 1 2500 W50-R1000 0.970 0 3500 Euclid. 0.633 0.368 0.436 −0.083

MIWprun.FST W1000-R50 0.238 1 2500 W50-R1000 0.965 1 2500 Euclid. 0.717 0.327 0.402 −0.062
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limited spatial scale, suggesting that the large marsh grasshopper
is currently expanding. Indeed, although it has been negatively
affected in the past by the reduction of wetland and grassland
areas, intensive grassland management and river control reducing
periodic flooding (Koschuh, 2004, Krause, 1996, Malkus, 1997,
Reinhardt et al., 2005), the species has been recolonising new
areas due to wetland conservation programmes and changes in
grassland management practices, among others (Trautner and
Hermann, 2008). Therefore, genetic differentiation at the scale of
the entire study area might not have reached its equilibrium level,
as expected from the IBD pattern dynamics theorised by Slatkin
(1993). In this context (case-IV IBD sensu Hutchison and Templeton
(1999)), the genetic differentiation pattern is best explained when
considering only a subset of nearby population pairs, reinforcing
the interest of genetic graph pruning. In summary, the spatial and
temporal scales over which drift and gene flow influence
population genetic structure could be identified by jointly using
landscape and pruned genetic graphs for relating ARH metrics
with genetic indices.

Does the resistance of the matrix affect genetic diversity and
genetic differentiation in the same way?
The allelic richness and the relative genetic differentiation indices
computed using the FST were most strongly correlated and best
explained by ARH metrics computed with cost-distances. In
contrast, considering geodesic Euclidean distances was the best
option for explaining the private allelic richness and the relative
genetic differentiation indices computed using the DPS. In a
context where the study species may be expanding due to
landscape changes, these differences might result from i) the
different time scales at which genetic diversity and differentiation
respond to these changes and ii) the ability of genetic
differentiation indices to reflect landscape influence on either
historical or contemporary gene flow.
First, as expected from theory (Varvio et al., 1986), genetic

differentiation reaches its equilibrium level faster than local
genetic diversity does. For example, Keyghobadi et al. (2005)
detected a positive influence of recent forests on genetic
differentiation in a butterfly species dispersing through open
areas and avoiding forests, while local genetic diversity was best
explained by patch isolation metrics taking only geodesic
Euclidean distances into account. Accordingly, the results we
obtained can be interpreted from the following hypotheses. The
closer relationship between local genetic diversity and ARH
metrics considering cost-distances instead of geodesic Euclidean
distances reflects the past influence of the matrix on dispersal.
Second, the closer relationship between private allelic richness
and MIW indices computed from graphs pruned with the DPS and
ARH metrics considering Euclidean distances instead of cost-
distances points towards a lower influence of matrix resistance on
contemporary dispersal. These hypotheses are consistent with the
current expansion of this species.
Second, previous landscape genetic studies have shown that

the DPS reflects recent landscape effects on genetic structure while
the FST should be preferred for reflecting past landscape effects
(Holzhauer et al., 2006, Murphy et al., 2010, Storfer et al., 2010).
This could explain why genetic differentiation indices computed
using the FST were most correlated with ARH metrics taking into
account the high resistance of some landscape features on
dispersal. Although difficult to verify, this explanation would also
mean that the landscape matrix have become more permeable for
this species in recent years, thereby explaining its expansion.
On another note, as regards the nature of landscape feature

effects on genetic structure, our results recall those obtained by
Holzhauer et al. (2006), which observed that roads and railways
might be barriers for the large marsh grasshopper while water areas
are not. Indeed, the scenario in which roads and railways had a low
resistance to movement and water areas a high resistance (W1000-

R50) never provided the best fits when studying local genetic
diversity and historical gene flow (FST). In contrast, the scenario in
which transport infrastructures strongly limited dispersal and water
areas were relatively permeable (W50-R1000) performed well in
explaining these variables. This result is inconsistent with that of
Keller et al. (2013) showing a positive effect of roads on dispersal in
this species. However, these authors only considered a measure of
genetic differentiation related to contemporary landscape influence
on gene flow (mean assignment probabilities) as a response
variable. Similarly, MIW indices based on the DPS were best
explained by ARH metrics without considering matrix resistance.

Limits and perspectives
The relationship between habitat structure and genetic structure
is dynamic and takes time to reach an equilibrium (Slatkin, 1993).
Besides, the topology of the habitat network has a strong
influence on genetic structure, which may be related to the
species dispersal pattern (van Strien, 2017). Even under the
hypothesis where only the amount of habitat at a given scale
drives diversity patterns (Fahrig, 2013), habitat configuration has
been shown to affect them significantly (Saura, 2021). For
example, different traversability properties of the habitat network
may influence long-distance gene flow patterns over time, which
would result in a different genetic structure. We also acknowledge
that the relative effects of the ARH on the two components of
genetic structure here observed may be specific to the habitat
spatial pattern of our case study, but our results encourage using
ARH metrics in empirical landscape genetic studies. These aspects
could be further investigated using ARH metrics and performing
gene flow simulations with varying population sizes, topologies,
dispersal capacities, matrix resistances and habitat patterns.
Finally, our results are hardly comparable with previous ones

distinguishing the effects of habitat amount and configuration on
genetic structure (Cushman et al., 2012, Jackson and Fahrig, 2015,
Millette and Keyghobadi, 2015). Most of these studies used link-
level analyses (DiLeo and Wagner, 2016), whereas here we used a
node- and neighbourhood-level approach. We may wonder
whether it influences the detection of landscape genetic relation-
ships. Indeed, the MIW index is based on genetic differentiation
between one population and all links with neighbouring
populations. It therefore averages landscape effects over all these
links, which may preclude the possibility of precisely estimating
the resistance of every type of landscape feature. Besides, in most
previous studies, habitat configuration measures such as inter-
patch distances or patch isolation were strongly correlated with
habitat amount, which should have ruled out any conclusion that
habitat configuration exerts a stronger influence than habitat
amount does on genetic structure (Jackson and Fahrig, 2015).
Accordingly, we focused here on complementary ARH metrics
derived from spatial graphs because they account for the
compounded effects of both habitat amount and configuration,
which are highly interdependent (Didham et al., 2012). Their use
has already been advocated (Saura, 2018) and we showed here
that it makes it possible to understand how spatial habitat
patterns influence both drift and gene flow at several spatial and
temporal scales, while considering matrix resistance.
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